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Abstract: We have developed a quantum message authentication protocol that provides authentica-
tion and integrity of an original message using single qubit unitary operations. Our protocol mainly
consists of two parts: quantum encryption and a correspondence check. The quantum encryption part
is implemented using linear combinations of wave plates, and the correspondence check is performed
using Hong–Ou–Mandel interference. By analyzing the coincidence counts of the Hong–Ou–Mandel
interference, we have successfully proven the proposed protocol experimentally, and also showed its
robustness against an existential forgery.

Keywords: quantum message authentication; quantum three-pass protocol; Gao’s forgery; swap test

1. Introduction

Modern cryptography provides four functions, namely, confidentiality, authentication,
integrity, and nonrepudiation [1,2]. Therefore, as a substitution candidate for next-level
secure cryptography, quantum cryptography should also have the ability to offer these four
functions. Remarkable progress has been made in the area of confidentiality because the
quantum key distribution (QKD) protocol that provides confidentiality has been consider-
ably improved [3–6]. QKD aims to enable communication partners, e.g., Alice and Bob, to
share secret keys and ultimately perform a one-time pad communication. Those protocols
provide unconditional confidentiality based on the principle that an arbitrary unknown
quantum state cannot be copied and that quantum measurement is irreversible [7–10]. On
the other hand, many researchers have also studied how to use these secret keys in quan-
tum message authentication [11–13], arbitrated quantum signature [14–19], or quantum
digital signature [20–29], providing authentication, integrity, and non-repudiation.

In this paper, we introduce a simple and practical quantum message authentica-
tion protocol with a quantum three-pass protocol [30–33] and a quantum encryption
scheme [19,34]. This protocol is a lightweight to simplify the implementation by removing
an arbitrator from our proposed quantum signature protocol [19]. Here, the quantum
three-pass protocol is the quantum version of Shamir’s three-pass protocol [1,35], and
quantum encryption scheme is to prevent existential forgery, called Gao’s forgery. More
specifically, the core elements of the proposed protocol, such as the quantum three-pass pro-
tocol and the quantum encryption scheme, are implemented with only single qubit unitary
operators. In other words, these can be implemented easily by using linear combinations
of wave plates [36,37]. Additionally, the swap test that checks the correspondence of the
original message and quantum message authentication code (QMAC) can be implemented
using a Hong–Ou–Mandel interferometer [38–40]. In advance, as the Hong-Ou-Mandel
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interferometer is a destructive swap test [40], more resources are needed to implement a
controlled swap test.

In Section 2, we briefly explain the concept of the proposed scheme. Section 3 presents
a security analysis of the proposed protocol for Alice’s private key, the forgery of QMAC
pair, and the origin authentication of quantum message. Section 4 describes the experimen-
tal setup and measurement results. We conducted three experiments with the proposed
protocol. First, we implemented a quantum three pass protocol, which is a method of
conveying information in the proposed quantum message authentication. Second, we
implemented a quantum encryption scheme with a single qubit unitary operator to prevent
forgery. Finally, we confirmed that the QMAC pair with the quantum encryption scheme is
robust to Gao’s forgery. In Section 5, after a thorough discussion that includes the possibil-
ity of expanding the scheme to quantum signature and quantum entity authentication, we
present the conclusions of this work.

2. Quantum Message Authentication Protocol

Quantum message authentication, which is similar to conventional message authenti-
cation, should provide message integrity and origin authentication. What differentiates
quantum message authentication from conventional message authentication [41,42] is that
the former uses quantum states |0〉 and |1〉 as a message represented by a sequence of
“0” and “1” bits. In addition, using arbitrary quantum states as a message enables more
information to be delivered at once [43,44]. Moreover, there is a significant difference that
is described below. In modern cryptography, asymmetric key cryptography easily provides
message integrity, message origin authentication, and nonrepudiation. Unfortunately, a
quantum asymmetric key cryptosystem based on the quantum trapdoor one-way func-
tion do not exist, making the design of quantum authentication and quantum signature
protocols difficult. To overcome this difficulty, we propose a new quantum message au-
thentication protocol based on Shamir’s three-pass protocol [1,35]. Shamir’s three pass
protocol has the advantage that two parties, e.g., Alice and Bob, can share information
without exposing their own private keys. In the implementation, the central idea is that
the commutative property [19] of exponential operation in Shamir’s three-pass protocol
is implemented using single-qubit rotation operators consisting of linear combinations of
wave plates. To our knowledge, this is the first time a quantum message authentication
protocol has been proposed using the quantum three-pass protocol, though other applica-
tions of the quantum three-pass protocol, such as direct communication [32], quantum key
distribution [30], and quantum signature [19], have been proposed theoretically. Figure 1
schematically shows the quantum message authentication protocol that we implemented.
Our quantum message authentication protocol consists of preparation, quantum message
authentication, and verification phase.

2.1. Preparation Phase

In the preparation phase, Alice and Bob pre-share secret key sequences KAB =(
k1

AB, k2
AB, . . . , kN

AB
)

and KH =
(
k1

H , k2
H , . . . , kN

H
)

that determine which single-qubit opera-
tion is chosen. The sequences KAB =

(
k1

AB, k2
AB, . . . , kN

AB
)

and KH =
(
k1

H , k2
H , . . . , kN

H
)

are
a classical bit sequence with the size of 2N and N respectively, where ki

AB ∈ {00, 01, 10, 11},
ki

H ∈ {0, 1}. The secret keys ki
AB and ki

H correspond to the Pauli operators σki
AB
∈{

I, σx, σy, σz
}

and the operator Hki
H ∈

{
H0 = I, H1 = H

}
. Here, operator is a linear

combination of the Pauli operators
{

I, σx, σy, σz
}

and unitary operator H† H = HH† = I.

H =
(

I − iσx − iσy − iσz
)
/2 (1)
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Figure 1. Basic structure of the quantum message authentication protocol based on quantum three-pass protocol. Similar to
quantum three-pass protocol, which transmits bits three times, our protocol performs three quantum state transmissions.
After three attempts of quantum state transmission, Bob finally acquires quantum message states |M〉 u = ⊗N

i=1Ry(mi)| ϕ〉 i
u

and |M′〉 d = ⊗N
i=1Ry(mi)| ϕ〉 i

d. He then uses a swap test twice to confirm the similarity of the two arbitrary quantum states
|M〉 u, |M′〉 d and bit message sequence M. KAB and KH denote the secret key sequences that Alice and Bob previously
shared. S is the private key sequence that only Alice knows, and B is the one known only to Bob.

2.2. Quantum Message Authentication Phase

The quantum message authentication phase is composed of two stages: quantum
message generation, QMAC generation, and quantum encryption. In the quantum message
generation stage, Alice generates a quantum message state pair

|M〉 u|M〉 d =
[
⊗N

i=1Ry(mi)| ϕ〉 (i)u

][
⊗N

i=1Ry(mi)| ϕ〉
(i)
d

]
(2)

by applying a single qubit rotation operator

Ry(mi) =

(
cos mi

2 −sin mi
2

sin mi
2 cos mi

2

)
, (3)

where M = (m1, m2, m3, . . . , mN) is a rotation angle sequence, 0◦ ≤ mi ≤ 360◦, and
| ϕ〉 (i)u | ϕ〉

(i)
d are the logical states |0〉|0〉 or |1〉|1〉 , corresponding to horizontally polarized

photons |H〉|H〉 and vertically polarized photons |V〉|V〉 , respectively. The superscript
(i) denotes the i th qubit, and subscripts u and d denote up and down, corresponding to
the up-line and down-line, respectively, of the experimental setup used for our protocol.
The rotation angle sequence M = (m1, m2, m3, . . . , mN) is a bit message sequence, and
we assume that it has already been published in public as in the case of a contract or an
official document. The reason for publishing M is to prevent Alice from attempting to forge
using a modulated QMAC pair, which is discussed in detail in Section 3.2 impossibility of
forgery.

In the QMAC generation stage, Alice encrypts the quantum message pair |M〉 u|M〉 d
of Equation (2) by using a single qubit rotation operator Ry(si);

|M〉 u|S〉 d= |M〉 u
[
⊗N

i=1Ry(si)|M〉 d
]
=
[
⊗N

i=1Ry(mi)| ϕ〉 (i)u

][
⊗N

i=1Ry(si)Ry(mi)| ϕ〉
(i)
d

]
. (4)
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Here, S = (s1, s2, s3, . . . , sN) is a rotation angle sequence, 0◦ ≤ si ≤ 360◦. In addition,
S is a private key known only to Alice. Furthermore, we call |M〉 u|S〉 d to a QMAC state
pair.

In the quantum encryption stage, Alice applies quantum encryption σki
AB

Hki
H to the

QMAC state pair |M〉 u|S〉 d of Equation (4);

|M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
. (5)

Here, |M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
is an encrypted QMAC state pair, and then she sends

it to Bob. This quantum encryption is an essential function for verifying that the entity
sending the QMAC pair is Alice and for protecting against forgery.

The rotation angles mi and s1 are the elements of the finite discrete variable set. For
applying them to real protocols, Alice and Bob must preset the range of the finite discrete
variable set and pre-decide how to divide the set range. For example, if Alice and Bob split
the rotation angle from 0◦ to 360◦ in intervals of 10◦, then the finite discrete variable set
becomes {0◦, 10◦, 20◦, . . . , 350◦}. Here, the size of the discrete variable set is determined
by the performance of the experimental apparatus. Therefore, as the performance of
experimental apparatus improves, the size of the discrete variable set increases. Increasing
the size of the discrete variable set means that the rotation angle can be subdivided, and
this can lead to authenticating more information compared with using the four states of
the BB84 protocol. On the other hand, If the performance of the experimental apparatus
is poor, the size of the discrete variable set decreases. Then, the rotation angle cannot be
subdivided, and information that can be authenticated decreases. Additionally, in this
situation, if the communication members use the subdivided rotation angles to such an
extent that the experimental apparatus cannot distinguish, detecting the malicious behavior
of Eve is impossible.

2.3. Verification Phase

The verification phase is divided into five stages: “quantum decryption”, “Bob’s
encryption”, “QMAC recovery”, “Bob’s decryption”, and “swap test”. In Stage 1, for quan-
tum decryption, Bob uses secret key sequences KAB and KH , which were pre-shared with
Alice to decrypt the encrypted QMAC state pair |M〉 u

[
⊗N

i=1σki
AB

Hki
H |S〉 d

]
in Equation (5),

received from Alice to obtain the QMAC state pair |M〉 u|S〉 d of Equation (4). In Stage 2,
Bob’s encryption, Bob generates his own private key sequence B = (b1, b2, . . . , bN) and
re-encrypts quantum state |S〉 d = ⊗N

i=1Ry(si)|M〉 d with it to obtain quantum state
|S′〉 d = ⊗N

i=1Ry(bi)|S〉 d. Then, he sends |S′〉 d to Alice while keeping the other quan-
tum message state |M〉 u. In Stage 3, QMAC recovery, Alice uses her own private key
sequence S to apply rotation operator ⊗N

i=1Ry(−si) to quantum state |S′〉 d and sends
quantum state |S ′′〉 d = ⊗N

i=1Ry(−si)|S′ d to Bob. In Stage 4, Bob’s decryption, Bob uses
his own private key sequence B and applies rotation operator ⊗N

i=1Ry(−bi) to quantum
state |S ′′〉 d to obtain quantum message state |M′〉 d = ⊗N

i=1Ry(−bi)|S ′′〉 d. Because the
proposed quantum message authentication based on the quantum three-pass protocol oper-
ates Alice’s private key si, there is a need for a method to verify the encrypted QMAC pair
described thus far. This is an important element that the proposed protocol can guarantee
the origin of quantum message. In addition, to avoid counterfeiting, it is assumed that
quantum encryption such as σki

AB
Hki

H in Equation (5) is applied to Alice and Bob in every
process of exchanging quantum states.

In the final stage, Bob performs the swap test [42,45] twice to verify the QMAC state
pair. In the first swap test, Bob verifies whether quantum message state |M〉 u and quantum
message state |M′〉 d are the same. If the test result reveals that |M〉 u and |M′〉 d agree,
Bob accepts QMAC state pair |M〉 u|S〉 d sent by Alice. Otherwise, he does not accept it. In
the second swap test, Bob generates quantum state |M ′′〉 corresponding to the public bit
message sequence M and verifies that it matches quantum message state |M〉 u or |M′〉 d.
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If the test result reveals that (|M ′′〉 , |M〉 u) or (|M ′′〉 , |M′〉 d) agree, then the integrity of
QMAC state pair |M〉 u|S〉 d is verified completely. For the second swap test, it is noted
that the first swap test requires a non-demolition swap test. Figure 2 shows the swap test
in the circuit, and the result of inputting

|mi〉 u = Ry(mi)| ϕ〉 (i)u (6)

and ∣∣m′i〉 d = Ry
(
m′i
)
| ϕ〉 (i)d (7)

in the second and third lines of the circuit is expressed as follows:

1√
2
|0〉 ancilla

[
1√
2

(
|mi〉 u

∣∣m′i〉 d +
∣∣m′i〉 u|mi〉 d

)]
+ 1√

2
|1〉 ancilla

[
1√
2

(
|mi〉 u

∣∣m′i〉 d −
∣∣m′i u|mi〉 d

)]
. (8)

Figure 2. Circuit of the quantum swap test. “SWAP” indicates a swap gate, and UH represents a
Hadamard gate. “MS” represents quantum measurement, and the single lines and the double line
represent the quantum channel and classical channel, respectively.

If |mi〉 u and
∣∣m′i〉 d agree, the above equation becomes |0〉 ancilla

[ 1√
2

(
|mi〉 u

∣∣m′i〉 d+∣∣m′i〉 u|mi〉 d
)]

, which makes the measurement outcome of the ancilla state to always be |0〉 .
However, if |mi〉 u and

∣∣m′i〉 d do not agree, the measurement outcome becomes |0〉 with a
probability

(
1 + ε2)/2 or becomes |1〉 with a probability

(
1 + ε2)/2, where ε =

∣∣d〈m′i∣∣mi
〉

u|
and 0 ≤ ε ≤ 1. Therefore, if the swap test result of the measurement is |1〉 , we know
that |mi〉 u and

∣∣m′i〉 d are different. If the result is |1〉 , we cannot guarantee that |mi〉 u
and

∣∣m′i〉 d are the same. The parameter ε is determined by the arbitrary quantum state
components |mi〉 u of Equation (6) and

∣∣m′i〉 d of Equation (7). If the two rotation angles
mi and m′i are the same, i.e., mi = m′i, then the value of parameter ε is 1. On the other hand,
if the difference between mi and m′i is 180◦, i.e., mi = m′i ± 180◦, then the parameter ε is 0.
As a result, according to rotation angles mi and m′i, the parameter ε has a value between
0 and 1, 0 ≤ ε ≤ 1. Further, the probability of failure in the verification phase is the total
error probability Pe for N qubits as follows:

Pe ≤ ⊗N
i=1

[(
1 +

∣∣d〈m′i∣∣mi
〉

u

∣∣2)/2
]

(9)

Therefore, it is expected that the swap test will work well even though the quantum
state sequence is finite. Hence, the probability of failure in the verification phase becomes
lower, approaching Pe as the size of the quantum state sequence N becomes considerably
larger [42,45]. For an arbitrary |mi〉 u, a random choice for

∣∣m′i〉 d on the Ry
(
m′i
)
—rotation

circle, the average of ε2 is 1/2. In this case, the upper bound of the total error probability Pe

is (3/4)N . If the size of the quantum state sequence is 15, then the upper bound of the total
error probability Pe is only approximately 1.3%. Therefore, it is expected that the swap test
will work well even though the quantum state sequence is finite.
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3. Security Analysis
3.1. Security of Alice’s Private Key

Eve, including Bob, may try to obtain Alice’s private key. Especially, as described in
Section 2.3, malicious Bob may try to know Alice’s private key sequence S = (s1, s2, s3, . . . ,
sN), which consists of the degrees of rotation about ŷ-axis from |S〉 d = ⊗N

i=1Ry(si)|M〉 d
in Equation (4). However, the security of Alice’s private key sequence S is guaranteed by
Holevo’s theorem, as follows [19,32]:

I(x, S) ≤ V(ρ) ≤ H(S) (10)

Here, H(S) is the Shannon entropy of the sequence of arbitrary rotation angle si, V(ρ)
is the von Neumann entropy of mixed state ρ that Eve can acquire through the arbitrary
measurement of the quantum state |S〉 d = ⊗N

i=1Ry(si)|M〉 d, and I(x, S) is the mutual
information between arbitrary rotation si and measurement outcomes x. As we can see
in Equation (10), the amount of mutual information about the arbitrary rotation angle
sequence S that Bob acquires using measurement outcomes x is limited, and thus, it is
impossible for Eve to obtain the information of S. Based on the same principle, the security
of Bob’s private key sequence B = (b1, b2, b3, . . . , bN) is guaranteed.

3.2. Impossibility of Forgery

Many quantum message authentication and signature protocols use quantum en-
cryption implemented by Pauli operators to ensure message integrity and message origin
authentication. A QMAC pair (or quantum signature pair), which is composed of a quan-
tum message and an encrypted quantum message, checks the forgery and modulation
of the QMAC pair (or quantum signature pair) using a swap test [34]. As described in
Section 2.3, Bob validates the original quantum message state |M〉 u and the recovered
quantum message state |M′〉 d from the QMAC state pair of Equation (4) using the swap
test. Bob can be sure that |M〉 u and |M′〉 d are the same quantum state from the outcomes
of the swap test. However, it is not known whether they match the original message M.
Because of the limitations of this swap test, the proposed protocol can be falsified in two
ways.

The first falsification method is that Alice creates a modulated QMAC pair

I(x, S) ≤ V(ρ) ≤ H(S) (11)

with the two same quantum states
∣∣∣ M̃
〉

u
and

∣∣∣ M̃′
〉

d
that do not correspond to the original

message M and sends it to Bob. In this case, Bob cannot detect Alice’s malicious behaviour
even if he verifies that the two quantum states

∣∣∣ M̃
〉

u
and

∣∣∣ M̃′
〉

d
are the same from the

QMAC pair by using the swap test. To prevent this, Alice must disclose message M.
Additionally, Bob needs an additional process to validate |M′′〉 , which is converted to a
quantum state, and |M〉 u or |M′〉 d by using the swap test.

Second, Eve can try Gao’s forgery to apply Pauli operators to a QMAC pair [34,46].
Recently, Gao et al. showed that even if an adversary applies the arbitrary Pauli operator
to the QMAC pair (or quantum signature pair), the swap test could not detect it because
of the commutation relation of Pauli operators [46]. This is called Gao’s forgery, and
it can be considered as an existential forgery [34] of modern cryptosystems because it
randomly forges QMAC pairs (or quantum signature pairs), which are arbitrary quantum
states. The posing of this security problem by Gao et al. was a major turning point in
the study of quantum message authentication (or quantum signature) protocols. In 2011,
Choi et al. proposed the (I, H)- or (U, V)-type quantum encryption scheme to cope with
Gao’s forgery [47,48]. In 2013, Zhang et al. pointed out that the encryption scheme of
Choi et al. was still insecure against Gao’s forgery, and instead they proposed the key-
controlled-"I" quantum one-time pad or key-controlled-"T" quantum one-time pad [49,50]
as an alternative. The four unitary operators of the controlled-I quantum one-time pad
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are W00 = (σx + σz)/
√

2, W01 =
(
σy + σz

)
/
√

2, W10 =
(

I + iσx − iσy + iσz
)
/
√

2, and
W10 =

(
I + iσx + iσy + iσz

)
/
√

2. However, the encryption scheme of Zhang et al. is not
easy to implement with simple hardware. In contrast, we propose a quantum encryption
scheme with a single qubit unitary operation by randomly using unitary operator H, which
can be easily implemented by controlling wave plates and an authentication protocol.
Therefore, the proposed protocol is robust against an existential forgery. Section 4.3 in
Ref. [22] shows that unitary operators can be used randomly to prevent Gao’s forgery. The
detailed implementation of our experimental setup and the testing results of the quantum
three-pass protocol and security against Gao’s forgery are described in Section 4. Finally, to
prevent Gao’s forgery in the proposed protocol, the quantum encryption scheme should be
applied to all processes in which Alice and Bob exchange quantum states.

3.3. Origin Authentication of Quantum Message

To clarify the origin of the quantum message, the proposed quantum message authen-
tication operates by using not only the secret key pre-shared by Alice and Bob but also
Alice’s private key. In general, message authentication guarantees the origin of message
authentication by using a secret key previously shared by Alice and Bob. At this time, as
the user who can create a message authentication code (MAC) pair can be Alice or Bob, the
origin of the message may become unclear. On the other hand, in the proposed protocol,
Alice generates a QMAC pair |M〉 u|S〉 d of Equation (4) by using a private key sequence
S = (s1, s2, s3, . . . , sN) known only to her; thus, the possibility of such a dispute is very
low.

4. Experiment Setup and Measurement Results

Figure 3a shows the implementation setup of our proposed quantum message authen-
tication protocol. With this setup, we have experimentally proved that the proposed QMAC
is robust against existential forgery. Each stage is implemented with a linear combination
of wave plates; that is, the y-axis rotation operator Ry(θ), the unitary operator H, and
the Pauli operators are implemented by combinations of half-wave plates (HWPs) and
quarter-wave plates (QWPs). Figure 3b schematically shows a possible forgery attack that
Eve can try. Eve can attempt a forgery attack using the same Pauli operators σei = σe′i

[46],
or she can attempt a forgery attack using different Pauli operators σei 6= σe′i

[49,50]. We
define these two approaches as an original and improved Gao’s Forgeries, respectively. To
prevent Gao’s forgeries, we need to choose unitary operator H randomly. We explain this
in detail at the end of this section.

We assume that Alice and Bob have already pre-shared the secret key sequences in
the preparation phase. For the message authentication phase, we implemented message
generation, QMAC generation, and quantum encryption using wave plates on Alice’s
side. To create correlated photon pairs, Type-I spontaneous parametric down-conversion
(SPDC) photon pairs were generated in a beta barium borate (BBO) crystal pumped by
a multimode diode laser with a 408-nm wavelength. The SPDC photon pairs have the
same H-polarization and an 816-nm wavelength. The photon pairs are emitted with a
noncollinear angle of 3.3◦. One of the photons goes through only the rotation operator for
message generation, and the other experiences the sequence of operations from message
generation through the quantum encryption scheme with a single qubit unitary opera-
tor. Then, they are delivered to Bob. For the verification phase, one photon is kept on
Bob’s side, and the other photon experiences quantum decryption and Bob’s encryption
implemented by the wave plate, after which Bob sends it to Alice. Alice then decrypts
it by using QMAC recovery. In our experiment, we installed the QMAC recovery stage
between Bob’s encryption and Bob’s decryption for convenience of implementation; it
is marked by yellow shading in Figure 3a. Finally, after Bob’s decryption, the swap test
that verifies the agreement of the two photon sequences is performed using the Hong–
Ou–Mandel interferometer. The Hong–Ou–Mandel dip confirms the similarity between
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the two photons, which is the last step of the implementation of the proposed quantum
message authentication protocol.

Figure 3. Schematic representation of the experimental setup for the quantum message authentication protocol and an
existential forgery. (a) Quantum message authentication protocol: the blue box represents Alice’s operation, and the green
box represents Bob’s operation. mi is the rotation angle that indicates message. ki

AB, ki
H , si, and bi are the same as in Figure 1.

(b) Existential forgery: Eve can attempt forgery on the quantum message authentication code (QMAC) state pair using
Pauli operators when Alice transmits the encrypted QMAC state pair to Bob.

In other words, the realization of the quantum three-pass protocol, quantum encryp-
tion scheme, and the robustness of Gao’s forgery can be confirmed by the Hong–Ou–
Mandel Dip. Hong–Ou–Mandel interference is the same as the destructive swap test [40].
Because the destructive swap test does not have an ancilla qubit unlike the controlled swap
test, the two quantum states that are compared are directly measured and collapsed. For
this reason, we performed only the first swap test in the two swap tests shown in Figure
1. To implement the second swap test in Figure 1 using Hong–Ou–Mandel interference,
there is a need for more resources (e.g., single photons and wave plates) than the current
experimental setup. There are other ways to implement a second swap test by using an
experimental controlled swap gate that was recently implemented [51].

We tested the feasibility of our protocol with the experimental setup for the case
without Gao’s forgery. First, we verified that the quantum three-pass protocol (Figure 3)
was working correctly. As shown in Figure 4a, when the half-wave plate H1′s angle si/4
is −120

◦
, the coincidence count reaches its minimum at the half-wave plate H3′s angles

−si/4 = 30
◦
, 120

◦
as expected. This indicates that Alice generates the QMAC state by

applying rotation operator Ry
(
−120

◦)
and then uses rotation operator Ry

(
−120

◦ ± πn/2
)

to recover the QMAC state, where n is an integer, because the period of the half-wave plate
is π/2. The red plots represent the averages of the coincidence counts over one second. In
Figure 4b, we recognize that Bob’s encryption and decryption also work well. When the
half-wave plate H2′s angle bi/4 is −60

◦
, the Hong–Ou–Mandel dip occurs at the half-wave

plate H4′s angles −bi/4 = 60
◦
, 150

◦
. Bob uses rotation operator Ry

(
−60

◦)
to re-encrypt

the QMAC state, and then he decrypts the re-encrypted QMAC state by applying rotation
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operator Ry
(
60
◦ ± πn/2

)
, where n is an integer. In Figure 4, the experimental data are the

average of 10 measurements per 10 s.

Figure 4. Coincidence counts of the quantum three-pass protocol. The red plots indicate the average of the coincidence
counts for one second. The red bars indicate the standard deviation of the coincidence counts for each point. The blue solid
line indicates the sine curve fitted to the data. (a) Test for QMAC generation and recovery. (b) Test for Bob’s encryption and
decryption.

During this time, the averages of single counts were 27, 000 and 27, 000, respectively,
and coincidence windows are 5 ns; the maximum value of the coincidence counts after
accidental coincidences were removed was 127, and the minimum value was 2.

Second, we tested the quantum encryption and decryption. If Alice and Bob are proper
users who previously shared secret key sequences KAB and KH then the quantum message
states |M〉 u and |M′〉 d should be identical. Bob can check the correspondence of these
states using the Hong–Ou–Mandel interferometer [38,39]. Figure 4 shows the experimental
results for Alice’s quantum encryption and Bob’s quantum decryption. Pc is the coincidence
probability of Hong–Ou–Mandel interference, and Pc = 1− Pc represents the probability
of two quantum message states matching. Figure 5a,b represents whether operator H
exists or not, respectively. Although theoretically, the red blocks on the diagonal in both
cases should be 100%, experimentally they are greater than 82% and 76%, respectively.
On the other hand, the blue blocks off the diagonal, when Alice and Bob share different
secret keys ki

AB and ki
H , |M〉 u and |M′〉 d have different quantum states, and the respective

probabilities are less than 41% and less than 46%. Considering that theoretically Pc can
only have less than 50%, the measurement results prove that our scheme works well.
From these results, we can conclude that the encryption operates properly because Pc is
greater than 76% in the case of the same operators and Pc is less than 46% in the case of
different operators regardless of the existence of operator H. The above theoretical values
are derived from the success probability ε2 =

∣∣d〈ψ′i ∣∣ψi
〉

u

∣∣2 of the swap test, with |ψi〉 u =

UiRy(mi)|0〉 (i)u ,
∣∣ψ′i〉 d = U′i Ry(mi)|0〉

(i)
d , Ui, U′i ∈

{
I, σx, σy, σz, H, σx H, σyH, σz H

}
, and

mi = 135
◦
. Errors in the experiment shown in Figure 5 could be due to an inherent error of

the swap test, birefringence in the beam splitter, and/or systematic errors in the wave-plate
setting [38,39,42,45].

From the measurement results given in Figures 4 and 5, we have demonstrated that
our implementation succeeds in realizing the proposed protocol. Although there are some
errors due to unavoidable imperfections of the realization, our practical implementation
still performs message integrity and message origin authentication successfully only if our
protocol is applied to multiple bits sequentially and analyzed statistically.
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Figure 5. Pc is the coincidence probability of the quantum encryption scheme with a single qubit unitary operator for
quantum message authentication. Pc = 1− Pc represents the probability of two quantum message states being matched. In
(a), Pc corresponds to the quantum encryption scheme with a single qubit unitary operator that Alice and Bob can select
when secret key ki

H of Alice and Bob is zero. In (b), Pc corresponds to every type of quantum encryption with single qubit
unitary operator that Alice and Bob can select when secret key ki

H of Alice and Bob is one. In this experiment, message mi

was set to 135
◦
.

Gao et al. demonstrated the possibility of existential forgery in the case of quantum
message authentication that includes a swap test [34,46,48]. In other words, if the QMAC
state pair that Alice generates is not encrypted, Alice cannot detect Eve’s intervention. In
the quantum encryption σki

AB
Hki

H in Equation (5), the secret key ki
AB ∈ {00, 01, 10, 11}

and ki
H ∈ {0, 1} correspond to the Pauli operator σki

AB
∈
{

I, σx, σy, σz
}

and the operator

Hki
AB ∈ {I, H} of quantum encryption with a single qubit unitary operator, respectively.

The two bits information ei ∈ {00, 01, 10, 11} corresponds to the Pauli operator σei ∈{
I, σx, σy, σz

}
for Gao’s Attack. For example, if ki

AB = 01, ki
H = 0, an encrypted QMAC

state pair is

|M〉 u

[
σ01H0|S〉 d]= |M〉 u[σx|S〉 d

]
(12)

In addition, the forged QMAC state pair by Eve’s Pauli operator σ10
(
= σy

)
is

σ10|M〉 u

[
σ10σ01H0|S〉 d

]
= σy|M〉 u

[
σyσx|S〉 d

]
(13)

The forged QMAC state pair of Equation (13) transforms into the following state after
a decryption process:

σ10|M〉 u

[(
H†
)0

σ01σ10σ01H0|S〉 d

]
= σy|M〉 u

[
σxσyσx|S〉 d

]
= σy|M〉 u

[
−σy|S〉 d

]
.

(14)
Assuming that |M〉 u and |S〉 d of Equation (14) are the same, Eve succeeded in attack-

ing because the Pauli operator σy remained in the first and second qubits of Equation (14).
This is the first method to forge the quantum message code or quantum signature pair
proposed by Gao et al. [34,46,48].

As another example, if ki
AB = 01, ki

H = 1, an encrypted QMAC state pair is

|M〉 u

[
σ01H1|S〉 d]= |M〉 u[σxH|S〉 d

]
. (15)

The forged QMAC state pair by Eve’s Pauli operator σ10
(
= σy

)
is

σ10|M〉 u

[
σ10σ01H1|S〉 d]= σy|M〉 u[σyσxH|S〉 d

]
. (16)
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The forged QMAC state pair transforms into the following state after a decryption
process:

σ10|M〉u

[(
H†)1

σ01σ10σ01H1|S〉d

]
= σy|M〉 u

[
H†σxσyσxH|S〉 d]= σy|M〉 1[− σx|S〉 2

]
(17)

Despite the assumption that |M〉 u and |S〉 d of Equation (17) are the same, Eve’s
attack is unsuccessful. The reason is that the Pauli operators σy and σx remained in the
first and second qubits of Equation (17), respectively. This is the (I, H)-type quantum
encryption proposed to overcome Gao’s forgery [47]. Zhang et al., however, showed
that the (I, H)-type quantum encryption is not secure for improved Gao’s forgery [49,50].
We [19,34] overcome the original Gao’s forgery [46] or the improved Gao’s forgery [49,50]
with quantum encryption σki

AB
Hki

H , which randomly uses operator H. Here, the number of

all possible cases of quantum encryption σki
AB

Hki
H ∈

{
I, σx, σy, σz, H, σxH, σyH, σzH

}
is 8. Furthermore, except σei = I, there are three possible ways that Eve can attack with σei .
Therefore, there are a total of 24 forgery cases using the Pauli operator σei in the encrypted

QMAC state pair |M〉 u

[
σki

AB
Hki

H |S〉 d

]
of Equation (5) in the manuscript, Table 1 lists

these 24 cases, and Figure 6 shows the results of the experiment with the existential forgery
using the Pauli operator for 12 cases in Table 1.

Table 1. A total of 24 forgery cases using the Pauli operator ei ∈
{

σx, σy, σz
}

in the encrypted QMAC

state pair |M〉 u

[
σki

AB
Hki

H |S〉 d

]
. Here, σei ∈

{
σx, σy, σz

}
, σki

AB
∈
{

I, σx, σy, σz
}

, and Hki
H ∈ {I, H}.

We assume that the quantum states |M〉 u and |S〉 d are the same. The yellow shade represents the
case where the operator σz is not used for quantum encryption or Gao’s forgery.

Hki
H σki

AB
σei Up(u) Qubit Down(d) Qubit

H0 = I

σ00 = I
σ01 = σx σx|M〉 u σx| S〉 d

σ10 = σy σy|M〉 u σy| S〉 d

σ11 = σz σz|M〉 u σz| S〉 d

σ01 = σx

σ01 = σx σx|M〉 u σxσxσx| S〉 d = σx| S〉 d

σ10 = σy σy|M〉 u σxσyσx| S〉 d = −σy| S〉 d

σ11 = σz σz|M〉 u σxσzσx| S〉 d = −σz| S〉 d

σ10 = σy
σ01 = σx σx|M〉 u σyσxσy| S〉 d = −σx| S〉 d

σ10 = σy σy|M〉 u σyσyσy| S〉 d = σy| S〉 d

σ11 = σz σz|M〉 u σyσzσy| S〉 d = −σz| S〉 d

σ11 = σz

σ01 = σx σx|M〉 u σzσxσz| S〉 d = −σx | S〉 d

σ10 = σy σy|M〉 u σzσyσz| S〉 d = −σy| S〉 d

σ11 = σz σz|M〉 u σzσzσz| S〉 d = σz| S〉 d

H1 = H

σ00 = I
σ01 = σx σx|M〉 u H†σx H| S〉 d = σz| S〉 d

σ10 = σy σy|M〉 u H†σy H| S〉 d = σx | S〉 d

σ11 = σz σz|M〉 u H†σz H| S〉 d = σy| S〉 d

σ01 = σx

σ01 = σx σx|M〉 u H†σxσxσx H| S〉 d = σz| S〉 d

σ10 = σy σy|M〉 u H†σxσyσx H| S〉 d = −σx | S〉 d

σ11 = σz σz|M〉 u H†σxσzσx H| S〉 d = −σy| S〉 d

σ10 = σy
σ01 = σx σx|M〉 u H†σyσxσy H| S〉 d = −σz| S〉 d

σ10 = σy σy|M〉 u H†σyσyσy H| S〉 d = σx | S〉 d

σ11 = σz σz|M〉 u H†σyσzσy H| S〉 d = −σy| S〉 d

σ11 = σz

σ01 = σx σx|M〉 u H†σzσxσz H| S〉 d = −σz| S〉 d

σ10 = σy σy|M〉 u H†σzσyσz H| S〉 d = −σx | S〉 d

σ11 = σz σz|M〉 u H†σzσzσz H| S〉 d = σy| S〉 d
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Figure 6. Coincidence probability by existential forgery. Red bars denote the case where Eve
attempts original Gao’s Forgery when operator H is not used in the quantum encryption scheme(

ki
H = 0

)
. The blue bars show the case of attempting improved Gao’s Forgery when operator H

is used in the quantum encryption scheme
(

ki
H = 1

)
. Pc is the coincidence probability. The black

bars indicate the standard deviation of the coincidence counts for 1 s. ki
AB is the same as in Figure 1.

ei ∈ {00, 01, 10, 11} corresponds to the Pauli operator σei ∈
{

I, σx, σy, σz
}

that Eve uses to attempt
Gao’s Forgery 1.

5. Conclusions and Discussion

We have proposed a new quantum message authentication protocol including quan-
tum encryption for improving security against an existential forgery. Additionally, a
practical implementation of the proposed protocol has been developed and its robustness
against existential forgery has been verified experimentally. It consists of wave plates and
the Hong–Ou–Mandel interferometer. The measurement results for each function—QMAC
generation and recovery, Bob’s encryption and decryption, and quantum encryption and
decryption—successfully show the feasibility of robustness against Gao’s forgeries.

The system loss and the optical channel loss, etc., should be considered when applying
our protocol to real implementation. Let us assume that Alice and Bob use the single
photon detector with 20% efficiency and are connected by 30-km single-mode fiber with
0.2 dB/km loss. In a result, the total efficiency becomes 0.08% because the qubits are pass
through total 100 km, and if the QMAC pairs are generated at 100 MHz, Bob can receive
8× 104 pairs/s. As we mentioned in Section 2, the size of the quantum state sequence
should be more than 15. Therefore, Alice must generate at least 1.9× 104 QMAC pairs, i.e.,(
1.9× 104)× 0.08% = 15 that is quite implementable number, and send them to Bob to

ensure this accuracy of the swap test.
Our protocol can be used as an arbitrated quantum signature protocol if a trusted

center (TC) is added in the communication channel used by Alice and Bob [19]. In ad-
dition, if freshness property is added to our protocol, it can be used for quantum entity
authentication as well [1,52]. In conclusion, we have proposed the base technology for a
complete quantum cryptosystem that provides confidentiality, authentication, integrity,
and nonrepudiation.
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