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Abstract: The trend of increasing traffic demand is causing congestion on existing urban roads,
including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an
increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban
plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the
aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation
Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL)
and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to
a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing
development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic
control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially
so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system
output. Currently, there is no existing overview of control algorithms and applications for VSL and
RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control
algorithms including the most recent reinforcement learning-based approaches. Best practices for
mixed traffic flow control are summarized and new viewpoints and future research directions are
presented, including an overview of the currently open research questions.

Keywords: intelligent transportation systems; urban motorways; traffic control; ramp metering;
variable speed limit; connected and autonomous vehicles; reinforcement learning

1. Introduction

The ever-increasing traffic demand, especially on urban roads and motorways, leads
to occasional under-capacity on individual road sections. This effect is also significant on
urban motorways—a type of motorway located near large urban areas. Their primary
purpose is to connect the urban area with smaller industrial, residential or rural areas.
Urban motorways include a series of on-ramps and off-ramps that connect the urban
motorway to the local urban road network. Ramps on urban motorways are relatively
close to each other in contrast to rural motorways outside urban areas. The increase in
traffic demand under such conditions leads to a decrease in the Level of Service (LoS)
of the motorway. This is described by lower speed, higher traffic density and longer
Travel Time (TT). Traffic disturbances or congestion usually occurs in the motorway’s
on-ramp merging areas due to the increased inflow. This inflow causes a slowdown of the
main traffic flow due to the merging of vehicles from the on-ramp into the mainline. Such
phenomena are specific to peak demands or rush hour conditions. When the mainline traffic
flow volume on a particular segment of the motorway exceeds the designed throughput
(capacity), the so-called bottleneck occurs and the traffic flow becomes unstable. In this
case, the bottleneck refers to an area of the urban motorway where the congestion occurs.

Due to increased traffic demand, the mainline traffic flow becomes unstable, resulting
in more pronounced interactions between vehicles. Minor acceleration or deceleration of a
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single vehicle or a group of vehicles leads to a significant change in adjacent vehicles’ speed
during unstable traffic flow conditions. Such a change in speed is known as a shock wave,
which propagates upstream [1]. This is a traveling disturbance and causes new significant
irregularities in the upstream traffic flow. Such a shock wave is one of the the main causes
of additional capacity drop and congestion on a critical segment of urban motorway due to
unstable traffic flow. At the time of capacity drop, the vehicle flow measured immediately
after the bottleneck area is significantly reduced relative to the maximum possible capacity
of the observed segment [2–4].

Traffic control is one of the services from the domain of Intelligent Transportation
Systems (ITS) that can alleviate congestion. The main Measures of Effectiveness (MoEs)
used to assess the performance of traffic control systems are TT, measured in units of time,
e.g., (s), Total Travel Time (TTT), and the Total Time Spent (TTS) of all vehicles on the
controlled segment of the urban motorway, both expressed in (veh · h). LoS is another
measure used to describe the traffic state labeled with letters from A to F and described by
density and speed measurements, according to Highway capacity manual [5]. On urban
motorways, the most commonly used traffic control systems are Variable Speed Limit
(VSL) and Ramp Metering (RM). VSL controls the speed of the main traffic flow on the
motorway and thus affects the dynamics of the traffic flow. By changing the speed limit
on Variable Message Signs (VMS), VSL indirectly controls the inflow of vehicles on the
controlled segment [6]. Thus, the VSL control system aims to achieve higher operational
capacity of the existing traffic infrastructure on urban motorways without the need for
additional traffic lanes.

On the other hand, RM limits the number of vehicles entering the motorway from
the controlled on-ramp. RM can be implemented as an open- or closed-loop control
system. The main difference between open-loop and feedback systems is that the open-
loop systems do not account the output of the system in the next control step, while
feedback systems do. Classically used algorithms for RM use a feedback control loop such
as the ALINEA algorithm.

VSL and RM can be integrated and act in synergy. In this case, VSL usually serves as a
complement to RM, when a stand-alone RM system is unable to achieve predefined traffic
parameter values (usually vehicle density or flow) within desired limits on a controlled
segment of an urban motorway [7]. Studies [2,7,8] have shown that the VSL system can
prevent or reduce the effect of capacity drop caused by increased traffic demand on the
controlled urban motorway segment. By reducing the speed limit posted on the VMSs
placed in front of the bottleneck area, the effect of reducing the vehicle inflow to the
bottleneck area is achieved.

Today’s traffic control systems increasingly rely on intelligent data processing. For ex-
ample, the City Brain system is an urban traffic control platform that includes various
traffic control systems alongside a large number of sensors for traffic data collection. It
is based on the elastic computation and large-scale data processing platform of Alibaba
Cloud, integrated with the capabilities of interdisciplinary fields such as machine vision,
large-scale topological network computation, and traffic flow analysis [9]. It is capable of
collecting massive multi-source data, real-time processing, and intelligent computing. It
incorporates extremely large-scale and multi-source data processing, Machine Learning
(ML), and formulating global optimal traffic control strategy.

Emerging technologies in Autonomous Vehicles (AVs) and Connected and Autonomous
Vehicles (CAVs) are likely to improve the way VSL and RM will operate in the coming years.
CAVs can be incorporated with VSL so they automatically comply with the posted speed
limits. In the initial phase of deployment, AVs and CAVs will cohabit with Human-Driven
Vehicles (HDVs) in mixed traffic flows. The term mixed traffic flows thus refers to traffic
flows that contain conventional HDVs, AVs and CAVs with different penetration rates.
AVs represent vehicles that can receive traffic information from different proprioceptive
sensing technologies integrated within the vehicle such as cameras, sonars, navigation,
radar, and lidar. They are characterized by high compliance with traffic laws, shorter time
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and space headway, and lower gap acceptance. CAVs are similar to AVs with additional
features that enable communication with other vehicles (Vehicle-to-Vehicle (V2V)), roadside
infrastructure (Vehicle-to-Roadside (V2R) communication) such as traffic signal controllers,
infrastructure (Vehicle-to-Infrastructure (V2I) communication), and the entire environment
(Vehicle-to-Everything (V2X) communication) [10,11]. RM strategies in mixed traffic flows
disregard the classical RM approaches, as traffic lights become obsolete for signaling the
entry of vehicles onto the mainline flow. Instead of the classical RM control, which uses
a traffic light with real-time traffic data to determine the rate at which vehicles should
enter the motorway, merging control approaches are proposed to resolve interactions and
conflicts between vehicles at merge areas. Thus, we refer to RM for HDV traffic flows
and merging control approaches for mixed traffic flows. Therefore, for mixed traffic flows,
merging control optimization is developed instead of RM.

This paper describes the VSL problem and the merging problem on urban motorways
with a focus on mixed traffic flow scenarios. To the best of our knowledge, there is no
comprehensive systematic review on applications of control strategies for VSL and merging
approaches to mixed traffic flows. A brief overview of VSL and RM control strategies for
HDV traffic flows is also mentioned to explain the current knowledge base for possible
control strategies that can be applied to mixed traffic flows. A more comprehensive review
of VSL strategies for HDV flows has been analyzed in [12–16], while in [17] the focus has
been on Reinforcement Learning (RL) strategies for VSL control. RM strategies in HDV
flows were analyzed in papers [18–26]. RL strategies for RM control were analyzed in [25].
The main motivation for this research is to present the state of the art of the currently used
control strategies for solving the VSL and RM (merging control) approaches in mixed traffic
flows on urban motorways.

Therefore, the main contributions of this study are:

• In this study, we applied the systematic literature review approach. We used a
keyword-based search and systematically identified existing highly relevant studies
from the search results.

• This study covers traffic control studies on urban motorways focused on VSL and
merging control approaches in mixed traffic flows.

• First, we identified and categorized the control objectives, e.g., improving efficiency
or safety, for scenarios with HDV flows. Then, we analyzed different approaches
for VSL and merging control in mixed traffic flows. In addition, we identified and
summarized papers that analyze the impact of mixed traffic flows on the fundamental
diagram without control strategies. Finally, we categorized the main objectives of
control approaches in mixed traffic flows.

The rest of the paper is organized as follows. Section 2 presents the application of VSL
and RM control in HDV traffic flows using classical and RL-based approaches. Section 3
presents the impact of mixed traffic flows on the fundamental diagram and the applied
control strategies for VSL and RM in mixed traffic flows. Section 4 discusses the presented
VSL and RM control strategies in mixed traffic flows including their advantages and
disadvantages. Section 5 presents the conclusion and suggestions for future work.

2. Application of VSL and RM Control in HDV Traffic Flows

The VSL control system application with timely and appropriate speed limits can
control the incoming flow of the vehicles approaching the bottleneck by adjusting it to a
lower level, i.e., to the amount of capacity of the bottleneck [6]. This prevents the capacity
from dropping further and allows the congestion to be resolved more quickly and achieve
traffic flow values less than or equal to the maximum capacity in the bottleneck area.
The preventive effect of VSL is manifested in delaying the occurrence of the capacity drop,
which prevents the activation of bottlenecks by timely control of the incoming traffic flow.
The application of VSL leads to smaller speed deviations between vehicles and lanes, thus
reducing the risk of accidents [27–30].
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RM systems control the inflow of on-ramp motorway vehicles. For this purpose,
the feedback system detectors required for operation are usually placed downstream of
the on-ramp where vehicle merging takes place [31]. The most common RM algorithm,
ALINEA [32], uses the output of the previous control step interval as input for the current
iteration. Thus, the ALINEA inputs used are the previous control step interval metering
rate and downstream occupancy. Some of the extensions to ALINEA that have been
developed to improve performance are FL-ALINEA, UP-ALINEA, UF-ALINEA, AD-
ALINEA, X-ALINEA/Q, and PI-ALINEA [19].

In the following subsections, the VSL and RM algorithms for HDV flows are analyzed,
and grouped by the applied processing methods (rule-based, open-loop, feedback loop,
and RL). Different metrics have been used as indicators of algorithm performance in
different simulation scenarios. Thus, it is difficult to say which is the best method without in-
depth simulation analysis using the same scenario, which is out of the scope of this paper—
especially since each of them has a different optimization objective, such as minimizing
emissions, improving safety, and improving chosen macroscopic traffic parameters. Thus,
only a comment about the effectiveness of the respective method group is given using the
metric results published in the surveyed literature.

2.1. Classical VSL Approaches

In this subsection, existing approaches for VSL implementation on urban motorways
are presented. These classical approaches were developed for HDV-based traffic flows and
can potentially be applied to (C)AVs if (C)AVs are used as sensors or actuators for VSL.

2.1.1. Rule-Based Reactive VSL

This category of VSL systems bases its logic for calculating speed limits on predefined
thresholds for a given traffic flow state. Based on the measured values of traffic parameters
(flow q expressed in veh/h, density ρ expressed in veh/km, or mean speed v expressed in
km/h) on a given motorway segment, a predefined speed limit is activated, as shown in
Figure 1 [33–36]. VSL activation can be based on measured flow rate or standard deviations
of density, as analyzed in [37]. Another approach is a reactive VSL system with the aim
of informing the drivers about a possible disruption in the traffic flow (traffic accident,
congestion). As a result, the speed of the incoming vehicle flow is gradually reduced and
adapted to the new traffic situation. Such VSL systems can also have a weather-based
activation logic (related to fog, ice, strong wind, etc.) [38]. The final decision on the speed
limit output is made by the operations staff of the traffic control center based on the
proposed speed limit and the assessment of the traffic situation gained from experience.

Figure 1. Block scheme of Variable Speed Limit (VSL) control on an urban motorway.

2.1.2. Open-Loop Based VSL

This category includes VSL controllers whose logic is based on the open-loop opti-
mization process [7,39–41]. A non-feedback control system requires an accurate traffic
model with the ability to predict the movement of traffic flow parameters on a given
motorway segment. Such a predictive model is difficult to achieve due to the stochastic
traffic behavior. Most often, predictive models are based on a general macroscopic model of
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traffic flow. Other approaches, such as the Kalman filter [41], are used for better prediction
of traffic flow to improve the optimization process.

2.1.3. VSL Based on Negative Feedback Loop

The strategy of feedback VSL controllers is also based on collecting current traffic
data on the congested motorway segment as shown in Figure 1, but with the objective of
maintaining the controlled motorway segment at a defined set point such as the critical
density ρc. Such strategies do not require predictive traffic flow models. In [42], a simple
VSL with integration action (so-called I-controller) for VSL control was proposed. It controls
the flow of vehicles on the motorway segment before the problematic bottleneck occurence
area. The working principle of the controller is based on the ALINEA algorithm [32].
Instead of a traffic light at the on-ramp controlling the flow of vehicles entering the urban
motorway, VSL reduces the mainline speed limit. Similar to RM, VSL also controls the flow
of vehicles by reducing the mainline speed. This achieves the effect of a “virtual ramp”
on the motorway segment under VSL, which controls the output flow of the controlled
segment or the inflow to the next adjacent problematic segment of the urban motorway.
In [43], a distributed VSL controller based on control feedback adapted to eliminate shock
waves was tested. The VSL on each controlled segment is operated by a separate controller
(cumulatively 10 controllers). Such a VSL control system has proven to be successful in
preventing the generation of shock waves, which cause minor disruptions to traffic flow.
By applying VSL, TTS was reduced by 20% compared to the uncontrolled case in [43].
In [44], a comprehensive feedback control strategy was proposed for mainline traffic flow
control enabled via VSLs, considering multiple bottleneck locations. The feedback control
results were compared with the optimal control results to evaluate the performance of the
proposed strategy, and it was able to come close to the optimal control results.

2.2. RL-Based VSL

In [45], the Q-Learning (QL) algorithm was applied to VSL to optimize traffic flow
on motorways taking traffic predictions into account. The environment was described by
a vector of six normalized variables representing the current and previous posted speed
limit, speed, and density on the controlled urban motorway. The reward function was
modeled as the proportional negative TTS measured between the two control time steps.
Oscillations between consecutive speed limit changes were prevented by restricting them
to 20 km/h. A QL-based VSL (QL-VSL) control approach was also proposed in [46] to
reduce TTT at motorway bottlenecks. The QL-VSL approach significantly outperformed
the feedback-based VSL strategy based on the obtained results. In [47], the Reinforcement-
Markov Average Reward Technique (R-MART) approach was proposed for VSL. The long-
term middle rewards are utilized in the R-MART algorithm opposed to QL algorithm
deferred rewards. The application of the R-MART VSL controller was able to reduce TTS
by 18% and almost 20% less CO2 emissions compared to the case without VSL. In our
previous study [48], we proposed a deep QL-based VSL algorithm including a customized
learning process and a complex reward function consisting of three separate objectives.
The proposed algorithm aims to increase the throughput of the motorway by increasing
the average mainline speed, increase safety by decreasing the difference between measured
speed and posted speed limit, and minimize speed limit fluctuations in successive control
step intervals. The proposed algorithm managed to increase the average mainline speed
and reduce traffic density. The oscillations between the posted speed limits and the
measured speeds were prevented.

The QL-VSL strategy was found to be most effective in reducing system TTT in both
stable traffic demand scenario and fluctuating traffic demand scenario. Improvements
larger than 20% can be expected depending on the respective traffic situation.



Appl. Sci. 2021, 11, 2574 6 of 26

2.3. Classical RM Approaches

As mentioned earlier, RM is used to control the traffic flow entering a motorway using
traffic lights at the on-ramps. It was initially modeled as a pre-timed signal controller
that was improved to operate on real-time traffic measurement data for traffic-responsive
signal control. RM algorithms can be divided into localized single on-ramp controllers
and system-wide or coordinated systems with multiple on-ramp controllers [49]. Most of
the algorithms used recently employ a feedback control loop approach such as ALINEA.
The detectors for RM feedback systems are shown in Figure 2.

Figure 2. Block sheme of a general Ramp Metering (RM) controller.

The extensions of ALINEA use their own algorithms derived either for specific cir-
cumstances or as a new method for RM [19]. Coordinated RM has the main objective of
controlling multiple upstream on-ramps before the on-ramp where the congestion occurs.
Algorithms such as METALINE, Stratified Zone Metering (SZM), Heuristic Ramp-Metering
Coordination (HERO), and System-Wide Adaptive Ramp Metering (SWARM) set the me-
tering rates for each metered on-ramp. METALINE is the integral coordinated system
version of ALINEA [50]. The SZM algorithm uses overlapping zones defined as motorway
sections spreading between the two mainline detectors [51]. The commonly used length
of an SZM zone ranges from 0.8 km to 4.8 km. The algorithm balances the sum of the
upstream mainline flow, the sum of the unmetered on-ramp flow, the sum of the metered
ramp flow, and the sum of the metered motorway flow with the sum of the off-ramp flow,
the downstream bottleneck capacity, and the free capacity on the mainline [51].

HERO is an algorithm that uses a master–slave structure to control on-ramp traffic [52].
The master role is assigned to the bottleneck area on downstream on-ramp, while the slaves
are assigned to the upstream on-ramps, and their on-ramp storage is used to solve the mas-
ter on-ramp related congestion. When the algorithm is enabled, both the downstream and
upstream metering rates are coordinated to keep the relative queue lengths approximately
equal. The minimum queue length on the upstream on-ramp is updated as long as the
queue length on the downstream ramp falls below the activation threshold.

The SWARM algorithm incorporates two independent algorithms. The first algorithm,
called SWARM1, uses linear regression and Kalman filtering as well as a system-wide
apportioning to forecast density, while the second algorithm, called SWARM2, is a local
traffic-responsive system that converts measured densities into metering rates using linear
conversion [53]. The more restrictive value defines the final metering rate.

2.4. RL-Based RM

An RM framework that uses RL as a robust and nonparametric generic optimization
scheme that allows controlling of discretized partial differential equations was presented
in [54]. An algorithm that enables experience sharing between agents and specialization of
each agent due to multi-task learning to train Neural Networks (NNs), that was denoted
from Mutual Weights Regularization (MWR), was also tested. MWR is an NN training
approach that allows RL to learn a policy in a multi-agent environment without the curse
of dimensionality due to the number of agents. Applied to RM’s actual traffic control
problem, a model-free approach achieves a comparable control level to the currently used
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model-dependent implementation of the ALINEA algorithm. The results show that the
average speed is globally increased while the total number of vehicles on the motorway is
decreased. The MWR approach resulted in a significant performance improvement, almost
reaching the performance of the ALINEA algorithm in both cases.

In [55], an algorithm based on the k-Nearest Neighbor Temporal Difference (kNN-TD)
was developed and tested on a microscopic traffic simulation model, which was used as a
replica of the real world and a test environment for evaluating three scenarios: do-nothing
(no metering), ALINEA controller, and kNN-TD controller. The results show that the
ALINEA controller reduced TTT by 27%, while kNN-TD reduced TTT by 44% compared
to the no control scenario. The average queue length was reduced to 112 vehicles in the
proposed method compared to 231 vehicles in the case of ALINEA controller.

In [56], an RL-based density Control Agent (RLCA) was proposed. The RLCA objec-
tive function is to optimize the mainline motorway density to minimize TTT and maximize
traffic flow. RLCA was tested with two different traffic network architectures and demand
scenarios. In the first case study with a 6 km long mainline, the proposed RLCA guaranteed
satisfactory performance by retaining the flow close to the motorway operational capacity.
The simple QL algorithm managed to keep the mainline density close to 80 veh/km/2lanes,
compared to the no control case where the density surpassed 110 veh/km/2lanes. The op-
timal control policy was determined based on two reference points: motorway capacity
and ρc. In the second case study with a 500 m long mainline, RLCA always performed the
optimal action.

In [57], a network-level RM framework was proposed based on modeling by the
collaborative Markov Decision Process (MDP) and an associated cooperative QL algorithm
based on a payoff propagation algorithm under the coordination graph framework. Three
design strategies were analyzed. The first design was independent learning, where the
greedy policy for agents was implemented, and an action was chosen to maximize its
local reward. The second network-level design was fully distributed and based on the
collaborative MDP and cooperative QL algorithm based on the payoff propagation al-
gorithm. In this design, the actions were coordinated between the control agent and its
neighboring agents. The cooperative Q-function was updated globally. The third design
is a centralized cooperative multi-agent system that can be considered as a single large
agent. The cooperative Q-function was updated with a single Q-function. The first design
reduced the TTT by 0.5%, the second by 6.5%, and the third by 6.9%.

The multi-agent Deep RL (DRL) RM algorithm, based on loop detectors data, was
proposed in [58]. A multi-agent DRL framework is used to generate an appropriate RM
scheme for each RM in real time to improve the operational efficiency of the urban mo-
torway. Multi-agent proximal policy optimization architecture is introduced to solve the
RM problem. The proposed algorithm was compared with no control, fixed-time control
and ALINEA. Three traffic demand scenarios were tested which include constant demand,
flat peak demand and sharp peak demand for both on-ramp and mainline traffic. The pro-
posed algorithm increased the speed on the mainline by 43%, 29.7% and 11.5% for constant
demand, flat peak demand and sharp peak demand scenarios, respectively. It can be seen
that ALINEA achieved better results in the constant demand scenario, with a speed of
57.3 km/h on the mainline compared to 55.2 km/h for the DRL RM algorithm.

The kNN-TD method was able to achieve the best results, reducing the TTT by
44% compared to the no control scenario, while the DRL RM algorithm increased the
speed on the mainline by up to 43%. This emphasizes the motivation of using ML-based
methods with the caveat that the increase in the effectiveness depends on the respective
simulation scenario.

2.5. Impact of VSL and RM on HDV Traffic Flows

The first analysis of the impact of VSL on traffic flow dates back to 1972 [59]. This
study was conducted with traffic data collected on German motorways. The same author
extended the earlier analysis and concluded in [33] that VSL significantly contributes to the
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homogenization of vehicle speeds in traffic when VSL is applied to the light or medium
traffic demand. In this case, VSL consequently causes a decrease in the average speed of
the traffic flow and leads to speed homogenization. Based on the results of [59], study [60]
provides a quantitative description of the impact of VSL on the fundamental flow–density
diagram. A model of the basic diagram was constructed, showing that as the amount of the
speed limit is reduced, the capacity of the fundamental diagram increases, i.e., there is an
increase in the vehicle flow. Such an increase in capacity was later found to be inaccurate.
Research in [61] could not find any capacity increase attributable to the VSL application.
In [62], the analysis on the effectiveness of the VSL in relation to the vehicle speed was
carried out on 22 sections of national roads in Poland. The research included 14 rural
sections with legal speed limits of 90 km/h, 70 km/h and 50 km/h, and eight sections
of national roads with a VSL system installed with 90 km/h and 50 km/h speed limits.
The analysis showed a very positive impact of such a system, resulting in an effective and
significant reduction in average speeds and the number of noncomplying vehicles, as well
as improved speed harmonization.

In [63], the impact of the fixed time RM and ALINEA RM on peak hour traffic flow
was analyzed and compared. The results show that RM has no significant effect on traffic
flow at average demand, but at high demand, the delay time of vehicles in this segment
was reduced by 91% and 64.8% for the fixed time RM and ALINEA algorithm, respectively.
At low demand, the delay time was increased both on the motorway and on the on-ramp,
thus proving the RM is ineffective in such scenarios. It is noted that the RM has positive
effects on traffic operations and reliability, but it could create a new (possibly “hidden”)
bottleneck to occur downstream, thus diluting the overall benefits [64]. In [64], ALINEA
and HERO RM strategies were tested. ALINEA produced a better TT than HERO with
smaller differences between the two. The throughput and congestion duration were also
improved at all congestion levels. In the following subsections, the surveyed algorithms
are grouped according to common metrics and performance indicators of the algorithm,
such as safety, emissions, and macroscopic traffic parameters. First, the impact of VSL is
analyzed, and then the impact of RM is added into the analysis.

2.5.1. VSL Impact on Stable Traffic Flows

According to [7], a stable traffic flow is characterized by the fact that the traffic
flow density ρ (veh/km) is less than ρc (left green side in the approximated triangular
fundamental diagram, Figure 3). In a stable flow, traffic runs smoothly without much
interaction between vehicles. The impact of VSL on a stable flow is evident from the
reduction in mean speed. After the flow adapted to the newly set VSL speed limit, it
remained stable, but at a lower mean speed and higher density compared to VSL-free
traffic flow. VSL application is characterized by a lower than ρc value resulting in an
increased TT and a reduced LoS.

Figure 3. Impact of VSL on triangular fundamental flow–density traffic diagram [6].

The temporary decrease in vehicle flow due to the transition of traffic flow state
after the start of VSL operation is due to the fact that the flow density is higher in the
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state under the effect of VSL compared to uncontrolled traffic flow (lower speeds mean
less space between vehicles). Due to the change in flow density, the flow is temporarily
reduced, and a new higher density is created (active VSL). This influence of VSL on traffic
flow was determined in [2]. The application of VSL upstream of a bottleneck that is in
a state close to the occurrence of congestion can temporarily reduce the flow of vehicles
approaching the bottleneck area. This potentially relieves the bottleneck area and delays or
even prevents congestion.

2.5.2. VSL Impact on Unstable Traffic Flows

When the traffic flow density reaches values above the critical density (ρ > ρc), the traf-
fic flow becomes unstable (right red side in the approximated triangular fundamental
diagram, Figure 3). Interactions between vehicles are then more pronounced. The resulting
traffic disruption (caused by, e.g., vehicle braking in a platoon) creates a shock wave that
triggers a chain reaction that can produce a complete traffic jam on the urban motorway.
Complementing the previous findings, more detailed studies on the effects of VSL on
unstable traffic flow are summarized in [6,65]. It can be seen from [33] that the ρc value
in the fundamental diagram shifts to a higher value due to the effect of VSL (Figure 3).
Therefore, it is possible to place more vehicles on the same length of the motorway segment
without the traffic flow going into an unstable condition. This effect was confirmed in
the study [6] and is attributed to the effect of speed homogenization mentioned earlier.
Regarding the capacity increase, the research results are insufficient, as there is a slight
capacity increase in certain locations of the observed urban motorways.

2.5.3. Impact of VSL and RM on Traffic Safety and Emissions

The VSL system can monitor the propagation of lower speeds in the traffic flow
opposite to the direction of traffic on the motorway caused, for example, by a traffic
incident or an active bottleneck, and set a new speed limit to allow the arriving vehicles
to gradually adjust their speed to the new traffic situation [66]. Safety improvement was
observed in [30,67,68] with appropriate VSL actions that prevent sudden changes in vehicle
speeds. A study in [69] confirmed an increase in safety on the M25 motorway in the United
Kingdom, while study [70] found increased safety on the E4 motorway in Stockholm,
Sweden. A significant reduction in accident risk when VSL was applied in free-flow traffic
was observed in [29]. In contrast, no significant improvement was observed in increased
traffic flow. As a consequence of the reduction in the speed limit, the application of VSL
reduces the average speed of the vehicle and, therefore, the resistance to the movement of
the vehicle (most significant is the air resistance, which is proportional to the square of the
speed). This reduces the fuel consumption required to overcome the resistance to vehicle
movement, and hence the harmful emissions of exhaust gases. In [68,71–73], analyses have
shown that the application of VSL can reduce emissions and fuel consumption by 4–6%.

In [74], a local RM control strategy, PI-ALINEA, was proposed. Four scenarios were
formulated based on congestion levels, where the first scenario has the biggest congestion,
while scenario four is close to the free-flow condition, corresponding to decreasing con-
gestion. The total emissions for the first three scenarios are reduced by 16.9%, 6.7% and
4.7%, respectively, for the RM queue length constraint of 100 vehicles. The total emissions
for the first three scenarios are reduced by 12.9%, 7%, and 5.3%, respectively, for the RM
queue length without constraint. In [75], RM was adopted to analyze changes in traffic
flow and associated variations in CO2 emissions. The simulation results show a reduction
in CO2 emissions of 818.4 kg/h. The effectiveness of RM was reduced by quantifying a
decrease in CO2 emissions by 7.3%. RM reduced the CO2 emissions to 3273.6 kg/day and
1194.9 tons/year.
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3. Research and Implementation
3.1. Defined Research Questions

In this study, we focused on VSL and merging control approaches in mixed traffic
flows on motorways. We reviewed papers that proposed methods for VSL and merging
control in mixed traffic flow scenarios. To achieve our objectives, we formulated four main
research questions:

• RQ1: What is the impact of AVs and CAVs on the fundamental diagram of mixed
traffic flows?

• RQ2: How can the existing methods for VSL and RM be used to control mixed
traffic flows?

• RQ3: What types of control algorithms have been proposed for VSL and merging
control for mixed traffic flows?

• RQ4: What are the current open problems and what are the prospective research
directions?

3.2. Applied Research Method

We focused on articles available online and published in English between January
2010 and 31 October 2020. We included the following digital libraries:

• Scopus;
• IEEE;
• Web of Science (WoS).

We used keyword-based searches to identify primary studies to filter relevant articles
based on appropriately selected keywords (variable speed limit, ramp metering, machine
learning, reinforcement learning, autonomous vehicles, connected and autonomous vehi-
cles) used in the WoS digital library as an example. Table 1 shows the most representative
papers on AV and CAV impact on fundamental diagram. Tables 2 and 3 show the most
representative approaches for VSL and merging control in mixed traffic flows, with the
proposed approaches and the obtained results. More details are given in continuation.

Table 1. Influence of Autonomous Vehicles (AVs) and Connected AVs (CAVs) on fundamental
diagram and macroscopic traffic parameters.

Paper Year Penetration Rate Obtained Influence

[76] 2020 0%–70% AVs and CAVs reduced congestion and conflicts

[77] 2019 0%–100% CAVs increased flow, reduced
acceleration and speed oscilations

[78] 2018 0%–100% AVs and CAVs increased capacity

[79] 2018 0%–100% AVs 48% increased ρc value

[80] 2017 0%–70% CAVs 60% increased ρc value
71% increased flow

[81] 2017 0%–100% AVs 32% increased free-flow speed,
29% increased flow under ρc

[82] 2016 0%–100% AVs and CVs increased throughput

[83] 2016 100% AVs 43.6% increased flow
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Table 2. The most representative frameworks for VSL in mixed traffic flows.

Paper Year Control
Strategy

Proposed
Method

Penetration
Rate

Compared
with

Improvements

[84] 2020 DVSL DRL 100% CAVs no control, QL,
DQN VSL,

VSL-AC

8.1% lower TT,
3.7% lower CO emissions

[85] 2020 VSL and LC GA 100% CAVs no control, VSL 45% lower TTS

[86] 2020 VSL Multiclass CTM 0%–100% AVs no control 33% lower
energy consumption

[87] 2019 Speed
harmonization

Optimal control with
Hamiltonian function

100% AVs no control, VSL,
SPD-HARM

22% lower
fuel consumption,

30% lower TT

[88] 2019 VSL GA 0%–10% CAVs
7 scenarios with
no control, VSL,

CTM and
I2V with V2I

36% lower TTT,
68% lower delays,
66% lower number

of stops, 7.6% lower emissions

[89] 2019 VSL Rule-based VSL 0%–100% AVs no control 26% lower MTT,
31% lower fuel consumption

[90] 2018 Centralized VSL Deep-RL (GRU) 100% AVs no control,
feedback RM

25% higher
bottleneck throughput

[91] 2017 ACC and VSL Rule-based VSL 0%–100% AVs ACC only,
VSL only

80% lower TIT,
77% lower TET

[92] 2016 C-VSL Feedback control 0%–100% AVs P-VSL 49.5% lower
delay time

[93] 2015 VSL MPC 50% and
100% CAVs

no control 20% lower TTT,
11% improved safety,

16% lower fuel consumption

Table 3. The most representative frameworks for merging control in mixed traffic flows.

Paper Year Control
Strategy

Proposed
Method

Penetration
Rate

Compared
with

Improvements

[94] 2019 LC, merging rule-based CLCC,
event-based CMC

100% CAVs no control 95% lower total
delay time,

52% increased speed

[95] 2019 merging trajectory planning 100% CAVs no control achieved desired
merging speed

[96] 2019 LC decentralized and
centralized control

0%–100% AVs no control,
ALINEA RM

43%–61%
lower TTT

[97] 2019 RM look-ahead
cruise control

20% AVs - queue length
optimization

[98] 2018 merging V2X communication 100% CAVs no control 5.3% lower ATT,
3.4% higher average speed

[99] 2017 merging CIDM safe
time gaps

0%–25% AVs - 72% lower speed oscilations,
15.4% lower ATT

[100] 2017 merging Hamiltonian analysis 100% CAVs no control 48% lower fuel consumption,
13.5% lower TTT

[101] 2017 merging nonlinear optimization 100% CAVs no control, gradual
speed limit reduction

reduced delay,
increased average

speed up to 95 km/h

3.3. Impact of AVs and CAVs on the Fundamental Diagram

As mentioned, Table 1 summarizes obtained research results on the impact of AVs and
CAVs on fundamental diagram without control algorithms. In [76], an evaluation of the
impact of AVs on an existing motorway, national road network, and urban network (Dublin
city center) was presented. AVs were formulated as Society of Automotive Engineers (SAE)
level of automation 2, and CAVs were formulated as SAE level of automation 4 with
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Cooperative Adaptive Cruise Control (CACC). Tested scenarios included penetration
rates from 0% to 70% with mixed SAE levels of automation. CAVs showcased gradual
improvement in safety and efficiency. Satisfactory and realistic results were observed at
penetration rates of around 20% to 40%. The motorway scenario proved to be the one most
affected by CAVs. At low CAV penetration rates, traffic congestion and conflict situations
were increased in some regions of the motorway networks.

In [77], the flow–density relation, Time-to-Collision (TTC), acceleration rate distribu-
tions, and speed difference distributions were analyzed under different penetration rates
of CAVs from 0% to 100% and with two different time headways. The total number of
incidental situations in the mixed traffic flow under different CAV penetration rates was
reduced. The traffic flow was significantly increased by about 2000 veh/h in the case of
the desired time headway of 0.5 s, while in the case of 1.1 s, the increase was measured to
be close to 500 veh/h. The results of acceleration rate distributions and speed difference
distributions of the mixed traffic flow indicate that the increase in penetration rates of
CAVs smoothed both acceleration and speed significantly.

In [78], lane capacity was analyzed for different AV and CAV penetration rates. Lane
capacity was increased by 8.6% when the AV penetration was increased from 0% to 100%.
When the CAV penetration rate was increased from 0% to 100%, lane capacity was increased
by 188.2%. When the mixed traffic flow consists of CAVs and HDVs, the lane capacity
increases approximately linearly from 2046 veh/h/lane to 6450 veh/h/lane as the CAV
penetration rate increased from 0% to 100%.

In [79], the influence of AVs in mixed traffic flow and the influence of autonomous
driving levels on the fundamental diagram were analyzed. The results show that as the
AV penetration rate increased with higher automation level, the capacity of the overall
network increased and the ρc value on a single road was higher. The ρc value was increased
by almost 48% from no AVs to 100% AVs in mixed traffic flow.

In [80], Cellular Automata (CA) model was used to analyze the impact of CAVs on
the fundamental diagram on a single-lane road. CA was used to partition the road into
cells, where a vehicle may or may not be present in a cell. The results show that with 70%
of CAVs, the ρc value was increased by about 37%, while the capacity under the ρc was
increased by about 42%.

In [81], the impact of AVs with different penetration rates on the fundamental diagram
was analyzed. As the AV penetration rate increased, the speed–density curve shifted to the
right, resulting in a higher ρc value. Therefore, increasing the AV penetration rate increased
the mean speed at the same density, thus increasing the traffic flow. The free-flow speed
was increased by about 34% with 100% AV penetration rate, while the increase in capacity
under ρc was measured to approximately 30%.

In [82], the impact on traffic flow and density of Connected Vehicles (CVs) and AVs
was analyzed under different penetration rates from 0% to 100% and three scenarios. In the
first scenario, the effect of CV penetration rate was tested. The mainline flow was set to
1800 veh/h/lane in the first and second set of simulations. The throughput was increased
as the CV and AV penetration rates increased. At low penetration rates of 0% to 50%,
the results on the relationship between flow and density were inconsistent. At higher
penetration rates, no breakdown or scatter was observed in the flow–density relationship.
The second scenario analyzed the effects of AVs on throughput and scatter in the flow–
density relationship. The results were similar to the first scenario, with the exception of
a smaller scatter at 50% and 70% AV penetration rates. The third scenario analyzed the
simultaneous effects of AVs and CVs on throughput and scatter in flow–density relation. Six
combinations of different penetration rates of CVs and AVs were analyzed. The mainline
flow was set to 2200 veh/h/lane. The scatter in flow–density relationship was increased
once the number of CVs surpassed the number of AVs, except in the scenario with a high
CV penetration rate.

In [83], another analysis of the impact of AVs on fundamental parameters (q, ρ and
v) was performed. According to [83], the standard capacity values for a single lane of
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2200 veh/h could increase traffic capacity to about 3900 veh/h in an 100% AV penetra-
tion rate scenario. This conclusion was made based on the changed headway time gap
parameter for the following vehicle to 0.5 s. According to the authors [83], this very short
following distance already occurs in up to 20% of all following distances, depending on
the traffic conditions.

3.4. VSL in Mixed Traffic Flows

Table 2 demonstrates that VSL in mixed traffic flow scenarios has been broadly studied.
In this subsection, we provide an overview of each study, starting with the earliest ones.
To facilitate the evaluation of the surveyed methods, we grouped them according to their
working concepts (optimization, rule-based, RL and others).

The studies [84,85,87–90,92,93,102–104] all analyzed the impacts of the proposed VSL
control strategies in mixed traffic flows on macroscopic traffic parameters. These parame-
ters include Mean Travel Time (MTT), TT, TTT, TTS, delays, number of stops, throughput,
and speed. Although macroscopic traffic parameters give good insight into the efficiency
of the algorithm, they are not the only criterion for measuring system performance. Stud-
ies [84,86–89,93,102] also evaluated the performance of the proposed strategies based on
fuel consumption and vehicle emissions. Fuel consumption was measured in [87,89,93]
while [84,88,102] measured vehicle emissions such as CO, NOx and HC. Proposed VSL
control methods addressing safety were also analyzed as a control algorithm performance
in [91,93]. Parameters including TTC, Time Integrated Time-to-collision (TIT) and Time
Exposed Time-to-collision (TET) were used as safety measures.

3.4.1. Optimization-Based Methods for VSL

An integrated VSL and Lane Change (LC) control framework for motorway bot-
tlenecks with mixed traffic flows was proposed in [85]. The Model Predictive Control
(MPC)-based framework considers the interaction between VSL and LC to maximize traffic
efficiency. An improved multiclass Cell-Transmission Model (CTM) that considers the
effects of LC behavior was proposed to predict the traffic state. The Genetic Algorithm
(GA)-based method was used to find the optimal values of VSL and LC settings simul-
taneously. The simulations were performed under three different traffic demand values,
1000 veh/h/2lanes, 2000 veh/h/2lanes, and 3000 veh/h/2lanes with 100% CAV penetra-
tion rate. The proposed control method significantly reduced TTS by 23.86% to 44.62%,
outperforming the VSL-only control, which reduced TTS by 6.43% to 13.84% compared to
the no control scenario.

The problem of controlling the speed of a number of AVs before entering a speed
reduction zone on a motorway was analyzed in [87]. The problem of deriving the optimal
acceleration and deceleration of each AV was solved by the proposed optimal control
method applying Hamiltonian analysis. The main objective was to minimize the acceler-
ation or deceleration for each vehicle entering the controlled segment until the specified
time. By minimizing the acceleration or deceleration of each vehicle, fuel consumption
and emissions were reduced. The effectiveness of this approach was evaluated using three
different traffic demand levels. It was compared to the no control HDV scenario, VSL
algorithm (using shock wave theory proposed in [105]), and a modified vehicular-based
SPeeD HARMonization (SPD-HARM) algorithm proposed in [106]. Fuel consumption for
each vehicle was reduced by 19% to 22% compared to the no control HDV scenario, by 12%
to 17% compared to the VSL algorithm, and by 18% to 34% compared to the SPD-HARM
algorithm. TT was improved by 26% to 30% compared to the baseline scenario, by 3% to
19% compared to the VSL algorithm, and 31% to 39% compared to the vehicular-based
SPD-HARM algorithm.

In [88], the authors proposed an optimal VSL strategy in a CAV environment for
a motorway corridor with multiple bottlenecks using an extended CTM that takes into
account capacity drop and mixed traffic flow, including HDVs, heavy vehicles, and AVs.
The GA optimization process for the developed VSL control strategy was conducted in
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four steps. The first step involves the collection of motorway detector-based data in each
cell, including traffic flow, speed, and density. The second step refers to the traffic state
prediction in the selected motorway cells during the next control horizon based on the
collected traffic data. The third step is the optimization process, which computes the
objective function according to the predicted traffic data. The objective function value of
each individual in the population is evaluated, and a new population is generated using the
mutation and crossover operators. Two stopping criteria were used for the GA, including
a maximum number of generations and the average relative change between the best
objective function value at the current iteration and the values achieved up to the current
iteration. The proposed VSL control with V2V, V2I, and I2V communication outperforms
the VSL-only control. Better performance was achieved with increasing CAV penetration
rate. Seven different simulation scenarios were compared with a scenario with 100% HDVs
and no VSL control. The scenario with 10% CAVs, I2V, V2I, VSL control, and the extended
CTM showed the best results, reducing TTT, delays, number of stops, and emissions by
35.6%, 67.9%, 65.9% and 7.6%, respectively.

In [92], AVs were used as actuators for Cooperative VSL (C-VSL), receiving speed
limits directly from the controller and following them strictly. For a mixed traffic flow
scenario, C-VSL was tested together with Point-level VSL (P-VSL), which was developed
to inform HDVs that have a speed acceptance factor about the posted speed limit. Two
scenarios were tested. The first contained only C-VSL, and the second used both C-VSL
and P-VSL. In both scenarios, the AV penetration rate was changed, ranging from 0% to
100%. In the first scenario, the best results were obtained at a 40% AV penetration rate by
reducing the delay by 49.5%. In the second scenario, the best results were obtained at a
90% AV penetration rate by reducing the delay by 47.9%.

An MPC-based VSL system was analyzed in [93]. In this approach, the future state is
predicted and the control strategies are proactively updated in the system. The proposed
MPC approach consists of four main components: data input and traffic state estimation,
traffic state prediction, optimization using an objective function based on a rolling horizon,
and a control action. The control time step used in this study was set to 1 min. A control
horizon was used to account for the complexity and performance of the proposed system.
The VSL control algorithm was based on a multi-objective function formulated with TTT as
a measure of network efficiency, TTC as a measure of the instantaneous safety, the emission,
and fuel consumption measures. This approach outperformed the scenario without VSL
and resulted in TTT reductions of about 20%, safety improvements of 6–11%, and overall
fuel consumption reductions of 5–16% with 100% CAV penetration rate. The results also
suggest that when the CAV penetration rate is 100%, optimization of only one compo-
nent performs better. However, in scenarios with lower penetration rate, multi-objective
optimization performs better in terms of mobility, safety, and sustainability simultaneously.

Another MPC strategy for VSL control of mixed traffic flows with CAVs was imple-
mented in [104]. CAVs were modeled to have the same driving behavior as HDVs under
no control condition and to fully comply with a set speed limit. A discrete first-order
model that accounts for the capacity drop of shock waves was extended in this study to
address the proposed VSL control. The proposed control structure of MPC consists of data
processing and prediction based on traffic measurements, followed by the optimal control
layer, control application layer, and intelligent motorway system. The used three-lane
motorway model was 10 km long with a traffic demand of 5400 veh/h and a 20% CAV
penetration rate. A disturbance speed lasting 2 min was generated to simulate shock waves,
which was set to 5 km/h in the VSL-controlled segment. The free-flow speed was set to
100 km/h. The proposed strategy achieved total delay reduction of 3.7% from 35.3 veh · h
to 34.0 veh · h.

3.4.2. Rule-Based VSL

In [89], a comprehensive evaluation of the potential impacts of AVs on an existing
motorway system was analyzed in various motorway operational scenarios, including



Appl. Sci. 2021, 11, 2574 15 of 26

heavily congested traffic (>95% of motorway capacity), lightly congested traffic (≈70% of
motorway capacity), free-flow traffic (≈50% of motorway capacity), and future traffic (three
times more than heavily congested traffic volume) conditions. A number of MoEs were
measured to reflect the changes in mobility, safety, fuel consumption and emissions caused
by the deployment of AVs [89]. The rule-based VSL approach was modified to mixed
traffic flow conditions and also tested in different AV penetration rates. These conditions
were classified as either free-flow, light congestion, or heavy congestion. The VSL control
step time was set to 5 min. The minimum time-gap was set to 0.5 s for AVs and 1.1 s for
HDVs. The driver imperfection was set to 0% and 50% for AVs and HDVs, respectively.
The acceptance factor for speed limits was set at 1% for AVs and 15% for HDVs. For all
traffic congestion scenarios, AVs showed improvements for all MoEs, as did VSL in mixed
traffic flow scenarios. For heavy traffic congestion scenario, VSL improved MTT by 14%
to 26% at AV penetration rates ranging from 0% to 70%. AVs improved MTT by 43% at
AV penetration rates from 0% to 100% in the no control scenario. Fuel consumption was
improved by 5% to 44% in the no control scenario at AV penetration rates from 0% to 100%.
The case with VSL improved fuel consumption by 10% to 31% at AV penetration rates from
0% to 70%.

The combination of Adaptive Cruise Control (ACC) equipped SAE level 2 of driving
automation AVs and VSL on the safety on s congested motorway was analyzed in [91].
The car-following Intelligent Driver Model (IDM) was calibrated for the simulation frame-
work. The tested segment was 10 km long and contained 10 evenly spaced loop detectors.
The mainline traffic demand was set to 1600 veh/h/lane, and a bottleneck was set to occur
after 10 min between two consecutive detectors. TET and TIT parameters were used
to assess the safety performance of the proposed method. TIT was decreased by 57.6%
to 79.9% from 0% to 100% AVs in the CACC and VSL model compared with ACC-only
and VSL-only model which decreased it by 34% to 76.6% and 28.8%, respectively. TET
was decreased by 48.1% to 77.4% from 0% to 100% AVs in the CACC and VSL model
compared to ACC-only and VSL-only models that decreased it by 39.7% to 67.8% and by
27.1%, respectively.

3.4.3. RL-Based VSL

In [84], a DRL model was proposed for Differential Variable Speed Limit (DVSL)
control where dynamic and distinct speed limits can be imposed among lanes. It is based
on the Actor-Critic (AC) architecture to learn a large number of discrete speed limits in the
continuous action space. Four reward scenarios were tested. The reward scenarios r1 and
r4 are based on several factors such as on-ramp inflow and off-ramp outflow. The reward
scenario r2 was the average speed in the downstream bottleneck. The reward scenario r3
was computed by the total number of emerging braking vehicles in the controlled section.
DVSL-r1, DVSL-r2, and DVSL-r4 methods showed Average Travel Time (ATT) reduction
of 1.08%, 4.1%, and 2.94%, respectively, while DVSL-r3 showed an increase in ATT of
6.2%. DVSL-r2 had the best emission reduction in HC and Nox, while DVSL-r4 showed
the best emission reduction in CO and PMx. The AC-based DVSL agent was compared
to the baseline scenario with no control, and baseline scenarios with AC and Deep Q-
Network (DQN)-based VSL controllers. The DVSL improved ATT by 8.1% in scenarios
with incidents and 5.8% in scenarios without incidents, while the VSL-DQN improved
ATT by 1.7% and 2.9%, respectively. The VSL-DQN and QL performed better than the
VSL-AC by a very slight margin.

In [90], a traffic flow control system was tested that includes AVs whose speeds are
controlled by a centralized agent based on deep learning. The learning structure is based
on Recurrent Neural Networks (RNNs), where the Gated Recurrent Unit (GRU) algorithm
solves the vanishing gradient problem that occurs when learning a classical RNN network.
Introducing 10% AVs into the traffic flow enables better control of the traffic flow in a
structure where each AV is a mobile actuator of the control system. The state of the agent’s
environment is determined by the density and average speed of the HDVs and the AVs.
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In both cases, the data are measured for each lane on each model segment. The value of
the outflow measured at the exit of the bottleneck was also taken into account to describe
the state. The actions were defined by the speed selection for AV vehicles. The goal of
the agent is to maximize the outflow from the bottleneck. Therefore, the reward function
is formulated as the output flow from the bottleneck area, measured at intervals of 20 s.
Compared to the case without control, the results showed that the AV controller for medium
traffic demand (inflow ≥ 1800 veh/h) achieves a ≈25% higher outflow. For the lower traffic
demand scenario, the case without control showed a better result. The results compared
to the case where the mainline is controlled by RM (control feedback) showed that the
AV controller provides approximately the same outflow from the bottleneck for increased
traffic demand (inflow ≥ 1800 veh/h) as RM. The case with RM showed a much better
result for lower traffic demands.

3.4.4. Other VSL Approaches

In [86], the flow–density relationship of moving bottlenecks with mixed traffic flow
was analyzed under the influence of VSL based on the trapezoidal flow–density relationship
aimed at reducing energy consumption. The algorithm was tested using CTM. The results
show that in a demand scenario of 1800 veh/h, the total energy savings increased as the
compliant vehicles’ penetration rate increased. VSL reduced the energy consumption of
compliant vehicles by up to 33% and by up to 8% for non-compliant vehicles. The total
energy savings are more significant in a low demand scenario with a demand of 1800 veh/h.
The results indicate that the free-flow speed does not have substantial effects on the
percentage of energy savings.

In [102], the influence of Infrastructure-to-Vehicle (I2V) communication, AV control,
and individualized speed limits for VSL by proposing a C-VSL extension was analyzed
and compared with the classical VSL strategy. The I2V communication, AV control and
individualized speed limits contributed to the harmonization of traffic flow and the reduc-
tion in exhaust emissions. C-VSL was implemented as VMSs functioning as roadside units,
sending individual speed limit information to vehicles via I2V communication. Speed
limits were calculated based on the distance between the VMS and the vehicle, the current
speed of the vehicle, and the reference speed displayed on the VMS. Speed harmonization
was achieved by giving individual speed limits to each vehicle at predefined time intervals.
The proposed C-VSL narrowed the acceleration rate distribution and reduced NOx and
HC emissions. In the scenario with a C-VSL penetration rate of 30%, an increase in average
speed was shown compared to a penetration rate of 100%.

In [103], CAVs were utilized as an alternative data source for a VSL control system.
An interval type 2 fuzzy logic-based VSL system was proposed that employs CAVs to
collect traffic data without the need for a fixed-point sensor. The performance of the
proposed VSL system was evaluated and modeled in the microscopic simulator using a real
motorway section located in Auckland, New Zealand. The results show that the proposed
VSL system has similar performance to the detector-based system when more than 10% of
CAVs are deployed. However, it is noted that VSL may become obsolete at very high CAV
penetration rates.

3.5. Merging Control Approaches in Mixed Traffic Flows

Studies listed in Table 3 have shown that merging control approaches have also
been extensively studied in mixed traffic flow scenarios. The majority of papers that ana-
lyzed merging control approaches evaluated the proposed algorithms in terms of macro-
scopic traffic parameters, such as speed, throughput, delay, on-ramp queue length, TTT,
and ATT [94–101,107]. On the other hand, a few papers analyzed in this review evaluated
the success of the proposed merging control approaches without considering the impact
on the traffic flow macroscopic parameters [108–110]. In this subsection, an overview of
each study is provided. Again, all surveyed studies are grouped according to the applied
methods (optimization, car-following and trajectory planning, RL, and others).
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3.5.1. Optimization-Based Methods for Merging Control

The problem of optimal coordination of CAVs at merging roadways formulated
as an unconstrained optimal control problem by applying the Hamiltonian analysis to
derive an analytical, closed-form solution was analyzed in [100]. Different scenarios were
tested regarding mainline and on-ramp speed and density. The overall cumulative fuel
consumption with imposed control was improved by 48.1% for the case with different
initial speeds for each road compared to the baseline scenario. The TTT was also improved
by 13.5%.

In [101], the authors proposed an optimization framework and an analytical closed-
form solution for online coordination of CAVs at on-ramp merging zones formulated as a
nonlinear optimization problem. At a distance of 250 m to 500 m before the merging area,
the optimized acceleration information for each vehicle is sent back to the related vehicles
at the next decision interval (10 s intervals), which strictly apply the given information.
This approach was compared with the gradual speed limit by reducing the speeds to
50 km/h and 70 km/h at 0–250 m and 250–500 m before the merging area, and with no
control scenario. Low (300 veh/h), medium (500 veh/h), and high (700 veh/h) demand
scenarios for on-ramp and mainline flow were tested. The proposed approach reduced
the average delay time per vehicle to almost 0 s and increased the average speed up to
95 km/h. For gradual speed limit and no control scenarios, the average delay time per
vehicle under high on-ramp demand was measured to be up to 225 s and 255 s, respectively.
The average speed was measured close to 15 km/h for both scenarios.

In [107], a hybrid approach was developed combining the hierarchical and distributed
approaches for merging control. A Road Side Unit (RSU) was placed at the slot selection
point and acted as a proxy between the mainline vehicles and the on-ramp vehicles.
The RSU was utilized to locate the mainline vehicles and coordinate with them via V2V
communication to determine suitable merging slots. These slots are marked as occupied
for the vehicles and thus stored as a determined merging slot. Once the slot becomes free,
the RSU distributes the slot information to the merging vehicle. The proposed approach
does not suffer from system overload at very high traffic demand. Under medium mainline
traffic conditions of 3600 veh/h, the slot-based approach with cooperation achieved a
106% increase in throughput compared to HDV-only flows. Under heavy mainline traffic
conditions of 4700 veh/h, a throughput increase of 452% was measured for the slot-based
driving with cooperation.

In [109], an MPC-based path planner was proposed to automatically decide the mode
of maneuvers under a unified optimization framework for AVs in structured driving envi-
ronments. A convex relaxation approach was used to determine the LC and lane-keeping
maneuvers. Various simulation scenarios were tested in a simulation, including LC, lane
keeping, ramp merging, and intersection crossing. The proposed path planner performance
was effective in generating a safe and comfortable path for AVs in all tested scenarios.

In [110], a learning-based method for estimating vehicle intentions in ramp merging
scenarios without over-the-air communication between vehicles was presented. The inten-
tion estimation is generated from a Probabilistic Graphical Model (PGM) that organizes
historical data and latent intentions and determines predictions of real driving trajecto-
ries to learn transition models. The PGM-based intention estimation is augmented with
ACC model to generate appropriate acceleration and deceleration behavior. The proposed
method performance was evaluated on real merging data as well as with a designed merg-
ing control in simulation. The proposed method had the lowest failure rate and improved
intention estimation in the merging control. It is computationally efficient and does not
require acceleration information about other vehicles.

3.5.2. Car-Following and Trajectory-Planning-Based Merging Control Methods

Authors in [95] developed a vehicle trajectory planning method for CAV coordination
at on-ramps, formulating the planning tasks of the ramp vehicle and the mainline vehicle as
two related distributed optimal problems. One simulation scenario with only three CAVs
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was used. Results show that all the three facilitating vehicles entering through on-ramp
were able to develop a suitable gap under the influence of their respective leading vehicles
whose speeds are constantly changing. All three merging vehicles could maneuver to the
desired merge locations with the desired merge-in speeds.

The traffic flow strategy with vehicles using an optimized look-ahead cruise control
method for merging control was proposed in [97]. A balance was achieved between re-
ducing the energy demand of traffic flow and simultaneously reducing the queue length
in the controlled lanes. It was found that the proposed method has several advantages,
such as simple implementation, handling system nonlinearities, and considering parameter
dependencies [97].

In [99], the authors used the Cooperative IDM (CIDM) to examine the system perfor-
mance under different AV penetration rates for motorway merging control. A proposed
CIDM-based controller determines the acceleration and deceleration rate of AVs in response
to the actions of surrounding vehicles to improve road capacity and stability. The results
imply that CIDM-based AVs can eliminate or alleviate speed oscillations on the motorway.
The results show that with increasing AV penetration rate and under different safe time
gaps in the IDM with values 0.4, 0.6, 0.8., 1, and 1.2 s, the speed oscillations were reduced
by 46.1%, 53.9%, 54.8%, 69.7%, and 72.3%, respectively. For the safe time gaps of 0.4, 0.6,
and 0.8 s, ATT was reduced by 15.4%, 12.3%, and 12%, respectively, while for the other
cases, ATT was increased by 3.9% and 5.12%, respectively.

3.5.3. RL-Based Merging Control

In [108], a merging control method was presented that allows AVs to merge into
congested motorways using Multi-Policy Decision Making (MPDM) with passive Actor-
Critic (pAC). The method does not require forward simulation as it uses estimated state
values learned with pAC. The pAC uses the 3-vehicle systems to learn the merging control
policy. Therefore, the ego-vehicle cannot always handle the condition changes due to
the maneuvers for the adjacent vehicles. This approach was compared with quadratic
programming and Z-learning. The pAC with the NN achieved a 97% success rate by
combining an approximate nearest neighbor to mitigate the imbalance and sparsity of the
data. The combined MPDM with pAC achieved a success rate of 92%, which is comparable
to a real HDV merging decisions.

In [111], a DRL architecture for learning an on-ramp merging control policy was
proposed. The long short-term memory architecture was implemented in the driving
environment to account for the influence of historical and interactive driving behaviors.
In the use case of ramp merging, the driver can selectively provide control inputs while the
automated driving system tries to maximize the reward and achieve an effective merging
maneuver [111].

3.5.4. Other Merging Control Approaches

In [98], the motorway on-ramp merging control system was proposed to take ad-
vantage of V2X communication. CAVs share information in a vehicular ad-hoc network
through dedicated short-range communication. It is assumed that all vehicles are CAVs.
The vehicle sequencing protocol is designed to arrange vehicles in a predefined sequence
to cooperate with each other before merging, thus avoiding high collision risks and exces-
sive energy consumption and pollutant emissions when reaching the merging area [98].
The merging control approach was divided into three procedures. The first procedure
calculated the maximum possible speed of on-ramp vehicles, the second procedure cal-
culated the estimated arrival time, and the third procedure assigned vehicle sequence
identification. The proposed protocol improved the ATT and average speed by 5.3% and
3.4%, respectively, compared to the no control scenario.

A two-level LC control strategy utilizing capabilities of AVs to improve the traffic
flow on motorways in the scenario of active bottlenecks at on-ramps and lane drops was
analyzed in [96]. The first-level centralized control optimized traffic density across lanes
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to balance traffic flow among lanes and reduced the number of LCs near the merge area.
Second-level decentralized control mitigated merging conflicts due to localized LC. This
strategy was designed to eliminate merging conflicts between AVs on the mainline and
vehicles on the on-ramp and generate safe gaps for targeted LC for AVs. The proposed
strategy improved traffic flow compared to the baseline scenario and ALINEA RM and
reduced TTT and TT variations among vehicles traveling on the mainline and on-ramps.
The proposed control outperformed ALINEA for base demand level and minor increases
in demand, thereby increasing the operational capacity of the motorway.

In [94], an online merging control system for multi-lane motorway merging areas for
a traffic flow with a 100% CAV penetration rate was presented, based on the optimization
of the LCs and the trajectories of the following vehicles. A rule-based LC decision was
used to balance the lane flow distribution before the merging area. A Cooperative LC
Control (CLCC) optimization model was proposed to ensure safe and smooth LCs. Co-
operative Merging Control (CMC) model was used for merging control near the merging
area. A dynamic method with moving boundary point was proposed to coordinate the
consecutive execution of the CLCC and CMC models. The CLCC model was based on a
discrete-time linear system control model that optimized the longitudinal LC acceleration
with the objective of maximizing the average speed. The CMC model assigned a merging
sequence to each vehicle entering the cooperative merging area, and vehicle speeds were
optimized. The simulations were conducted under four demand levels with three lane
demand scenarios. The integrated CLCC and CMC results show a reduction in total delay
time of 27% to 94.8% depending on the demand scenario. An increase in average speed
was measured ranging from 2.7% to 52.2% depending on the demand scenario.

4. Discussion

The focus of the paper was on the description of VSL and merging controllers and
proposed control algorithms in mixed traffic flow scenarios. We have identified several
potential research directions to address the limitations of existing methods. The limitations
are the need for an accurately estimated fundamental diagram and the implementation of
cooperative VSL and merging control system in mixed traffic flows.

The main drawback of the efficiency of classical VSL algorithms in mixed traffic
flows is their inability to adapt their control policy to a new traffic situation, in which
they perform sub-optimally. In the last five years, according to Table 2, there has been an
increase in the number of studies focused on improving and proposing new VSL control
algorithms for mixed traffic flows.

The drawback of both VSL and merging control approaches in mixed traffic flows is
the assumption that the communication network is error free and that there is no delay or
loss of information sent to the vehicles. Although AVs and CAVs are still at an early stage
of development, a comprehensive study that includes both the control approach and the
communication network influence analysis is yet to be made.

In [80], an analysis of mixed traffic flow was performed with CA model on a road
segment divided into 3000 cells. The length of each vehicle was set to 1 cell and the
maximum desired speed was set to 5 cells/s. The model could be improved by adjusting the
vehicle length and maximum desired speed, which would lead to more realistic scenarios
and results by keeping the definition of cell lengths in mind. A successful DRL model for
DVSL control, where dynamic and distinct speed limits can be imposed between lanes, was
implemented in [84]. Four learning reward scenarios were tested. Even though the results
are promising, a safety analysis on incidents and crash risk or collision rate should also
be considered. Due to differential speed limits, LCs could potentially lead to unwanted
incidents in real-world scenarios.

In [99], it was stated that CIDM system performance under different proportions of
AVs for motorway merging should consider safety aspect for low safe time gaps. For mixed
traffic flows, HDVs, unlike AVs, cannot maintain low safe time gaps, where HDVs could
potentially have no space to perform safe LC when needed.
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In [85], the authors successfully used GA to solve the MPC formulated problem of VSL
and LC. Using the CAVs’ information about their average speed, density, and flow rate in
each cell, GA repeatedly generates a population of individual solutions. These individual
solutions are evaluated based on the objective function value in the next prediction horizon
according to the modified multi-class CTM with these collected data.

Most researches on merging control approaches in mixed traffic flows disregard the
classical RM approaches. Instead of the classical RM control, which uses a traffic signal with
real-time traffic data to determine the rate at which vehicles should enter the motorway,
merging control approaches are proposed to resolve interactions and conflicts between
vehicles in merging areas [95,98–101]. These strategies can be achieved by assuming that
all vehicles are CAVs.

One of the major shortcomings of VSL and RM control algorithms for mixed traffic
flows is that they can become obsolete at very high penetration rates. The advantages of
AVs and CAVs in future mixed traffic flows at any penetration rate are pronounced in
improving the macroscopic traffic parameters of urban motorways reducing the need for
separate control.

The major shortcoming in the application of RL is the lack of a precise explanation
of the learning process. The question of why the agent learned a particular strategy of
action could not be answered accurately. Another issue that needs to be addressed is the
cooperation of VSL and merging controllers in mixed traffic flows by applying control
algorithms to improve MoEs and LoS.

In [94,95,98,100,101], the analyses of merging control approaches were performed
under the assumption that all vehicles are CAVs. The analysis of different AV and CAV
penetration rates and scenarios with mixed traffic flows would be beneficial since traffic is
stochastic in nature. Additionally, it is more likely in the near future that there will be large
variations and variances in AV and CAV penetration rates in mixed traffic flows. Therefore,
the analyses of more realistic traffic scenarios would be useful.

5. Conclusions

The application of advanced control solutions in the domain of ITS enables further
improvement of LoS on urban motorways. This paper reviews previous analyses of the
impact of VSL and RM on traffic flow. The role of VSL and RM systems on urban motorways
is described, and the operation of VSL controllers and RM control strategies is explained.
Emphasis is placed on the description of VSL and RM control algorithms in mixed traffic
flows. The impact of AVs and CAVs and the application of VSL and merging control
approaches in mixed traffic flow scenarios are also analyzed. The results of recent papers
on simulated traffic control systems for mixed traffic flows are also included in the review.

The observed open research areas of applying VSL and merging control approaches in
mixed traffic flows on urban motorways are as follows. Establishing a multi-agent VSL and
merging system based on agent cooperation to maximize system performance. The multi-
agent approach could be used to utilize the moving zone area under the VSL, calculate the
speed limit, and use AVs and CAVs as actuators for VSL and merging control systems on
urban motorways. All previous analyses are either based on the analysis of only one system
(VSL or merging control). The application of VSL and merging control in mixed traffic
scenarios could potentially smooth out speed harmonization, increase safety at merging
areas on on-ramps and increase overall motorway capacity due to the lower headway gap
that AVs and CAVs utilize, and communication characteristics that allow CAVs to utilize
the motorway capacity more efficiently with cooperative LC. Another open area of research
lies in the analysis of weather conditions on the behavior of AVs and CAVs, which can
affect the performance of the traffic control system including the in-vehicle placed low
level driving systems of (C)AVs. The lack of such analysis represents a shortcoming in
current studies of mixed traffic flows with both VSL and merging control approaches.
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AV Autonomous Vehicle
ATT Average Travel Time
CA Cellular Automata
CACC Cooperative Adaptive Cruise Control
CAV Connected and Autonomous Vehicle
CIDM Cooperative Intelligent Driver Model
CLCC Cooperative Lane Changing Control
CMC Cooperative Merging Control
CTM Cell-Transmission Model
CV Connected Vehicle
C-VSL Cooperative Variable Speed Limit
DVSL Differential Variable Speed Limit
DRL Deep Reinforcement Learning
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HDV Human-Driven Vehicle
HERO Heuristic Ramp-metering Coordination
IDM Intelligent Driver Model
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MDP Markov Decision Process
ML Machine Learning
MoE Measure of Effectiveness
MPC Model Predictive Control
MPDM Multi-Policy Decision Making
MTT Mean Travel Time
MWR Mutual Weights Regularization
NN Neural Network
pAC passive Actor-Critic
PGM Probabilistic Graphical Model
P-VSL Point Variable Speed Limit
QL Q-Learning
RM Ramp Metering
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RL Reinforcement Learning
RNN Recurrent Neural Network
RSU Road Side Unit
R-MART Reinforcement-Markov Average Reward Technique
RLCA Reinforcement Learning Control Agent
SAE Society of Automotive Engineers
SWARM System-Wide Adaptive Ramp Metering
SZM Stratified Zone Metering
SPD-HARM SPeeD HARMonization
TET Time Exposed Time-to-collision
TIT Time Integrated Time-to-collision
TT Travel Time
TTC Time-to-Collision
TTS Total Time Spent
TTT Total Travel Time
VMS Variable Message Sign
VSL Variable Speed Limit
V2V Vehicle-to-Vehicle
V2R Vehicle-to-Roadside
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-Everything
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