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Abstract: Some materials undergo hygric expansion when soaked. In porous rocks, this effect is
enhanced by the pore space, because it allows water to reach every part of its volume and to hydrate
most swelling parts. In the vicinity, this enlargement has negative structural consequences as adjacent
elements support some compressions or displacements. In this work, we propose a normalized
cross-correlation between rock surface texture images to determine the hygric expansion of such
materials. We used small porous sandstone samples (11 × 11 × 30 mm3) to measure hygric swelling.
The experimental setup comprised an industrial digital camera and a telecentric objective. We took
one image every 5 min for 3 h to characterize the whole swelling process. An error analysis of
both the mathematical and experimental methods was performed. The results showed that the
proposed methodology provided, despite some limitations, reliable hygric swelling information by
a non-contact methodology with an accuracy of 1 micron and permitted the deformation in both
the vertical and horizontal directions to be explored, which is an advantage over traditional linear
variable displacement transformers.

Keywords: rock swelling; image processing; DIC; macroscopic strain measurement

1. Introduction

Hygric swelling is a process that some sandstone rocks undergo when humidity rises.
It implies the volume increment of some rock particles, which causes strains, stresses
and, depending on the rock composition, a global volume increment in rock. This pro-
cess can produce small cracks, which is quite a common phenomenon in Europe [1,2].
Consequently, strain measurement due to hygric swelling is an important parameter to
assess the suitability of a particular sandstone rock in the construction and restoration of
historic buildings.

The most straightforward way to measure hygric swelling is to partially or completely
submerge a rock probe in water and measure the vertical displacement of the upper probe
boundary with a linear variable displacement transformer (LVDT) [3]. Given the total
vertical probe length, and by assuming a zero displacement of its basis, a global vertical
strain can be easily calculated as the mean value for all the points on the rock. However, on
the one hand, not all points undergo the same strain, and on the other hand, only vertical
strains can be measured by this simple procedure. Horizontal swelling measurements by
LVDT need more complex devices that are not always suitable for the rock probe under
study [4].

Those inconveniences can be overcome by methods based on imaging techniques.
Measuring strains by image processing with the proper setup and calculation methods
allows the strain to be found for each point in the image according to time [5]. However,
image procedures followed to find strains also have some drawbacks. Some are related
to the calculation method for tracking a specific detail with time. To this end, the most
widely used operation is normalized digital image cross-correlation (DIC), which is imple-
mented herein by the normalized cross-correlation algorithm, normxcorr2, in MATLAB [6].

Appl. Sci. 2021, 11, 2495. https://doi.org/10.3390/app11062495 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8455-5534
https://orcid.org/0000-0002-9648-7209
https://orcid.org/0000-0002-9206-4591
https://doi.org/10.3390/app11062495
https://doi.org/10.3390/app11062495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11062495
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/6/2495?type=check_update&version=1


Appl. Sci. 2021, 11, 2495 2 of 13

Although DIC has a nominal accuracy of one pixel, accuracy can increase by subpixel tech-
niques. These techniques consist of interpolating the image or interpolation peak. In both
cases, the result is biased toward the nearer integer to, thus, introduce a symmetric error
with a sigmoid shape to determine the subpixel position. Some errors may also appear
during image recording, such as unexpected camera movements due to mechanical drifts,
overheating, changes in ambient light or image distortion due to the camera lens. Therefore,
a thorough error study that considers all these factors should be conducted as part of any
image procedure.

Image methods for measuring rock swelling have been implemented in very different
ways in the literature: generally, probe size determines the most convenient imaging device
for acquiring images, ranging from microscope to commercial cameras, and even different
image setups can be used for the same probe size. In [7], scanning electron microscope
images were used to compare the rock microstructure to the strains measured on a sample
of centimeters in size. To measure strains, a 5 Mpx camera with a telecentric lens was
used on the same probe side. The resolution for DIC calculation images was 0.5 px/µm.
Those images were analyzed by a DIC method developed by [8], which considers the
possible cracks that were expected in the analyzed sample. Strains were calculated by
displacement derivation using the correlation results. The results showed a very heteroge-
neous strain distribution during desiccation, probably due to the presence of heterogeneous
water and microstructural non-homogenous distribution.

Images directly taken by electron microscopy have also been used to perform DIC
strain calculations [9]. In [10], a sample slice (1 mm thick and few millimeters on plane) of an
argillaceous rock was recorded during swelling by electron microscopy with a 13.8 Mpx size
and a resolution of 0.06 px/µm. The results showed that the macroscopic swelling strain
was the combined result of the local free swelling strains and the additional mechanical
strains induced by particle interactions. Argillaceous rocks are inhomogeneous materials
with different hygric properties that lead to incompatibilities of free-swelling deformations
for all its different particles. Additionally, the moisture gradient in the transient state
of moisture transport makes some parts swell before others, which confers deformation
additional incompatibility. These incompatibilities result in mechanical internal stresses
that affect macroscopic local movement during swelling. In summary, previous works
have demonstrated that the argillaceous swelling process is substantially affected by
non-controllable factors such as particle distribution in the sample or moisture transport
distribution, which mean that any swelling experiment is hardly reproducible.

From the marked uncertainty point of view that comes with measuring rock swelling,
our approach involved simplifying the procedure to obtain a comparable measure of the
macroscopic strain to those obtained by LVDT, but without using complex setups and with
the possibility of obtaining strains in both directions.

This paper analyzes the swelling process of an argillaceous rock, with a sample of
one centimeter in size and a similar image resolution to the papers herein cited, but by
using a simpler setup and image processing methods. Rock expansion was analyzed by
changes in the rock surface texture. The movement of texture imposed by swelling was
tracked by DIC, applied to six different regions of interest (ROIs) located on the edge of
the rock surface. The errors of both the experimental setup and numerical methods were
carefully analyzed. Finally, it was possible to obtain the relative deformation in the vertical
and horizontal directions, and to observe non-uniform stone deformation depending on
the proximity of the ROIs to the wet surface.

Some preliminary results obtained with this study have been presented in [11].
Based on these results, the setup and the calculation method very much improved. Mathe-
matical methods have been discussed in [12], where full access to the code is available.

This manuscript is structured as follows. First, we describe the experimental setup
and numerical methods, including the error analysis. The results of the dry and wet
experiments, and their discussion, are included in Section 3. Finally, the main results are
summarized in the last section.
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2. Materials and Methods
2.1. Experimental Setup

In this manuscript, we tested porous sandstone used as a construction and building
material. It is composed of quartz and feldspar with a clay-rich matrix with known expan-
sive properties. It presents a connected porosity within the 10–12% range. The rock was cut
in rectangular parallelepiped samples (size of 11 × 11 × 30 mm3). In all, four rock samples
were tested. In Figure 1, we present a picture of a sample used in our experiments.
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Figure 1. Picture of one rock samples. The image has been obtained through the optical setup
described in the text.

Samples were placed in a small container and covered with water up to 1/3 of their
height. Water moved by capillarity forces to the top of the samples as with a piston-like
imbibition process. As water rose through the sample, it hydrated clay, increased its size
and forced rock swelling.

Rock surface images were taken by a color camera Basler acA4600-10uc with a CMOS
sensor of 6.5 × 4.5 mm with a Bayer color filter and a spatial resolution of 4608 × 3288 px,
being pixel size of 1.4 × 1.4 µm. Since the stone is greyish (see Figure 1), no relevant
differences were found between channels, and provided that the green channel is better
sampled due to the Bayer filter, only this channel was analyzed herein. However, the other
channels were also tested, resulting in similar but noisier results.

A telecentric objective Myutron VTL0513, with the additional VTL05FC lens was used.
This objective, together with the lens, provides a magnification of 0.5×. One of the main
advantages of using telecentric lenses is that they have a constant non-angular field of view,
so they present a significant smaller distortion and field of curvature than conventional
lenses. Additionally, the depth of focus value was very low and helped to replace samples
in the same exact place. We would like to underline that, since the illumination was
controlled by exposition time, the diaphragm was set at its maximum aperture in order to
further minimize depth of focus.

The optical system was centered in the upper part of the probe, thus avoiding the
presence of the container border in the image but including both the sample’s lateral borders.
The employed magnification, at a working distance of 176 mm (Figure 2), provided a clear
image of the rock’s components (Figure 1) with a 0.36 px/µm ratio. Both the sample and
image system were placed inside a photo studio light box (Figure 3) to obtain uniform
light during the whole experiment and to avoid the influence of air movement on the
free water movement through the sample. As it can be seen in the picture, the whole
setup was mounted on an antivibratory table. The image brightness, regulated through
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the artificial light and the exposition time, was adjusted in order to have the maximum
contrast, measured through the image histogram.
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Figure 3. Photo studio light box, with one of its sides open.

Before any measurements were taken, the sample was dried in an oven at 50 ◦C for 1 h.
Then, the sample was placed in its position, and the recipient was filled with water using a
pipette. After checking that the image was focused, a picture was taken every 2 min for 3 h,
so each sequence was composed of a total of 90 images.

2.2. Image Processing Methods

Rock deformation was assessed by surface texture displacements, achieved by calcu-
lating the normalized digital image cross-correlation (DIC) between the first frame in the
sequence and all the other frames. To increase the accuracy of this result, the correlation
peak was interpolated as detailed below [13]. This is a preferred procedure to the other
strategy, which consists of interpolating the image itself, as this procedure can induce
systematic DIC errors due to inaccurate subpixel image reconstruction [14].

The DIC calculation was not applied to the whole specimen but to some specific ROIs.
The size of these ROIs was determined after a texture size analysis by autocorrelation.
Different ROIs of fixed sizes were randomly located in 50 different positions on the sam-
ple’s surface. Autocorrelation was calculated for each ROI, as was the full width at half
maximum of the autocorrelation peak to, thus, estimate the average size of the particles
in ROIs. This procedure was repeated for the different ROI sizes, ranging from 5 × 5 px
to 200 × 200 px. Figure 4 represents the mean values of the correlation peak of each ROI
size for one particular sample and the green channel. Standard deviations are represented
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as error bars. This figure depicts that small ROIs presented wide variability in detail size,
depending on their position, and merely showed sample non-homogeneity. Note that
for ROIs larger than 80 × 80, peak width is stable and the variation with ROI location
is relatively narrow. A similar graph was obtained for all the samples, with the stability
region ranging between 80 and 120 px. Thus, our calculations were performed on ROIs
measuring 100 × 100 px for all the samples. Note that the larger ROIs were, the longer the
calculation time required, with no clear benefits obtained in quality results terms. Finally,
we stress that after some preliminary tests [11], we decided to select the 20 px template
smaller than the ROI on both sides to allow texture displacement without going beyond
interrogation area limits.
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Figure 4. Size of the texture details estimated as the autocorrelation FWHM for the different region
of interest (ROI) sizes for sample 1 in the green channel at 50 random positions. The results of other
channels and samples showed similar outcomes.

The aim of the method is to determine the macroscopic strains due to hygric swelling.
According to this, the deformation has been only calculated in six ROIs of the calculated
size at specific positions close to the upper and lateral edges (see Figure 5). Every ROI from
each frame was compared by DIC to the corresponding ROI in the same position from
the first frame. This distribution allowed us to find the material strain in both the vertical
(on both sides of the probe) and the horizontal (at three different heights) directions by
using (1).

εij(t) =
PosROIi (t)− PosROIj(t)

PosROIi (0)− PosROIj(0)
(1)

where PosROIi (t) is the location of ROI i for time t.
As previously mentioned, the DIC results were refined by interpolating the correlation

peak following the procedure explained in [12]. According to the literature, both the
interpolation area around the peak and the used fitting function are critical for obtaining
accurate results. Two different strategies can be followed: taking a small interpolation
area and using a quadratic function as a fitting function, or employing a large area with
a Gaussian function. In order to select the best method, we implemented both strategies
on the particular rock texture by imposing a synthetic displacement and comparing the
results obtained by both methods.
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Figure 5. Number and location of ROIs for which the image processing was done and the direction
of the positive displacements.

This test was prepared by taking the six ROIs represented in Figure 5 from the first
picture of a sequence and numerically displacing by a total of 10 px in the vertical direction
in steps of 0.1 px. No horizontal displacement was imposed. The displaced versions were
calculated by the Fourier transform shifting property. The synthetic displacement was
then compared to the shift obtained by DIC using a quadratic interpolation function in a
3 × 3 neighborhood and a Gaussian fitting function in an 11 × 11 neighborhood around
the correlation maximum, according to the recommendations in [12]. The errors found for
each ROI are represented in Figure 6, which clearly shows that quadratic fitting of a small
neighborhood around the correlation peak was the best strategy.
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Figure 6. Location errors obtained for all the ROIs using polynomic and Gaussian fits in vertical (left)
and horizontal (right) directions.

For the polynomic function, errors were bound, while errors showed no clear trend
for Gaussian fits. Note that the errors obtained with Gaussian fitting functions were much
larger than polynomic ones. The standard deviation values for polynomic fits were one
order of magnitude higher in the direction of displacements than in the other direction,
and the maximum value was 0.045 px. As a result of this analysis, a polynomic peak fit
with a 3 × 3 neighborhood size was selected for the refinement peak. Finally, Figure 7
summarizes the calculation algorithm that was applied to analyze the samples.
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3. Results and Discussion

A final check was performed before continuing with the experiments. It is known
that long image acquisition times can imply image distortions due to slight movements of
the camera or supporting systems, or sensor deformation due to heat. Therefore, we im-
plemented a “dry” experiment: i.e., the probe was filmed and measured without adding
water. From the ROI location for each time, strains were obtained by (1). As the system is
supposed to be static, all the obtained shifts may be assigned to experimental errors.

Figure 8 represents the absolute displacement of each ROI from initial position,
where we can see a clear drift in the setup, mainly in the vertical direction, which can
be up to 15 µm. This behavior was repeated in all the experiments similarly, so this was
probably an effect of camera heating, which caused the support to loosen and made the
camera move down due to objective weight. Notice also that the results present small
instabilities of the order of 0.25 µm or, equivalently, 0.1 px, which is approximately twice
the error obtained with the synthetic sequence in the movement direction (see Figure 6).
These errors may be due to Gaussian noise in the image and fitting errors in the subpixel
calculation algorithms. These fluctuations can be cancelled out by applying smoothing
filters in the signal, but since they do not distort the main trend of the result, we preferred
to show the data as obtained.

According to these data, our method is not advisable for absolute measurements.
However, according to Equation (1), as we were interested in relative positions and strains,
it was possible that overall drifting did not affect our results. Figure 9 represents the
horizontal and vertical strains obtained for each pair of corresponding ROIs from the
images obtained in this dry experiment. Note that in the vertical case, in the same color,
we show the strains obtained for each pair of ROIs that are located at the same height,
but on different sides of the samples.
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Despite experimental instabilities, the method’s accuracy was acceptable with error
peak values below 1 × 10−3. Mean errors and their standard deviations are presented in
Tables 1 and 2. From them, we take the worst obtained case as the error of this method,
which was (0.56 ± 0.16) × 10−3.

Table 1. Horizontal strain error for a long-term still sequence of the recorded images.

Horizontal Strain Error (×10−3)

ROIs MEAN STD

1–4 −0.1110 0.0411
2–5 −0.2163 0.0560
3–6 −0.4175 0.1013
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Table 2. Vertical strain error for a long-term still sequence of the recorded images.

Vertical Strain Error (×10−3)

ROIs MEAN STD

1–2 0.1167 0.1467
2–3 0.1841 0.1172
1–3 0.1504 0.0833
4–5 −0.5586 0.1580
5–6 0.0938 0.1461
4–6 0.2313 0.0823

It is worth noting that errors in the vertical deformations are slightly larger and more
disperse than in the horizontal direction. On the one hand, this may be due to the camera
moving, but also to the shorter distance between ROIs. In fact, distance between the lateral
ROIs was 3-fold longer than the distance between two consecutive vertical ROIs. As the
strain was inversely proportional to the initial position of ROIs, according to Equation (1),
the expected error was 3-fold bigger.

Figure 10 depicts the relative displacement measured for all the ROIs in sample 1
during the experiment. Compared to the error graphs in Figure 8, we can see that the
displacement measured in the wet experiment was much larger than in the dry experiment.
This means that the influence of the error must be considered to be minimum. For the
vertical displacement, we see a clear movement due to hydration in the vertical direction.
The curve is the typical one that has been observed in other experiments [15], with rapid
swelling and a slow stabilization phase. Horizontal displacements were more difficult
to interpret as the ROIs on the left and right sides were expected to move in opposite
directions. However, the obtained results showed that the movement of all the ROIs went
in the same direction, although the displacement of the three ROIs on the left was always
less than that on the right. This effect could be due to sample rotation from the irregular
expansion of the base or a composition camera drift effect and rock expansion.
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Figure 10. Measured vertical (left) and horizontal (right) shifts for each ROI in a wet experiment.
The results are shown for sample 1, but similar graphs were obtained for all the measured samples.

In order to better understand this situation, Figure 11 represents the horizontal and
vertical strains obtained for all four samples. As strains represent relative displacement
between ROIs, all the global effects on the sample (rigid body movements) can be cancelled
out, and all the observable effects may be due to internal forces.
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Figure 11. Measured horizontal strains for the four hydrated samples.

As the sample was submerged at the bottom, horizontal swelling was expected to
be greater at the bottom than at the upper top. This was observed in all the horizontal
displacement graphs, where each pair of ROIs presented minor deformations, because
they were further away from water. The observed behavior was similar for all the samples,
and the observed variability can be explained by rock non-homogeneity, which can produce
samples with slightly different compositions and structures. Note that the upper part
of all the samples, which corresponded to ROIs #1 and #4, was much less affected by
hygric swelling.

The results for the vertical strains were not so clear. Once again, it would seem
that the upper part of samples, which corresponded to the strains between ROIs 1–2
and 4–5 (depicted in blue in Figure 12), were less affected by swelling. The green line,
which represents the strains for the ROIs closer to the water level, presented a positive
strain during the first 2 h, which means that the rock expanded. After this time, however,
the strain decreased, possibly because an early capillary pressure effect was followed by
relaxation and water circulation through pores to cause slight shrinkage in the vertical
direction but maintained expansion in the horizontal direction. We underline that the
strains observed in the vertical directions were of the same order as the peak error limits
observed in the dry test (see Figure 9), hence the possibility of the oscillations herein shown
not being so marked. However, the trend was very clear, and this behavior was repeated in
all four samples with the same shape approximately 2 h after the experiment starts. At that
time, as the drift was not as important, the effect cannot be fully explained by experimental
errors, and the total displacement in Figure 10 is several orders of magnitude larger than
the total displacement observed in the dry experiment (see Figure 8).
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Figure 12. Measured vertical strains for the four hydrated samples.

In order to get more insight about the rock behavior, we have calculated different
deformation maps of sample 1. In Figure 13, we present the results obtained for the
horizontal and vertical deformations at 1, 2 and 3 h after the water addition. To calculate
the deformation, the image of the rock has been tessellated in ROIs of 100 × 100 px with
an overlapping of 50 px with the adjacent ROIs. Displacement through correlation has
been calculated between the corresponding ROIs of the initial picture and the subsequent
images. The relative deformation has been obtained between every two alternate ROIs in
the considered direction. Finally, in order to avoid outliers and obtain a softer appearance,
a 3 × 3 median filter has been applied to the result.
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The maps confirm the results in Figures 11 and 12. As it appeared there, the horizontal
deformation is stronger than the vertical one. In the horizontal direction, one can see that
the lower part of the rock, which is closer to the water surface, suffers a larger dilation
than the upper part. In the vertical direction, the effect is not so strong. One can see a
clear deformation in the lower part of the sample after 2 h that seems to vanish and spread
through all the sample at the end of the experiment.

Note also that the maps show clear inhomogeneities in the distribution of the deforma-
tions, which reflects the distribution of particles with different swelling properties through
the rock volume.

4. Conclusions

This manuscript discusses a method to measure the deformation of a sandstone
rock partially submerged in water due to hygric swelling. This method uses a simple
camera and a telecentric objective, which allows macroscopic deformations to be measured.
The method uses digital image cross-correlation on small rock areas so that changes in both
the vertical and horizontal directions can take place.

Both the numerical and experimental procedures are described, and possible errors
were analyzed. According to our calculations, the calculation error method was below
0.1 px or the equivalent to 0.04 µm. Experimental implementation requires long time
sequences, which means that marked mechanical and thermal stability conditions are
required. In our case, the required stability was not achieved, and an image drift was
observed. However, the key parameter in our measurement was strain, which is a relative
magnitude, and therefore, rigid body movements did not affect measurements.

Four sandstone rock samples were measured by the herein presented methods.
The horizontal strain demonstrated that rock deformation was not uniform, which be-
came larger the closer it was to the submerged part. Our measurements showed a clear
dilation in the horizontal direction, which is expected for a partially submerged porous
body. The strain measurements in the vertical direction displayed unexpected behav-
ior, so deformation maps at different moments during the experiment were calculated.
The maps showed clearly the distribution of the deformations and revealed important
inhomogeneities in their distribution, reflecting the composition of the rock.

The method showed good capabilities in measuring local displacement and, from this,
the strain of a small rock sample in both the vertical and horizontal directions. The methods
herein followed, despite the limitations described, are simpler to implement than those
that involve microscopic analyses and may be of much interest for analyzing macroscopic
rock dynamics as construction material.

Note that, with the exception of the telecentric lens, which can be replaced by a stan-
dard objective with proper distortion calibration, the setup is relatively cheap, which makes
this procedure affordable for students or for preliminary tests in research labs. The main
drawback of the method is the thermal drift observed. Future works should pay attention
to compensate this issue without increasing the price and the complexity of the setup.

Finally, we would like to add that the proposal demonstrates that natural textures can
be used as reliable targets for DIC techniques. Further analysis and characterization of
textures is needed in order to optimize the subpixel correlation results.
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