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Abstract: A driving technical concern for the automobile industry is their assurance that developed
windshield products meet Federal safety standards. Besides conducting innumerable glass breakage
experiments, product developers also have the option of utilizing numerical approaches that can
provide further insight into glass impact breakage, fracture, and fragmentation. The combined
finite-discrete element method (FDEM) is one such tool and was used in this study to investigate
3D impact glass fracture processes. To enable this analysis, a generalized traction-separation model,
which defines the constitutive relationship between the traction and separation in FDEM cohesive
zone models, was introduced. The mechanical responses of a laminated glass and a glass plate under
impact were then analyzed. For laminated glass, an impact fracture process was investigated and
results were compared against corresponding experiments. Correspondingly, two glass plate impact
fracture patterns, i.e., concentric fractures and radial fractures, were simulated. The results show that
for both cases, FDEM simulated fracture processes and fracture patterns are in good agreement with
the experimental observations. The work demonstrates that FDEM is an effective tool for modeling
of fracture and fragmentation in glass.

Keywords: combined finite discrete element method; traction-separation model; impact; fracture
and fragmentation; glass

1. Introduction

It is a well-known fact that a great number of traffic accidents result in windshield
breakage that unduly causes great harm to automobile to both passengers and pedestrians.
Due to the consequences of these accidents, a forensics approach was developed wherein
analysts can use windshield fracture patterns to reconstruct some aspects of accidents [1].
Needless to say, the study of automobile glass impact fracture mechanisms is of theoretical
and practical importance to the automobile industry as it affects passenger protection,
passive safety measures, and traffic accident reconstruction.

Current automobile windshield safety analysis standards heavily rely upon both
experimental and analytical approaches to meet Federal guidelines for breakage standards.
Due to computational mechanic’s advancements, numerical methods offer an alternative
approach that is proving to be effective for the study of automobile glass fracture. Given
the critical nature and need for computational methods that can effectively capture glass
breakage many efforts have been undertaken. Bios et al. simulated the impact of a sphere
into a glass plate and the behavior of a windscreen during a roof crash via the finite element
method (FEM), where failed elements were deleted from the calculation after the strain
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was greater than a pre-set failure strain [2]. Timmel et al. presented a computational
technique for the modeling of laminated glass using an explicit finite element code. In their
work, different material models, element techniques, and the influence of the mesh were
discussed [3]. Xu et al. used the extended finite element method (XFEM) to characterize
radial crack and circumferential crack propagations of windshield cracking under low-
speed impacts [4]. Pyttel et al. proposed a failure criterion for laminated glass under impact
loading [5]. The criterion was implemented into a commercial finite element code and was
validated by comparing against experiments. Peng et al. simulated the mechanical behavior
of a windshield-laminated glass given the impact of a pedestrian’s head using an element
deletion approach implemented in a commercial finite element code [6]. Different finite
element models were tested and the numerical results were verified against experimental
data. Chen et al. utilized a cohesive zone model based computational framework for the
modeling of impact fracture on automotive laminated glass [7]. Xu et al. investigated
radial multi-cracking phenomenon in laminated glass subject to dynamic loading using
XFEM [8]. Lin et al. modeled automotive windshield impact fracture behavior via an
intrinsic cohesive approach [9]. The numerical results were compared against the element
deletion method and experimental observations. In all the above mentioned work, the
simulations were conducted in the context of the finite element method (FEM).

In the meantime, computational mechanics of discontinuum approaches have also
been extensively utilized to simulate the glass impact fracture processes. Oda et al. sim-
ulated the dynamic fracture behavior of laminated glass using a 2D discrete element
method (DEM) implementation, where both the glass and polyvinyl butyral (PVB) film
were divided into identical circular discrete elements [10,11]. Zang et al. investigated the
impact fracture behavior of automobile glasses using a 3D particle-based DEM, wherein
the advantage of laminated glass in passenger safety was thoroughly demonstrated [12].
In order to simulate the large deformation of the PVB layer in laminated glass, Lei and
Zang developed a numerical framework that combined particle-based DEM and explicit
FEM, where the mechanical response accounted for glass fracture by using DEM while
the large deformation of the PVB was modeled using FEM [13]. Lei then studied the
impact fracture mechanisms of automobile glass using the 3D combined finite-discrete
element method (FDEM), where the community accepted combined single smeared crack
model was extended to 3D for the modeling of mode I and II fractures [14]. Munjiza et al.
proceeded by developing a model for fracture and fragmentation of multi-layered thin
shells in the context of FDEM [14,15]. In their work, the impact fracture patterns for a thin
flat glass shell and a thin spherical glass shell were simulated. Chen and Chan simulated
the fracture and fragmentation responses of laminated glass under hard body impact using
FDEM [16], where different fracture patterns (e.g., cone and flexural) were simulated in
both 2D and 3D. Xu et al. proposed a 3D adaptive algorithm, which automatically converts
distorted finite elements into spherical discrete elements, for the simulation of impact
fracture of laminated glass [17]. Wang et al. compared four different numerical methods
(i.e., FEM, XFEM, DEM, FDEM) for the fracture of brittle materials with specific reference
to glass [18]. They concluded that FDEM yields the most satisfactory performance for the
modeling of the dynamic fracture of materials.

In this work, FDEM was used to simulate dynamic impact fracture processes of a
laminated glass beam and a glass plate in 3D. The enriched fracture details, such as the
fracture processes’ time sequences of the laminated glass beam and the concentric and
radial fractures of the glass plate, were compared against the experimental observations.
The rest of the paper is organized as follows: a brief overview of FDEM is introduced
in order to provide the reader with a general framework of the method; a generalized
traction-separation model for modeling fracture and fragmentation is then introduced; a
laminated glass impact fracture simulation is then presented; finally, FDEM glass plate
fracture pattern phenomenology is discussed.
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2. Overview of the Combined Finite-Discrete Element Method

FDEM is an effective tool for addressing a variety of physics problems formulated not
in terms of the continuum assumption and differential equations, but in terms of a large
number of discrete entities interacting with each other [19–21]. In FDEM the solid domains
(called discrete elements) are discretized into finite elements, where finite rotations and
finite displacements are assumed a priori. Through failure, fracture, and fragmentation,
single domains represented by separate finite element meshes are transformed into a
number of interacting domains. The finite element discretization of the solid domains is
also conveniently used to discretize the contact between discrete elements. Utilizing this
approach, discretized contact solutions can then be used for both contact detection and
contact interaction [22].

The generalized governing equation of a FDEM system is

M
..
x + C

.
x = f (1)

where M is the lumped mass matrix, C is the damping matrix, x is the displacement vector,
and f is the equivalent force acting on each node and includes all forces existing in the
system such as the body forces, boundary tractions, forces due to material deformation as
well as contact forces between solid domains and cohesion forces in the damaged areas [20].
Equation (1) is then integrated in time in order to obtain the transient evolution of the
system. There are several time integration schemes that can be used for this purpose. In
this work the central difference time integration scheme was adopted [23].

From an algorithmic point of view, FDEM includes: material deformation, contact
detection, contact interaction, and continua-discontinua transition [20]. An in-depth de-
scription of the FDEM is outside of the scope of this paper. The interested reader is referred
to the following seminal works for more detailed descriptions of the method [20,22,24].

2.1. Material Deformation

In FDEM, large strain finite element methods are used to simulate material deforma-
tion. In early versions of FDEM, only the elastic deformation of the solid material was
taken into account. Hyper-elastic material constitutive laws, which defined stress as a
function of finite strains (e.g., the Green-St. Venant strain), were implemented to simulate
solid material deformation under finite rotations and finite displacements [20].

For more recent versions of FDEM, the solid deformation is calculated using a multi-
plicative decomposition-based formulation [24]. This approach naturally decomposes de-
formation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches,
shear stretches, etc. In essence, a total deformation description is obtained from the dis-
placement field via a decomposition of the respective deformation functions; which, when
derivation is applied, results in multiplication, thus the term multiplicative decomposi-
tion [24]. Of note, the multiplicative decomposition-based formulation has been applied
to define material constitutive laws in different ways, from anisotropic elastic formula-
tion for rock materials [25,26], to plastic formulation for metals [27] and for a generalized
elastoplastic formulation for anisotropic solids [28].

In terms of mesh “element” technology, domain discretization has usually been con-
ducted by implementing constant strain elements (i.e., constant strain triangles and tetra-
hedrons) in FDEM [20]. However, it is well-known that these lower order elements can
experience numerical locking. This occurs when two or more physical mechanisms compete
for the available degrees of freedom within each finite element, especially in incompress-
ibility conditions [24]. Recently, in order to alleviate this deficiency, composite triangular
and tetrahedral finite elements were developed with a selective integration scheme to
properly relax the constraints on the volumetric term of the material deformation [25,26].
It is noted here that since the volumetric deformation is calculated separately from other
stress-bearing mechanisms, it is relatively easy to construct a selective integration scheme
in the composite elements that have a multiplicative decomposition-based formulation.
Moreover, the composite finite elements, which are constructed with a group of low order
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sub-elements, are good choices for FDEM since only the information from the sub-elements
is needed. The approach is especially convenient for cases where re-meshing is necessary
(e.g., dynamical fracture propagation). In addition, the low order sub-elements enable
robust contact interaction algorithms that maintain both a relatively high computational
efficiency and accuracy as well.

2.2. Contact Detection

In the context of FDEM, contact enforcement is usually conducted in two steps, contact
detection and contact interaction [20]. The goal of contact detection is to determine the
contact relationship between each finite element and its adjacent elements, while contact
interaction algorithms calculate the contact forces between the elements in contact. In
typical FDEM applications, the simulation system can have thousands to millions of discrete
elements with irregular shapes which can freely move and rotate in space until they are in
contact with other elements. As a result, random collisions can occur between any free faces
of the discrete elements at any moment. In order to correctly resolve contact relationships
in such a complex multibody system, contact detection algorithms are required to have
good robustness, be highly efficient and require low memory usage.

Most of the modern contact detection algorithms can be classified either as tree-based
or grid-based algorithms [20]. In the tree-based algorithms, the position and size of each
contact body (discrete element or finite element) is represented using a special tree structure,
while grid-based algorithms build a data structure by mapping each contact body onto
identical background grids (bins). Both groups of algorithms usually contain sort and
search components: the data structure is first sorted via selected sorting algorithms and the
final contact search is then conducted on the sorted data structure. Han et al. compared
the performance of several selected tree-based and grid-based contact algorithms and
showed that selected grid-based algorithms can be 100× times faster than tree-based
algorithms [29].

The NBS algorithm is a linear contact detection algorithm that was first proposed by
Munjiza for bodies of similar size [30]. Since NBS features linear sort and linear search
algorithms, the total detection time is linearly proportional to the number of contact bodies
in the system. Moreover, a special linked-list structure is used in NBS which guarantees that
memory usage is nearly proportional to the number of contact bodies. Other grid-based
algorithms with linear complexity include the MR and CGRID algorithms, of which both
were built on top of the NBS algorithm. The memory usage in MR is exactly proportional
to the number of contact bodies [31], while computational efficiency and memory usage in
CGRID are insensitive to the size of the contact bodies [32].

For more recent versions of FDEM, a contact detection algorithm called MRCK was
developed to improve contact detection performance [22]. In MRCK, the contact targets
are sorted using the MR linear sort which takes advantage of the fact that no contact target
can move more than the size of a single cell in a single time step. For a given contactor,
a process called “contactor rendering” is used to detect all the cells that the contactor
currently occupies. The rendering is done in conjunction with the sorted list of targets in
such a manner that only the cells that have targets mapped to them are rendered. MRCK
significantly speeds up the rendering process since a contactor with no contacts is not
rendered at all.

2.3. Contact Interaction

From its inception, FDEM has used a discretized distributed potential contact force
algorithm to resolve interaction between contact bodies (discrete elements and/or finite
elements) [20,33]. In the earliest versions, the “element to element” contact interaction,
such as “triangle to triangle” in 2D and “tetrahedron to tetrahedron” in 3D, was imple-
mented [20]. This “element to element” approach exactly considers the geometry of both
the contactor and the target elements and the integration of the contact forces distributed
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along the edges/faces of these contact bodies was done analytically. Since this approach
integrated contact forces exactly, it was therefore quite time consuming.

In the latest version of FDEM, the contact interaction has been simplified by using
“element to point” contact interaction kinematics [22], e.g., “triangle to point” in 2D and
“tetrahedron to point” in 3D. For these cases, the target elements are discretized into a
series of contact points distributed on the free boundary edges/faces of the discrete ele-
ments. Each target point is considered a Gauss integration point through which distributed
interaction forces are integrated. This simplified “element to point” contact interaction is
much faster than the original “element to element” approach as it integrates the distributed
contact forces in an approximate form.

In the discretized distributed potential contact force algorithm, the amplitude of
the contact force is usually a function of the contact potential, while the direction of the
contact force is perpendicular to the contour of the contact potential field [34]. As a result,
the contact forces calculated through this method rely on the evaluation of the contact
potential field. In the earlier versions of FDEM, the potential field was defined locally,
according to the geometry of each finite element, which introduced an artificial numerical
non-smoothness in the contact force, i.e., both the jump in the amplitude and direction of
the contact force could be observed when the contact point moved from one finite element
to another [34]. In order to overcome the non-smoothness in this contact force, a smooth
contact algorithm was recently developed [34]. In the new smooth contact algorithm, the
contact potential is defined globally as the geometrical information of each discrete element
is accounted for via nodal connectivity and existing discrete element boundaries, thereby
yielding smooth potentials as well as contact forces [34].

In its original form, for contact processes the energy balance calculated from the
discretized distributed potential contact force algorithm was always preserved. For the
recently developed generalized contact interaction law, different mechanisms that dissipate
the energy during the contact process were introduced in the context of the discretized
distributed potential contact force algorithm [34].

2.4. Continua-Discontinua Transition

In FDEM, cohesive zone models are usually used to simulate the fracture and frag-
mentation in solids [20]. In the cohesive zone models, the mechanical response of the solid
material is decomposed into a solid matrix part and an interfacial part that represents
multi-scale processes taking place behind the fracture front (e.g., breaking of bonds be-
tween grains). In the solid matrix part, the finite element method along with constitutive
laws (e.g., elastic, plastic, continuum damage models) are used to simulate the solid’s
bulk deformation, while fracture and fragmentation are handled in the interfacial part via
cohesive elements or cohesive points that are assumed to coincide with the finite element
boundary [20]. The mechanical response of the cohesive elements/points are dominated by
the so-called “traction-separation” constitutive law. To control when and how the cohesive
elements/points are introduced into the system, different cohesive zone models have been
developed and implemented in FDEM.

One group of cohesive zone models is called the intrinsic cohesive zone model [35]. In
this model, the cohesive elements/points are inserted in advance between two adjacent ele-
ments to connect those two originally adjacent elements. In order to enforce the continuity
of the material, “strain-hardening” with a sufficiently large initial slope must be introduced
in the “traction-separation” curve, which reduces the stiffness of the system artificially.
Another group of cohesive zone models are called the extrinsic cohesive zone model [36].
In the extrinsic models, the cohesive elements are dynamically inserted into the system
according to the stress state. The extrinsic models avoid the artificial compliance seen in
the intrinsic model approach, however they may end up being “time-discontinuous” at the
point when the material is transitioning from continua to discontinua.

In the earlier versions of FDEM, the combined single smeared crack model [37,38],
which belongs to the family of intrinsic cohesive zone models, was developed for the
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simulation of fracture and fragmentation. Originally, the combined single smeared crack
model was aimed at mode I loaded cracks only and it was implemented in 2D [37]. In
2010, that crack model was extended to 3D for both mode I and mode II fractures and this
extended 3D crack model was implemented in the open-source FDEM code Y-code [14,39].
Since then, with the open distribution of Y-code, this 3D crack model has been widely used
in different research groups for different topics.

The latest version of FDEM features a unified cohesive zone model [40]. Similar to the
traditional extrinsic cohesive zone model, the unified cohesive zone model dynamically
inserts the cohesive element into the system based on the local stress state. However, the
transition from continua to discontinua is smoothly achieved and as such, the unified cohe-
sive zone model eliminates the “time-discontinuous” issue. Moreover, within the unified
cohesive zone model the point of transition from continua to discontinua is controllable.
Both the intrinsic cohesive zone model and enhanced extrinsic cohesive model can be
retrieved from the unified model through the introduction of a threshold parameter [40].
Thus, the unified cohesive zone model, which unifies the intrinsic and extrinsic cohesive
zone models, has all the advantages of both approaches while overcoming most of the
disadvantage of existing cohesive zone models [40].

3. Generalized Traction-Separation Model for Fracture and Fragmentation

In the cohesive zone models, the bonding stresses along the damage zone or dis-
crete crack are defined as functions of the local separation (displacement). As shown in
Figure 1a, the local separation at any point on the surfaces of a crack can be divided into
three components

δ = δnn + δt1 t1 + δt2 t2 (2)

where n, t1, and t2 are the normal and tangential material axes which define a local
coordinate systems moving and rotating with the material, while δn, δt1 , and δt2 are the
normal and tangential separations at any point in the damage zone, respectively.
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Figure 1. Separation and traction at a point on the surfaces of a crack; (a) separation vector divided into three components,
(b) traction vector divided into three components.

Accordingly, the traction vector p is also divided into three components with respect
to the material axis n, t1, and t2 (Figure 1b),

p = σn + τ1t1 + τ2t2 (3)

where σ, τ1, and τ2 are the normal and tangential stresses in the direction of n, t1, and t2.
One approach that can be used to construct a relationship between traction and sepa-

ration is to establish a potential-based solution that defines the traction vector as a function
of the interfacial potential gradient with respect to the components of the separation vec-
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tor [35,36]. The interfacial potential is defined as a function of the components of the
separation vector as

p = ∇ϕ(δn, δt1 , δt2) =
∂ϕ

∂δn
n +

∂ϕ

∂δt1

t1 +
∂ϕ

∂δt2

t2 (4)

One can further assume that the interfacial potential is a function of an intermediate
single variable δ which is a function of the separation vector, thus

p = ∇ϕ(δ) =

(
∂δ

∂δn
n +

∂δ

∂δt1

t1 +
∂δ

∂δt2

t2

)
f (δ) (5)

where

δ =

√
δ2

n +
β2

1
α2

1
δ2

t1
+

β2
2

α2
2

δ2
t2

(6)

is defined as the weighted combination of the components of the separation vector, where
the α1, α2, β1, and β2 are the material parameters which will be discussed later in this
section. The derivatives of δ with respect to δn, δt1 , and δt2 are

∂δ
∂δn

= δn
δ

∂δ
∂δt1

=
β2

1
α2

1

δt1
δ

∂δ
∂δt2

=
β2

2
α2

2

δt2
δ

(7)

While

f (δ) =
dϕ(δ)

dδ
(8)

defines the shape of the traction-separation curve and should be determined according
to experimental data. Theoretically, f (δ) could be in any form, such as a linear function,
bi-linear function, or a general nonlinear function, however different types of materials
should use different traction-separation curves [41,42]. The discussion of the influence of
the shape of the traction-separation curves on the numerical results is out of the scope of
this work. The interested reader can find more information in [41,42].

The components of the traction vector are

σ = δn
δ f (δ)

τ1 =
β2

1
α2

1

δt1
δ f (δ)

τ2 =
β2

2
α2

2

δt2
δ f (δ)

(9)

The energy release calculated from Equation (5) is

G =
∫

p · dδ =
∫
∇ϕ(δ) · dδ =

∫
f (δ)dδ (10)

which indicates that the total energy release for a growing crack does not depend on the
opening path, i.e., the fracture energy release rates calculated from Equation (5) for mode I
and mode II are the same.

In order to introduce different fracture energy release rates for different modes, fol-
lowing the approach of Snozzi and Molinari [43], the tractions are modified to

σ = δn
δ f (δ)

τ1 =
β2

1
α1

δt1
δ f (δ)

τ2 =
β2

2
α2

δt2
δ f (δ)

(11)
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which needs four material parameters (α1, β1, α2, and β2) and one function f (δ) to define
the material’s traction-separation law. It is noted that the traction-separation law introduced
in [43] can be retrieved from the proposed model when α1 = α2 and β1 = β2.

For pure tension, one has
δ = δn

σ = f (δ)
(12)

which implies that the traction-separation curve can be determined through pure tension.
Equation (12) yields

δnc = δc
σc = f (0)

GI =
∫

σdδn =
∫

f (δ)dδ
(13)

where δc is a critical value at which point the function f (δc) = 0, while δnc = δc is the
maximum tensile separation at which point the tensile stress is σ = 0. σc is the tensile
strength and GI is the fracture energy release rate for mode I fracture.

For pure shear in direction t1, one has

δ = β1
α1

δt1

τ1 = β1 f (δ)
(14)

which yields
δt1c =

α1
β1

δc =
α1
β1

δnc

τ1c = β1 f (0) = β1σc
GII1 =

∫
τ1dδt1 = α1

∫
f (δ)dδ = α1GI

(15)

where δt1c and τ1c are the maximum shear separation and the shear strength in direction t1,
respectively, while GII1 is the fracture energy release rate with respect to t1. Equation (15)
implies that the material parameter α1 is the ratio of GII1 and GI, while the parameter β1 is
the ratio of shear strength τ1c and tensile strength σc.

Similarly, for pure shear in direction t2, one has

δ = β2
α2

δt2

τ2 = β2 f (δ)
(16)

which yields
δt2c =

α2
β2

δc =
α2
β2

δnc

τ2c = β2 f (0) = β2σc
GII2 =

∫
τ2dδt2 = α2

∫
f (δ)dδ = α2GI

(17)

where δt2c and τ2c are the maximum shear separation and the shear strength in direction t2,
respectively, while GII2 is the fracture energy release rate with respect to t2. Equation (17)
implies that the material parameter α2 is the ratio of GII2 and GI, while the parameter β2 is
the ratio of shear strength τ2c and tensile strength σc.

One can further introduce the damage as

d =
δ

δc
=

√√√√ δ2
n

δ2
c
+

β2
1δ2

t1

α2
1δ2

c
+

β2
2δ2

t2

α2
2δ2

c
(18)

It is noted that the damage d should be less than 1.0 since d ≥ 1.0 means the material
is completely damaged. To stabilize the damage representation equation, d is therefore
set to 1.0 as long as d ≥ 1.0. Substituting Equations (13), (15), and (17) into Equation (18),
one gets

d =
√

d2
n + d2

t1
+ d2

t2
=

√(
δn

δnc

)2
+

(
δt1

δt1c

)2
+

(
δt2

δt2c

)2
(19)
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where

dn =
δn

δnc
; dt1 =

δt1

δt1c
; dt2 =

δt2

δt2c
(20)

are the damage components in n, t1, and t2, respectively.
The tractions can also be reformed as functions of damage

σ = δn
δ f (δ) = dn

d σcz(d)

τ1 =
β2

1
α1

δt1
δ f (δ) =

dt1
d τ1cz(d)

τ2 =
β2

2
α2

δt2
δ f (δ) =

dt2
d τ2cz(d)

(21)

where z(d) is the normalized form of f (δ)

z(d) =
1
σc

f (δ) (22)

In this paper, the heuristic softening function z(d) introduced in [37] was utilized

z(d) =
[

1− a + b− 1
a + b

ed(a+cb/((a+b)(1−a−b)))
]
×
[
a(1− d) + b(1− d)c] (23)

where a, b, c are the parameters chosen to fit a particular experimental curve.
To generalize the traction-separation model proposed in this work, Equation (21) is

redefined as
σ = σcgn(dn, d)z(d)

τ1 = τ1cgt1(dt1 , d)z(d)
τ2 = τ2cgt2(dt2 , d)z(d)

(24)

where gn is a function of dn and d; gt1 is a function of dt1 and d; gt2 is a function of dt2 and
d. In a simplified form, one can further assume that gn = gt1 = gt2 = 1, which yields

σ = σcz(d)
τ1 = τ1cz(d)
τ2 = τ2cz(d)

(25)

It is worth noting that the traction-separation law implemented in the 3D combined
single smeared crack model [14,39] can be retrieved from Equation (25) when δt1c = δt2c
and τ1c = τ2c.

Since the users have more freedom to choose different forms for the functions gn, gt1 ,
gt2 , and z, the traction-separation model defined through the Equations (19), (20), and (24)
is referred to as a “generalized traction-separation law”. It is noted that, beside functions
gn, gt1 , gt2 , and z, the generalized traction-separation law needs six parameters, i.e., three
critical separations δnc, δt1c, δt2c, and three strengths σc, τ1c, τ2c. In addition, according
to the derivation, one can conclude that the traction-separation law implemented in the
combined single smeared crack model [37–39] and the traction-separation law defined
through Equations (6) and (11) are two special cases of the proposed generalized traction-
separation model.

4. Impact Fracture Process of Laminated Glass

Zang et al. experimentally studied the fracture generation and propagation of automo-
tive glass under impact conditions [44]. In the experiments, a customized glass specimen,
which had a thickness four times bigger than that of the general automotive glass (Figure 2),
was used to capture the evolution of the fracture processes. The glass specimen was hit by
an impactor at the mid-side. The fracture initialization and propagation processes near by
the impact point were recorded by a photo-elastic device [44].
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Figure 2. Diagrammatic drawing for the section of the laminated glass specimen (dimensions are
in mm).

Photographic evidence of the fracture processes’ time sequences for two of the tests is
shown in Figure 3. The fracture propagation and the stress distribution inside of the glass
specimen (indicated by the fringes in the image) are shown in Figure 3a, where the time
interval between images is 20 µs. Due to the field of view limit of the high speed camera,
only the fracture process on the impact side of glass is captured [44]. Figure 3b, where the
time interval between images is 100 µs, shows the complete fracture propagation process
through both layers of glass [44].
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Figure 3. Cracks initiation and propagation for the laminated glass specimen: (a) interval for taking photos was 20 µs,
(b) interval for taking photos was 100 µs (modified from [44] with permission from Zang and Lei (2009). Copyright 2009
Chinese Journal of Mechanical Engineering).

The images presented in Figure 3 indicate that the failure phenomena are the same for
both cases although there are some differences regarding the time at which the fracture
processes occur. At the early stages of the impact process only the upper glass layer
withstands the load and bends until fractures occur, while the stress levels on the lower
glass layer are small. As time progresses, the lower glass layer starts to bend while the
PVB layer is being compressed. This causes the impact load to reach the lower glass, which
eventually fractures when the PVB layer is fully compressed. It is worth noting that this
phenomenon will be used to qualitatively verify the numerical results.

The Y-code was used to simulate the impact fracture experiment described above,
and the corresponding numerical model is shown in Figure 4. In this model, the bar of
laminated glass is placed between four supports. The boundary conditions are such that
the top surface of upper support and the bottom surface of lower support are fixed in
space during the simulation. The weight and the initial velocity of impactor are 1 kg and
3.13 m/s respectively, which are the same as that in the experiment. The FDEM model
includes 28,809 linear tetrahedron elements, which were generated using unstructured
algorithms implemented in Gmsh [45].

Due to the relatively low impact velocity, the material models used to describe the
deformation of the finite elements are linear elastic in nature. Fracture propagation is
only allowed on the glass, while the rest of the components, i.e., impactor, support, and
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PVB layer, are considered to be continuum media. The material properties used in the
simulations are shown in Table 1.
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Figure 4. Combined finite-discrete element method (FDEM) model for the impact fracture test
(dimensions are in mm).

Table 1. Material properties.

Parameter Glass PVB Support Impactor

Young’s module/GPa 75.0 0.5 5.0 200.0
Poisson’s ratio 0.2 0.4 0.4 0.27
Density/(kg/m3) 2456.0 100.0 2400.0 -
Tensile strength/MPa 100.0 - - -
Energy release rate/(N/m) 10.0 - - -

The numerical results for the impact fracture process on the laminated glass model
are shown in Figure 5. In the figure all the pictures are front views, in accordance with the
observation angle in the experimental work. A visualization perspective technology was
used in the post processor to present the transparency of the glass parts, which enables
the observation of the fracture states in the interior of glass layers. The black lines in
the pictures indicate the cracks seen directly from the surface of the glass through the
observation angle, while the shaded areas show the fracture surfaces in the interior of the
glass layers.

The simulation results show that the first cracks occurs at 23 µs starting at the interface
between the upper glass layer and the PVB layer right below the impact point (as shown in
Figure 5a). As time progresses these initial cracks propagate toward the top surface of the
upper glass layer in a very short period of time (about 12 µs). At 35 µs, the cracks have
already penetrated the whole upper glass layer (see Figure 5b), however, the lower glass
layer has no obvious cracks at this time and it takes a relatively long time for that to occur,
i.e., 200 µs, as shown in Figure 5c. This occurs because the speed of propagation of the
stress wave in the PVB layer is relatively slow, which makes that the load takes a longer
time to reach the lower glass layer. The failure of the bottom glass layer starts at its free
surface when the tensile stress exceeds the tensile strength of the glass material. Once this
occurs, the fractures penetrate the whole glass layer at a very fast speed, as is the case for
the upper glass layer (as shown in Figure 5d,e).

After comparing the numerical results to the experimental observations shown in
Figure 3, it can be determined that the positions and the sequencing of cracks obtained from
the model are in agreement with the test results. This strong evidence further confirms that
the combined finite-discrete element method can be used to study fracture processes on
glass assemblies.

It should be noted that the main purpose of this example is to qualitatively verify the
numerical method. Therefore, the proper calibration of the material properties (and the
correspondent sensitivity analysis) and quantitative analysis for specific applications are
outside of the scope of this work. The numerical tests shown in this section demonstrate
that, although the material parameters have an influence on the timing of the different
cracks processes, the fracture propagation sequence and their relevant positions in the
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majority of the simulation results are in good agreement with the experimental observations,
which proves the validity of the numerical method.
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5. Fracture Patterns of Glass Plate under Impact

Researchers from various disciplines have conducted experimental investigations for
glass plate impact fracture mechanisms. According to the experimental observations, it
can be concluded that there are two main types of cracks observed when a glass plate is
impacted by an object, namely radial cracks and circular cracks [46,47]. The radial cracks
are those spreading radially outwards from the impact point, while the circular cracks are
cyclic cracks centered around the impact point [46], as shown in Figure 6. Research has
shown that both radial and circular cracks are generated by tensile stresses, i.e., they are
tensile cracks. However, while circular cracks occur mainly on the surface of the glass that
is facing the impactor, radial cracks occur mainly on the opposite surface of the glass (i.e.,
opposite to the impact side) [47].
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Figure 6. Key fracture patterns: circular cracks and radial cracks (modified from [46]).

In this work, the impact fracture processes on a glass plate is simulated by using
Y-code. As shown in Figure 7, a glass plate with both ends constrained by two sets of
supports is impacted by a cylindrical impactor with a mass of 50 g at the centre of its top
surface. The size of the glass plate is 300 mm × 50 mm × 4.76 mm; and the radius of the
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impactor is 5 mm. The glass material properties used in this model are the same as those
described in the last section. The supports and the impactor are considered to behave
elastically and no fracture propagation is allowed in those parts. The Young’s modulus
and the Poisson’s ratio for the supports and the impactor are 750 GPa and 0.2 respectively.
In the FDEM model, the domain was discretized into 231,472 linear tetrahedron elements
using unstructured algorithms implemented in Gmsh [45].
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Figure 7. Model setup of the impact fracture simulation (dimensions are in mm).

The sequence of the glass plate fracture propagation is shown in Figure 8. Here, the
perspective technology is used again to present the transparency of glass materials, which
enables to observe the fracture states in the interior of glass. As can be seen in Figure 8,
both the radial and circular cracks are captured by the numerical model. Furthermore,
radial cracks occur mainly on the opposite surface (i.e., the backside of the impactor), and
circular cracks are observed on the impact side (Figure 8d). This phenomenological result
is in very good agreement with the experimental observations reported by Bennett [46]
and Bertino [47] et al.
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Figure 8. Impact fracture process of glass plate: (a) t = 10 µs, (b) t = 20 µs, (c) t = 30 µs, (d) top view at t = 30 µs (left:
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6. Conclusions

In this work, we used 3D FDEM to simulate impact fracture processes on a laminated
glass beam and on a monolithic glass plate. The numerical results show enriched fracture
details, especially the circular and radial cracks in the monolithic glass plate that agree
well with the corresponding experimental results. The main contribution of this work
is the presentation of a generalized traction-separation model that further advances the
fracture and fragmentation methodologies for FDEM. The simulation work presented
utilized the open source Y-code which is based on the first generation FDEM algorithms.
Given the recent code and method advancements in the field, it is expected these results,
given due consideration, will offer automobile industry safety analysts a new opportunity
for safety exploration.

This work demonstrated that 3D FDEM is an effective approach for modeling fracture
and fragmentation of glass under dynamic loading. However, the 2.5D FDEM solution for
fracture and fragmentation of thin shells and plates, as proposed by the authors [14,15], is a
much more effective approach when shells made of glass (e.g., glass windows) need analysis.

Author Contributions: Conceptualization, Z.L. and M.Z.; methodology, Z.L.; software, Z.L. and
A.M.; validation, Z.L.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L.,
E.R., E.E.K., and A.M.; visualization, Z.L.; supervision, A.M. and M.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: The theoretical work reported in this paper was partially funded by Los Alamos National
Laboratory LDRD program (grant number 20210436ER) and U.S. Department of Energy BES project
Fracture Formation and Permeability Evolution LANS contract/grant# DE-AC52-06NA25396 FWP#
LANL20171450.

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no conflict
of interest.

References
1. Xu, J.; Li, Y.B.; Lu, G.Q.; Zhou, W. Reconstruction model of vehicle impact speed in pedestrian-vehicle accident. Int. J. Impact. Eng.

2009, 36, 783–788. [CrossRef]
2. Du Bois, P.A.; Kolling, S.; Fassnacht, W. Modelling of safety glass for crash simulation. Comput. Mater. Sci. 2003, 28, 675–683.

[CrossRef]
3. Timmel, M.; Kolling, S.; Osterrieder, P.; Du Bois, P.A. A finite element model for impact simulation with laminated glass. Int. J.

Impact. Eng. 2007, 34, 1465–1478. [CrossRef]
4. Xu, J.; Li, Y.; Chen, X.; Yan, Y.; Ge, D.; Zhu, M.; Liu, B. Characteristics of windshield cracking upon low-speed impact: Numberical

simulation based on the extended finite element method. Comput. Mater. Sci. 2010, 48, 582–588. [CrossRef]
5. Pyttel, T.; Liebertz, H.; Cai, J. Failure criterion for laminated glass under impact loading and its application in finite element

simulation. Int. J. Impact. Eng. 2011, 38, 252–263. [CrossRef]
6. Peng, Y.; Yang, J.; Deck, C.; Willinger, R. Finite element modeling of crash test behavior for windshield laminated glass. Int. J.

Impact. Eng. 2013, 57, 27–35. [CrossRef]
7. Chen, S.; Zang, M.Y.; Xu, W. A three-dimensional computational framework for impact fracture analysis of automotive laminated

glass. Comput. Methods Appl. Mech. Eng. 2015, 294, 72–99. [CrossRef]
8. Xu, X.; Xu, J.; Chen, J.; Li, P.; Liu, B.; Li, Y. Investigation of dynamic multi-cracking behavior in PVB laminated glass plates. Int. J.

Impact. Eng. 2017, 100, 62–74. [CrossRef]
9. Lin, D.; Wang, D.; Chen, S.; Zang, M.Y. Numerical simulations of impact fracture behavior of an automotive windshield glazing:

An intrinsic cohesive approach. Compos. Struct. 2018, 186, 79–93. [CrossRef]
10. Oda, J.; Zang, M.Y.; Mori, T.; Tohyama, K. Simulation of impact fracture behavior of laminated glass using discrete element

method. Trans. Jpn. Soc. Mech. Eng. A 1997, 63, 630–635. [CrossRef]
11. Oda, J.; Zang, M.Y. Analysis of impact fracture behavior of laminated glass of bi-layer type using discrete element method. Key

Eng. Mater. 1998, 145–149, 349–354. [CrossRef]
12. Zang, M.Y.; Lei, Z.; Wang, S.F. Investigation of impact fracture behavior of automobile laminated glass by 3D discrete element

method. Comput. Mech. 2007, 41, 73–83. [CrossRef]
13. Lei, Z.; Zang, M.Y. An approach to combining 3D discrete and finite element methods based on penalty function method. Comput.

Mech. 2010, 46, 609–619. [CrossRef]
14. Lei, Z. Combined Finite-Discrete Element Methods and Its Application on Impact Fracture Mechanism of Automobile Glass.

Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2011.

http://doi.org/10.1016/j.ijimpeng.2008.11.008
http://doi.org/10.1016/j.commatsci.2003.08.023
http://doi.org/10.1016/j.ijimpeng.2006.07.008
http://doi.org/10.1016/j.commatsci.2010.02.026
http://doi.org/10.1016/j.ijimpeng.2010.10.035
http://doi.org/10.1016/j.ijimpeng.2013.01.010
http://doi.org/10.1016/j.cma.2015.06.005
http://doi.org/10.1016/j.ijimpeng.2016.10.013
http://doi.org/10.1016/j.compstruct.2017.11.070
http://doi.org/10.1299/kikaia.63.630
http://doi.org/10.4028/www.scientific.net/KEM.145-149.349
http://doi.org/10.1007/s00466-007-0170-1
http://doi.org/10.1007/s00466-010-0502-4


Appl. Sci. 2021, 11, 2484 15 of 16

15. Munjiza, A.; Lei, Z.; Divic, V.; Peros, B. Fracture and fragmentation of thin shells using the combined finite-discrete element
method. Int. J. Numer. Methods Eng. 2013, 95, 478–498. [CrossRef]

16. Chen, X.; Chan, A.H.C. Modelling impact fracture and fragmentation of laminated glass using the combined finite-discrete
element method. Int. J. Impact. Eng. 2018, 112, 15–29. [CrossRef]

17. Xu, W.; Zang, M.Y.; Sakamoto, J.; Zhang, S. 3D Adaptive combined DE/FE algorithm for analyzing impact fracture of laminated
glass. Int. J. Comput. Methods 2019, 6, 1850101. [CrossRef]

18. Wang, X.; Yang, J.; Liu, Q.; Zhang, Y.; Zhao, C. A comparative study of numerical modelling techniques for the fracture of brittle
materials with specific reference to glass. Eng. Struct. 2017, 152, 493–505. [CrossRef]

19. Munjiza, A.; Owen, D.R.J.; Bicanic, N. A combined finite-discrete element method in transient dynamics of fracturing solids. Eng.
Comput. 1995, 12, 145–174. [CrossRef]

20. Munjiza, A. The Combined Finite-Discrete Element Method; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2004.
21. Munjiza, A.; Rougier, E.; Knight, E.E.; Lei, Z. Discrete element and particle methods. In Encycl. Contin. Mech.; Altenbach, H.,

Ochsner, A., Eds.; Springer: Berlin, German, 2020; pp. 659–671.
22. Munjiza, A.; Knight, E.E.; Rougier, E. Computational Mechanics of Discontinua; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011.
23. Rougier, E.; Munjiza, A.; John, N.W.M. Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM

and molecular dynamics. Int. J. Numer. Methods Eng. 2004, 61, 856–879. [CrossRef]
24. Munniza, A.; Rougier, E.; Knighte, E.E. Large Strain Finite Element Method: A Practical Course; Wiley & Sons, Ltd.: Hoboken, NJ,

USA, 2015.
25. Lei, Z.; Rougier, E.; Knight, E.E.; Frash, L.; Carey, J.W.; Viswanathan, H. A non-locking composite tetrahedron element for the

combined finite discrete element method. Eng. Comput. 2016, 33, 1929–1956. [CrossRef]
26. Lei, Z.; Rougier, E.; Knight, E.E.; Munjiza, A.; Viswanathan, H. A generalized anisotropic deformation formulation for geomateri-

als. Comput. Particle Mech. 2016, 3, 215–228. [CrossRef]
27. Rougier, E.; Munjiza, A.; Lei, Z.; Chau, V.T.; Knight, E.E.; Hunter, A.; Srinivasan, G. The combined plastic and discrete fracture

deformation framework for finite-discrete element methods. Int. J. Numer. Methods Eng. 2019, 121, 1020–1035. [CrossRef]
28. Lei, Z.; Bradley, C.R.; Munjiza, A.; Rougier, E.; Euser, B. A novel framework for elastoplastic behaviour of anisotropic solids.

Comp. Part. Mech. 2020, 7, 823–838. [CrossRef]
29. Han, K.; Feng, Y.T.; Owen, D.R.J. Performance comparisons of tree-based and cell-based contact detection algorithms. Eng.

Comput. 2007, 24, 165–181. [CrossRef]
30. Munjiza, A.; Andrews, K.R.F. NBS contact detection algorithm for bodies of similar size. Int. J. Numer. Methods Eng. 1998, 43,

131–149. [CrossRef]
31. Munjiza, A.; Rougier, E.; John, N. MR linear contact detection algorithm. Int. J. Numer. Methods Eng. 2006, 66, 46–71. [CrossRef]
32. Williams, J.R.; Perkins, E.; Cook, B. A contact algorithm for partitioning N arbitrary sized objects. Eng. Comput. 2004, 2, 235–248.

[CrossRef]
33. Munjiza, A.; Andrews, K.R.F. Penalty function method for combined finitediscrete element systems comprising large number of

separate bodies. Int. J. Numer. Methods Eng. 2000, 49, 1377–1396. [CrossRef]
34. Lei, Z.; Rougier, E.; Euser, B.; Munjiza, A. A smooth contact algorithm for the combined finite discrete element method. Comp.

Part Mech. 2020, 7, 807–821. [CrossRef]
35. Xu, X.P.; Needleman, A. Void nucleation by inclusion debonding in a crystal matrix. Model. Simul. Mater. Sci. Eng. 1993, 1,

111–132. [CrossRef]
36. Camacho, G.T.; Ortiz, M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33, 2899–2938.

[CrossRef]
37. Munjiza, A.; Andrews, K.R.F.; White, J.K. Combined single and smeared crack model in combined finite-discrete element analysis.

Int. J. Numer. Methods Eng. 1999, 44, 41–57. [CrossRef]
38. Munjiza, A.; John, N.W.M. Mesh size sensitivity of the combined FEM/DEM fracture and fragmentation algorithms. Eng. Fracture

Mech. 2002, 69, 281–295. [CrossRef]
39. Lei, Z.; Zang, M.Y.; Munjiza, A. Implementation of combined single and smeared crack model in 3D combined finite-discrete

element analysis. In Proceedings of the 5th International Conference on Discrete Element Methods, London, UK, 25–26 August
2010.

40. Lei, Z.; Rougier, E.; Knight, E.E.; Munjiza, A. A Libraries-Based Multi-Dimensional Fracture Workbench. US. Provisional Patent
Application No. 62906674, 26 September 2019.

41. Rougier, E.; Knight, E.E.; Broome, S.T.; Sussman, A.J.; Munjiza, A. Validation of a three-dimensional finite-discrete element
method using experimental results of the Split Hopkinson Pressure Bar test. Int. J. Rock Mech. Min. Sci. Geomech. 2014, 70, 101–108.
[CrossRef]

42. Anyfantis, K.N.; Tsouvalis, N.G. A novel traction–separation law for the prediction of the mixed mode response of ductile
adhesive joints. Int. J. Solids Struct. 2012, 49, 213–226. [CrossRef]

43. Snozzi, L.; Molinari, J.F. A cohesive element model for mixed model loading with frictional contact capability. Int. J. Numer.
Methods Eng. 2013, 93, 510–526. [CrossRef]

44. Zang, M.Y.; Lei, Z.; Oda, J. Study on static characteristic and impact fracture behavior of automobile glass. Chinese J. Mech. Eng.
2009, 45, 268–272. (In Chinese) [CrossRef]

http://doi.org/10.1002/nme.4511
http://doi.org/10.1016/j.ijimpeng.2017.10.007
http://doi.org/10.1142/S0219876218501013
http://doi.org/10.1016/j.engstruct.2017.08.050
http://doi.org/10.1108/02644409510799532
http://doi.org/10.1002/nme.1092
http://doi.org/10.1108/EC-09-2015-0268
http://doi.org/10.1007/s40571-015-0079-y
http://doi.org/10.1002/nme.6255
http://doi.org/10.1007/s40571-020-00345-2
http://doi.org/10.1108/02644400710729554
http://doi.org/10.1002/(SICI)1097-0207(19980915)43:1&lt;131::AID-NME447&gt;3.0.CO;2-S
http://doi.org/10.1002/nme.1538
http://doi.org/10.1108/02644400410519767
http://doi.org/10.1002/1097-0207(20001220)49:11&lt;1377::AID-NME6&gt;3.0.CO;2-B
http://doi.org/10.1007/s40571-020-00329-2
http://doi.org/10.1088/0965-0393/1/2/001
http://doi.org/10.1016/0020-7683(95)00255-3
http://doi.org/10.1002/(SICI)1097-0207(19990110)44:1&lt;41::AID-NME487&gt;3.0.CO;2-A
http://doi.org/10.1016/S0013-7944(01)00090-X
http://doi.org/10.1016/j.ijrmms.2014.03.011
http://doi.org/10.1016/j.ijsolstr.2011.10.001
http://doi.org/10.1002/nme.4398
http://doi.org/10.3901/JME.2009.02.268


Appl. Sci. 2021, 11, 2484 16 of 16

45. Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element method generator with built-in pre- and post-processing facilities. Int. J.
Numer. Methods Eng. 2009, 79, 1309–1331. [CrossRef]

46. Bennett, W.W.; Hess, K.M. Criminal Investigation, 8th ed.; Thomson Learning Inc.: Belmont, CA, USA, 2007.
47. Bertino, A.J.; Bertino, P.N. Forensic Science: Fundamentals and Investigations, 2nd ed.; Cengage Learning: Boston, MA, USA, 2015.

http://doi.org/10.1002/nme.2579

	Introduction 
	Overview of the Combined Finite-Discrete Element Method 
	Material Deformation 
	Contact Detection 
	Contact Interaction 
	Continua-Discontinua Transition 

	Generalized Traction-Separation Model for Fracture and Fragmentation 
	Impact Fracture Process of Laminated Glass 
	Fracture Patterns of Glass Plate under Impact 
	Conclusions 
	References

