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Abstract: Two-dimensional structures, either periodic or random, can be classified by diverse math-
ematical methods. Quantitative descriptions of such surfaces, however, are scarce since bijective
definitions must be found to measure unique dependency between described structures and the
chosen quantitative parameters. To solve this problem, we use statistical analysis of periodic fibrous
structures by Hurst exponent distributions. Although such a Hurst exponent approach was suggested
some years ago, the quantitative analysis of atomic force microscopy (AFM) images of nanofiber
mats in such a way was described only recently. In this paper, we discuss the influence of typical
AFM image post-processing steps on the gray-scale-resolved Hurst exponent distribution. Examples
of these steps are polynomial background subtraction, aligning rows, deleting horizontal errors
and sharpening. Our results show that while characteristic features of these false-color images may
be shifted in terms of gray-channel and Hurst exponent, they can still be used to identify AFM
images and, in the next step, to quantitatively describe AFM images of nanofibrous surfaces. Such a
gray-channel approach can be regarded as a simple way to include some information about the 3D
structure of the image.

Keywords: Hurst exponent distribution; random walk; atomic force microscopy (AFM); electrospin-
ning; poly(acrylonitrile) (PAN)

1. Introduction

Electrospinning finds nowadays more and more frequent application in preparing
nanofibers with diameters in the range of few ten to some hundred nanometers. Such ap-
plications concern diverse polymers, polymer blends or polymers with embedded nanopar-
ticles [1–5]. Such nanofiber mats can be used in a broad range of possible applications,
from filters [6,7] and catalyzers [8,9] to tissue engineering and cell growth [10–13].

For many of these applications, it is necessary to measure the fiber diameter distribu-
tion or the fiber orientation [14–16]. Other parameters, such as the pore size distribution,
are also often important, but less easy to measure [17,18].

Generally, highly resolved images of such nanofiber mats, taken by scanning electron
microscopy (SEM) or other techniques, allow for comparing optically different nanofiber mats.
Such a procedure can be used for a subjective description of these nanofiber mats. On the other
hand, only few quantitative parameters exist which can be used for objective descriptions of
such high-resolution images and correspondingly reliable quantitative comparison.

One of these mathematical parameters is the so-called fractal dimension which can
be used to describe defects in regular fabrics and may be suitable to describe the fiber
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orientation distribution in a nanofiber mat, too [19–21]. More special methods are based
on the calculation of the succolarity, which can be used to describe the percolation of an
image [22], or the lacunarity, which detects spatial continuity of surfaces [23,24]. Another
widely used approach uses the so-called Hurst exponent which can be derived from an
image by applying a random walking on this image [25,26] and has been applied on
microscopic images of different textile fabrics before [27–30]. Only recently, we have shown
for the first time that such Hurst exponent calculations can be applied to differentiate
between atomic force microscopy (AFM) images of different nanofiber mats [31]. Such
AFM images, however, are usually post-treated to reduce typical errors, such as horizontal
line errors, or noise as well as to sharpen them.

The Hurst exponent has many applications in analysis of fractality, self-similarities
and auto-correlations of various types of data. As an example on image analysis, the Hurst
exponent was used to estimate the fractal dimension of a 3D landscape and quantify the
landscape diversity [32,33]. Our approach is analogous, but only to some extent, as the
analyzed textiles are much flatter that a landscape.

This paper contains the first report on the influence of typical post-treatment steps on
the calculation of gray-scale-resolved Hurst exponent distributions—an approach which
performs multiple random walking experiments on several sub-images split—into different
grayscales derived from the original. Our research demonstrates that while the distributions
themselves are modified by such post-treatment steps, their characteristics remain and can
thus be used to quantitatively describe AFM images of electrospun nanofiber mats. Such a
gray scale approach can be used to collect information about the 3D structure of the image
in a simpler manner than a landscape analysis.

2. Materials and Methods

Samples for AFM investigations were prepared by electrospinning with a wire-based
electrospinning machine Nanospider Lab (Elmarco Ltd., Liberec, Czech Republic), using
the following spinning parameters: voltage 80 kV, nozzle diameter 0.9 mm, carriage speed
100 mm/s, distance between bottom electrode and substrate 240 mm, distance between
ground electrode and substrate 50 mm, temperature in the spinning chamber 22 ◦C and a
relative humidity of 32–33%.

To prepare the spinning solution, 16% polyacrylonitrile (PAN) (X-Pan, copolymer with
6% methyl methacrylate, from Dralon, Dormagen, Germany) were dissolved in dimethyl
sulfoxide (DMSO, min 99.9%, S3 Chemicals, Bad Oeynhausen, Germany) by vigorously
stirring at room temperature for 2 h.

The nanofiber mats were detached from the polypropylene substrate after electrospin-
ning and glued on glass slides for AFM investigations.

The surfaces of the electrospun nanofiber mats were investigated by a FlexAFM
(Nanosurf, Liestal, Switzerland) with an SHR300 cantilever (tip diameter 1 nm) in the
dynamic mode. The sharp tip is supportive to avoid moving the nanofibers erroneously.
Images sizes covered areas of 25 µm × 25 µm, the lateral resolution is ~100 nm. Approach
parameters were optimized according to these surfaces (setpoint 60%, P-gain 750, I-gain
1200–1300 and D-gain 100, where the setpoint describes the oscillation amplitude of the
cantilever, while P, I and D describe the proportional, integral and differential part of a
common PID controller, respectively).

Post-processing was performed in Gwyddion 2.51 software, using the following steps:
polynomial background subtraction (3rd degree horizontally and vertically), aligning rows
(method: median of differences), deleting horizontal errors and sharpening (5 pixels) once
or twice, in this order. In this way, five post-processed images were obtained in addition,
to the original one. It should be mentioned that these steps are not always performed
in exactly the same way, but the choice of parameters depends on the respective images.
However, since the aim of these methods is always to gain the best possible images, there
cannot be many variations between the post-processed images and so the influence on the
Hurst exponent calculations must also be small.
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Calculation of the Hurst exponent followed procedures described in [28–31]. In brief,
a digital image for which the Hurst exponent is calculated is (in the simplest case) a black-
and-white image, typically with the black area denoting the material (here, the nanofibers)
and the white areas defining the pores between. On the black area of such an image, a
random walking is performed, meaning that starting from an arbitrary pixel, a step in
an arbitrary direction (up, down, left, or right) is done, followed by the next step in an
arbitrary direction, etc. After a defined number of steps, the distance between starting and
ending point is measured. If this displacement ∆r is squared and averaged over several
repetitions, a relation between 〈∆r2〉 and the number of steps n can be found:

〈∆r2〉 = Cn2h

with the Hurst exponent h and a constant C that has no relevance for our investigation.
For a completely black square, h is 1

2 , while for images with fine features, the value
becomes smaller since the possible ways for the random walks are limited on these fine
structures. The Hurst exponent is, thus, a good measure for hairiness of textiles or similar
features [28–30].

For statistical examinations, the procedure is performed more than once, e.g., for
100–1000 randomly chosen starting points per image. For practical reasons, we usually
use random walks with numbers of steps n in the range of 100–1,000,000 to test different
possible scenarios of obtained distances. These repetitions produce large amounts of
different Hurst exponent values that can be presented in the form of a distribution, i.e., in
the form of a histogram which characterizes a given image.

Our previous investigation has shown that transforming AFM images of nanofiber
mats into single black-and-white images was not fully informative to describe features
of such images in a unique way [31]. This is why here the AFM images are split into
256 grayscales, which are merged into 32 sub-images of 8 gray-scale channels each. These
8-gray-level images were then transferred into monochromatic black-and-white maps
on which the random walks are performed. Then, 32 Hurst exponent distributions are
calculated for a given AFM image [31]. The results are depicted as false-color maps of these
32 Hurst exponent distributions for each AFM image.

For the alternative approach, the reader is referred to [32–34], where the Hurst expo-
nent was used to analyze 3D landscapes. There, Hurst exponent values were computed for
some space components and then averaged over these components. The analogy would
be to average the Hurst exponent over the gray-scale channels, but such approach would
trivialize our main result, i.e., the gray-scale maps. Previous research revealed that this
approach cannot be used to distinguish different nanofiber mats [31].

3. Results

Firstly, Figure 1 shows the original AFM images a–d of different areas of nanofiber
mats, used for this study. Image a was taken in the middle of the upper surface of a
nanofiber mat, image b near the outer border of the upper surface, c in the middle of
the lower surface (during electrospinning attached to the polypropylene substrate) and d
near the outer border of the lower surface. Comparing these images subjectively, image
d looks clearly different from the others, while a and b seem to be similar. Image c is
subjectively located between the others, showing more clear fibers than d, but less and
thicker ones than a and b. It must be mentioned that the scale visible in Figure 1 have to be
deleted before Hurst exponent calculation; thus, they are not given in the following images
after post-processing.

It should be mentioned that this study did not aim at optimizing the nanofiber
morphology, but oppositely searched for positions where the nanofibers looked subjec-
tively different, to enable investigating interrelations with the gray-scale-resolved Hurst
exponent distributions.
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Figure 1. Original atomic force microscopy (AFM) images (a–d), taken on different positions of an electrospun nanofiber
mat, as explained in detail in the text.

Next, Figure 2 depicts the results of the aforementioned post-treatment operations, us-
ing sample a as an example. Comparing these images with the original one (Figure 1a), the
first step, i.e., the polynomial background subtraction, apparently changes the brightness
distribution strongly and can thus, be expected to result in a modification of the gray-scale-
resolved Hurst exponent distributions. The next two steps do not show similarly well
visible modifications. Nevertheless, deleting horizontal errors can be expected to have a
certain impact since such horizontal errors, occurring in single lines, will disrupt smooth
brightness distributions and, thus, introduce breaks in actually closed lines or areas, which
are removed by deleting these horizontal errors. Finally, the sharpening step can also be
expected to have a certain impact, as it is noticeable by comparing Figure 2c,d.

Figure 2. Post-treatment steps, performed on sample a: (a) polynomial background subtraction; (b) aligning rows; (c)
deleting horizontal errors; (d) sharpening once.

The color images, transformed into the typical 256-levels gray-scale, can now be split
into 32 sub-images of 8 gray-channels each. Figure 3 shows an example for the image
depicted in Figure 2a. For the investigated pictures, intermediate gray scale values can be
found along the edges of the fibers, while low-number-channels define the pores between
them and the large channel numbers represent the middle regions of the cylindrical fibers.

Applying random walks on these gray-scale-resolved monochromatic images, rela-
tions between ln (〈∆r2〉 and ln(n) can be plotted, as shown in Figure 4a. By repeating
these calculations, Hurst exponent distributions are gained, as depicted in Figure 4b. All
32 Hurst exponent distributions, for the 32 gray-channel ranges per image, are then merged
into false-colored images, as they are given in the next figures.
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Figure 3. Gray-scale distribution (excerpt) of Figure 2a: (a) channels 32–39; (b) channels 104–111; (c) channels 112–119;
(d) channels 208–215. Comparing with Figure 2a, one can conclude that (a) is connected with deepest features that are
darkest, while (d) is correlated with the top features that are brightest; hence, the gray scale reflects the 3D structure of
the image.

Figure 4. Example of the random walks evaluation on AFM gray-scale-resolved images: (a) linear relation between ln
(〈∆r2〉 and ln(n); (b) Hurst exponent distribution.

It should be mentioned that the Hurst exponent distributions (e.g., Figure 4b), as
explained before, quantify the connection of the black area given in one image and the
fineness of the black features. Hurst exponent values around 0.5 are expected for a com-
pletely black area, while they lie between 0.4 and 0.5 for fine black lines and those found
in the range of 0.1–0.35 are characteristic for local dots of different sizes [35]. It can thus
be expected that images with single small dots and larger areas or lines, such as Figure 3a,
will result in a relatively broad Hurst exponent distribution. Generally, splitting the AFM
images in gray-scale-resolved partial images will lead to finer features and more fine
lines, as they would be gained by directly translating the original color image into one
monochromatic image.

Figure 5a shows a first Hurst exponent multi-channel distribution, calculated for
image a in the original, not-improved state captured directly by AFM (cf. Figure 1a). In
addition to a large area in which most values are located, there are also some outliers
visible at smaller Hurst exponent values. The outliers as well as the dominating values
are better visible in the exemplary distributions depicted for channel 20 and channel 21 in
Figure 5b,c, respectively.
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Figure 5. (a) Gray-scale-resolved Hurst exponent distribution of sample a in the original version, with the color-code giving
the counts of the included histograms; (b) classical distribution for channel 20; classical distribution for channel 21 (c).

In other words, smaller distances are represented by smaller values of Hurst exponents
and vice-versa. It also worth mentioning that for several cases we met with nonlinear
dependencies being a source of uncertainties in fitting our model, especially for smaller
values of H (smaller distances). This problem will be investigated in future from the
perspective of information loss during an image splitting procedure.

To investigate the influence of the aforementioned post-treatments of the AFM images,
Figure 6 depicts the Hurst exponent distributions of the original sample a as well as of the
post-treated images of this sample.

In comparison with the original image (Figure 6a), the polynomial background sub-
traction increases the range of channels which contain a minimum of 10 counts (positions
with less than 10 counts are not colored) for some Hurst exponents values. Generally, the
false-color map is stretched vertically by this post-treatment. Both the next post-processing
steps, i.e., aligning rows and deleting horizontal errors (Figure 6c,d), do not lead to signifi-
cant modifications of the false-color maps. While this behavior was expected, as discussed
above, the impact of sharpening (Figure 6e) is unexpectedly small. Interestingly, after
the second sharpening step—which is usually not performed since it lets the image look
artificial—the false-color map is compressed again vertically so that Figure 6f looks sim-
ilar to Figure 6a, with an additional large amount of signal in the range of small Hurst
exponents values and low channel numbers.

Figure 7 depicts the same calculations for sample b (cf. Figure 2b), optically looking
quite similar to sample a. Opposite to sample a, here the original image has a broader
brightness distribution and thus, the area with a signal is vertically larger.

After polynomial background subtraction, however, now the signal area is vertically
compressed, while again the lower left area, showing signals of small Hurst exponents
values for low channel numbers (i.e., images with many small dark areas), becomes more
prominent. The next two post-processing steps again leave the false-color distribution
nearly unchanged (Figure 7c,d), while sharpening once or twice shifts the whole distri-
butions to smaller Hurst exponents values, as could be expected. Similar to Figure 6f,
sharpening twice again compresses the false-color map vertically (Figure 7f).

Next, Figure 8 shows the results calculated for sample c. As expected, the false-color
maps here look quite different from the previous ones.

Comparing Figure 8a with the previous false color maps of the original images,
Figure 8a shows signals at much higher Hurst exponents values, especially for low channel
numbers, which could be expected due to the large open (i.e., dark) areas between the
fibers in the original AFM image of sample c.
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Figure 6. Gray-scale-resolved Hurst exponent distribution of sample a: (a) original (identical to Figure 5a); (b) after
polynomial background subtraction; (c) after aligning rows; (d) after deleting horizontal errors; (e) after sharpening; (f) after
sharpening twice.

The polynomial background subtraction again increases the range of channels showing
a scenery, similar to sample a. Comparing with sample b, this may mean that the polynomial
background subtractions levels out the original differences between the highest channels
to a certain amount. While the next presented modifications again do not change the
false-color maps much, sharpening again increases the noise-like patterns in the area of
small Hurst exponent values. Sharpening twice again compresses the false-color map
vertically, as was already found for the other two samples.
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Finally, Figure 9 shows the results of the calculations for sample d. The original
image, mostly consisting of a dark background area, shows correspondingly high signals
at relatively large Hurst exponent values for the lower (darker) channels (close to a value
of 0.5).

Figure 7. Gray-scale-resolved Hurst exponent distribution of sample b: (a) original; (b) after polynomial background
subtraction; (c) after aligning rows; (d) after deleting horizontal errors; (e) after sharpening; (f) after sharpening twice.
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Figure 8. Gray-scale-resolved Hurst exponent distribution of sample c: (a) original; (b) after polynomial background
subtraction; (c) after aligning rows; (d) after deleting horizontal errors; (e) after sharpening; (f) after sharpening twice.



Appl. Sci. 2021, 11, 2436 10 of 13

Figure 9. Gray-scale-resolved Hurst exponent distribution of sample c: (a) original; (b) after polynomial background
subtraction; (c) after aligning rows; (d) after deleting horizontal errors; (e) after sharpening; (f) after sharpening twice.

Again, after polynomial background subtraction, the false-color map is vertically
stretched (Figure 9b) and remains similar after aligning rows and deleting horizontal errors
(Figure 9c,d). Polynomial background subtraction this time also leads to a horizontal
stretching towards smaller Hurst exponent values which can be attributed to the fine fibers
in the background which became visible due to this operation. Sharpening once this time
does not change the false-color map significantly (Figure 9e), while the second sharpening
step modifies the map without a significant vertical compression (Figure 9f).
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Comparing the gray-scale-resolved Hurst exponent distributions calculated for differ-
ent AFM images with different post-processing steps, the following general statements can
be concluded:

- False-color maps of gray-scale-resolved Hurst exponent distributions enable distin-
guishing between different fiber distributions, especially between images with many
and with only few fibers.

- Polynomial background subtraction levels out the upper channel numbers for which
a signal occurs and should thus be performed, especially in order to avoid ignoring
hidden features (cf. Figure 9a,b).

- Aligning rows and deleting horizontal errors leaves the images and thus, the false-
color maps nearly unaltered.

- The effect of sharpening once differs from sample to sample and must be investigated
further in the next study.

- Sharpening twice modifies not only the image in an unnaturally looking way, but
also the false-color maps of the gray-scale-resolved Hurst exponent distributions and
should thus be avoided.

- What could not be performed yet, but has to be tested in the near future, is a com-
parison with a highly accurate AFM with increased quality of the original images, as
reported in [36].

- Generally, the meaning of the “noise” in the range of Hurst exponents values below
approx. 0.25 needs further investigation to find out whether this range should be
ignored since it is mostly based on errors in the images, or whether it can oppositely
be used as part of the “fingerprint” of such AFM images. To explain the threshold
value of 0.25, we can refer to the composition of two random processes in analogy
to [37]. In our model the first random process would concern the formation of tiny
features in textiles (or their maps) and the second one would be the random walk
itself. Further referring to [25], such Hurst exponent values (being the inverse of the
fractal dimension of the random walk therein) would be far below the outcome of the
random walk on any percolation model in 2D.

4. Conclusions

AFM images were evaluated by gray-scale-resolved Hurst exponent distributions,
based on random walks on monochromatic maps prepared according to the gray-scale
distributions. In this way, we propose a new indicator of microscopic images enabling
characterization of graphical information equivalent to different scales and sizes. Meaning-
ful signals in the range of Hurst exponent values up to approx. 0.25 indicate small (local)
features, while larger Hurst exponent values are correlated with larger (more global) areas.
Our investigation also demonstrates that post-processing methods can support image
evaluation according to Hurst exponent distributions, such as the polynomial background
subtraction, or reduce the information given by the gray-scale-resolved Hurst exponent
distributions, such as a second sharpening step.

Future examinations will concentrate on investigating the effect of sharpening once, as
well as on the meaning of the signals in the range of Hurst exponent values below approx.
0.25. For now, we can refer to the fact that a Hurst exponent value of 0.25 is far below the
outcome of any percolation model in 2D; hence, it refers to the fragmented image (what is
rather typical for tiny features). We also plan investigations of nonlinear (i.e., quadratic)
random walks, in the sense scaling of traveled distances, when new effects associated with
incomplete information might occur.
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32. Babič, M.; Kokol, P.; Guid, N.; Panjan, P. A new method for estimating the Hurst exponent H for 3D objects. Mater. Tehnol. 2014,

48, 203–208.
33. Matej, B.; Miliaresis, G.C.; Matjaž, M.; Ambu, R.; Michele, C. New method for estimating fractal dimension in 3d space and its

application to complex surfaces. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 2154–2159.
34. Blachowicz, T.; Andreychouk, V. Quantitative estimation of 3D cave networks complexity using random walk analysis. Landf. Anal.

2015, 29, 91–96. [CrossRef]
35. Ehrmann, A.; Blachowicz, T. Image processing techniques for evaluation of textile materials. In Examination of Textiles with

Mathematical and Physical Methods; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 89–112.
36. Mokrvenaite-Vilkonciene, I.; Virzonis, D.; Dzedzickis, A.; Bucinskas, V.; Rozene, J.; Vilkoncius, R.; Vaiciulis, D.; Ramanaviciene,

A.; Ramanavicius, R. The improvement of the accuracy of electromagnetic actuator based atomic force microscope operating
in contact mode and the development of a new methodology for the estimation of control parameters and the achievement of
superior image quality. Sens. Act. A Phys. 2019, 287, 168–176. [CrossRef]

37. Gadomski, A. Multilineal random patterns evolving subdiffusively in square lattice. Fractals 2003, 11, 233–241. [CrossRef]

http://doi.org/10.1103/PhysRevE.53.5461
http://doi.org/10.25367/cdatp.2020.1.p180-185
http://doi.org/10.1080/00018730110116353
http://doi.org/10.1016/0370-1573(87)90005-6
http://doi.org/10.1016/j.physa.2016.02.013
http://doi.org/10.1177/0040517515581591
http://doi.org/10.1088/1742-6596/633/1/012101
http://doi.org/10.14502/Tekstilec2020.63.104-112
http://doi.org/10.12657/landfana.029.011
http://doi.org/10.1016/j.sna.2019.01.015
http://doi.org/10.1142/S0218348X03001896

	Introduction 
	Materials and Methods 
	Results 
	Conclusions 
	References

