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Featured Application: The design and verification result of a mobile application that can detect
heart abnormalities is presented within the scope of this work.

Abstract: One of the oldest and most common methods of diagnosing heart abnormalities is auscul-
tation. Even for experienced medical doctors, it is not an easy task to detect abnormal patterns in the
heart sounds. Most digital stethoscopes are now capable of recording and transferring heart sounds.
Moreover, it is proven that auscultation records can be classified as healthy or unhealthy via artificial
intelligence techniques. In this work, an artificial intelligence-powered mobile application that works
in a connectionless fashion is presented. According to the clinical experiments, the mobile application
can detect heart abnormalities with approximately 92% accuracy, which is comparable to if not better
than humans since only a small number of well-trained cardiologists can analyze auscultation records
better than artificial intelligence. Using the diagnostic ability of artificial intelligence in a mobile
application would change the classical way of auscultation for heart disease diagnosis.

Keywords: heart diseases; auscultation; machine learning; telemedicine; digital stethoscope

1. Introduction

Heart disease is one of the most common causes of death worldwide [1]. Even in
developed countries, healthcare services are expensive, and having a check-up in a clinic is
not only a time-consuming and costly task, but it is also a relatively dangerous endeavor
under the current conditions of a global pandemic. Therefore, telemedicine services and
applications have become popular and gained much importance in recent years [2,3]. There
is a consensus that telemonitoring capabilities which include the home assessment of
various health parameters such as blood pressure, heart condition, weight, etc. should be
enhanced and put at the disposal of patients [4]. Automatic diagnoses of heart diseases
have been studied for a long time and the proposed algorithms have acceptable success on
the largest available dataset, the PhysioNet/CinC Challenge 2016 dataset [5,6].

The general methodology of the automated heart sound classification algorithms
consists of three steps. Those are segmentation, feature extraction, and classification steps
(Figure 1). Segmentation is necessary for classification since most of the features used for
classification are derived from fundamental heart sounds (FHSs) that occur because of the
contraction and relaxation movements of the heart [7]. Even though there are some other
lower-pitched sounds, FHSs usually include two distinct sounds, first (S1) and second (S2)
heart sounds. The time-lapse between S1 and S2 is known as the diastolic period and the
time lapse between S2 and S1 is known as the systolic period.

After successfully segmenting the heart sounds, features are extracted from the time,
frequency, energy, and high order statistics domain. Then, a suitable classification algorithm
is determined. Various methods have been employed for classification such as k-nearest
neighbors, artificial neural networks, support vector machines, and hidden Markov mod-
els [8–10]. It is possible to use successful classification algorithms on mobile devices for
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telemedicine purposes. Currently, few telemedicine products are available for analyzing
heart sound recordings [11–14]. These telemedicine solutions take the heart sounds via a
digital stethoscope and upload the recording to the cloud for classification.

Figure 1. General steps for the automated heart sound classification tasks.

In this work, a mobile application designed to operate on mobile devices for telemedicine
purposes is presented. The classification module of the software was trained and validated
with the PhysioNet/CinC Challenge 2016 database. Since the PhysioNet dataset consists of
abnormal recordings from coronary artery diseases, aortic stenosis, mitral regurgitation,
mitral valve prolapse, and pathological murmurs conditions, the classification algorithm
is expected to detect those abnormalities. The real-life success of the algorithm has been
tested at the clinic using the mobile application. The algorithm can detect abnormal heart
sounds in the validation set with 93% accuracy, and the mobile software that is powered by
the same algorithm can detect abnormal samples with nearly the same sensitivity rate. The
algorithm uses an ensemble nearest neighbors classifier, and features extracted from both
Mel-frequency cepstral coefficients (MFFCs) and statistical properties of the fundamental
heart sounds. Unlike available commercial products [11–13], the software works in an
embedded fashion and does not need an Internet connection to upload the heart sound to
the cloud for classification. Every five seconds, it analyzes the heart sound and prompts
the predicted diagnosis to the screen.

The software presented in this work is intended to be used both in clinic settings
by medical doctors and by ordinary people at home. Therefore, the software needs to
be verified in real-life circumstances. For this, the software was installed on an Android
device and the mobile application was tested at Ankara City Hospital, Cardiology Depart-
ment by expert medical doctors. It is approved by the medical doctors that the artificial
intelligence-powered mobile application can distinguish healthy and unhealthy individuals
with 93% accuracy.

2. Materials and Methods
2.1. Data Set

For training and validation of the algorithm, the PhysioNet 2016 database which
consists of 2430 labeled heart sounds was used. This dataset is a combination of nine heart
sound databases collected by independent research groups at different times and with
different devices. Since this database consists of nearly all of the available databases, it is
widely used and accepted as the reference set for heart sound classification tasks [15–18].
All of the recordings are labeled as normal and abnormal, and the quality of the sounds,
recording position, and patient profile are different. Since each database was evaluated by
different medical staff and digital stethoscope devices, like all big datasets, the PhysioNet
dataset is biased and includes personal judgment.

During the verification tests at Ankara City Hospital, the mobile application was used
for 162 individuals. This verification dataset consists of 88 normal and 74 abnormal heart
sound samples. All participants were between 15–70 years old and ThinkLabs One digital
stethoscope was used by focusing multiple recording positions on the chest near the heart.

2.2. Software Description

Mobile software takes the stream data from a digital stethoscope. For every five
seconds, the software extracts some features, then predicts and displays the result concur-
rently. Since the mobile application is designed to work in a connectionless fashion, all
computations are made on-device. The workflow of the software is presented in Figure 2
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Figure 2. Workflow of the software. First, data is transferred from digital stethoscope to mobile device, then, the classification
algorithm predicts the diagnosis, and the result is displayed simultaneously on the screen.

Software was developed in MATLAB by using the Simulink support package for
mobile devices [19–22]. The support package has all the necessary blocks for using mobile
devices’ sensors. Moreover, it is possible to use MATLAB functions and the trained
algorithm within the projects’ block diagram. For using the trained algorithm, it should be
converted to a C file beforehand, then it could be called back in the project. Generating
C/C++ code from the trained algorithm can be done both by using the MATLAB Coder or
by handcrafting the code [23].

Regarding the Simulink model presented in Figure 3:

Figure 3. Simulink model of the software.

First, an audio capture block is used for getting the audio signal as input. This block
enables to get a stereo audio stream from the microphone. In Bubble_1, there is a button for
recording the stereo signal. If this button is switched on, recording time is displayed on the
screen and the file write block writes the audio data to a wav type file on the mobile device.
For further steps, stereo data are converted to a mono signal by a MATLAB function file.
The converted signal is displayed in a graph using the Bubble_2 block.

Secondly, a buffer is used for accumulating the stream data. This buffer collects
220,500 samples from the stream source, the digital stethoscope in our case that has a
sampling frequency of 44,100 samples per second. Then, the output of the buffer, a five
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second-long signal, is transferred to the feature extraction block. Most of the features are
acquired from Mel-frequency cepstral coefficients, which is a commonly used technique in
speech recognition tasks [24,25]. This technique mimics the human ear’s ability to scale
the sounds by using a logarithmic scale function and a filter. The rest of the features are
extracted from both statistical properties and the power spectrum of the signal. Those
features are, respectively, standard deviation, kurtosis, spectral entropy, and maximum
frequency. All extracted features are displayed on the screen (Bubble_3).

Third, extracted features are transferred to the classification bubble as input data for
the classification algorithm. The classification algorithm predicts the label of five seconds
long heart sound data whether it is a healthy or unhealthy sample. To determine the best
classification algorithm, well-known methods were evaluated by using the PhysioNet
database. During these experiments, PhysioNet data was divided into two parts, 70%
for training and 30% for validation, and recordings used for training were not used for
validation. According to the classification accuracy rate, the most successful algorithm is
determined and used inside the predict_Class function block. The output of the predict_Class
function block is a binary integer where the zero output value stands for healthy samples
and the one output value stands for unhealthy samples.

The function of the output bubble in Figure 3 is to show the predicted diagnosis result
on the screen as an integer value and to show the corresponding image of the result on
the screen. From the input step to the output step, the software can process heart sounds
around one second on a mobile device that has 1.2 GHz quad-core processor, 2 GB RAM
capacity, and Android 4.4 operating system. This is a very satisfactory result because
the software can prompt a diagnosis result of a five-second long instance after 1.1 s on a
moderate mobile device.

The screen design of the mobile application is seen in Figure 4. On top of the right cor-
ner of the screen, the predicted diagnosis is shown by a binary value, and a corresponding
diagnosis image is prompted on the left half of the screen for describing the algorithms’
prediction by an image. When the predicted diagnosis image is slid to left, this part starts
to show real-time phonocardiogram graphs. Below the predicted diagnosis display on the
top right corner of the screen, recording time in seconds is displayed. Recording time is
displayed according to the outputs of a counter function that is triggered by the boolean
value of the start recording button located below the time display on the screen. When this
button is switched on, the heart sound is also saved in the device’s memory. At the bottom
right of the screen, the extracted features are displayed every five seconds.

Figure 4. Mobile device and digital stethoscope connection on the left side. Screen design of the application (smartphone
version) on the right side.
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3. Results

From seven different machine learning techniques, a total of 25 different algorithms
were tested with 15 features. PhysioNet dataset was separated into two, 70% for training
and 30% for validation. All tests are conducted in MATLAB via the classification learner
app. The detailed list of the tested algorithms is presented in Table 1.

Table 1. The algorithms used for tests.

Index
Algorithms

LR NB DA DT SVM KNN Ensemble

1 Logistic Gaussian Linear Fine Linear Fine Boosted Tree
2 Kernel Quadratic Medium Quadratic Medium Bagged Tree
3 Coarse Cubic Coarse Subspace DC
4 Fine Cosine Subspace KNN
5 Medium Cubic RUSBoosted Tree
6 Coarse Weighted

LR = logistic regression, NB = naïve Bayes, DA = discriminant analysis, DT = decision tree, SVM = support vector
machines, KNN = k-nearest neighbor.

Classification accuracy performance and detailed classification metrics of the tested
algorithms are presented in Appendix A (Tables A1–A7). Among experimented algorithms,
the most successful one is an ensemble model of which its learner type is nearest neighbors,
the number of learners is 30, and the subspace dimension is eighth. The sensitivity of the
ensemble model which shows the power of detecting diseases is 83.7% and the specificity
of the model which shows the power of detecting healthy individuals is 96% (Figure 5). As
seen from Figure 5, the algorithm can guess healthy individuals at a very high success rate
but miss 16% of unhealthy samples.

Figure 5. Detailed classification metrics of the ensemble model.

As stated in the previous part, the classification algorithm has been trained and vali-
dated with the publicly available PhysioNet 2016 database. For verification purposes, we
used the mobile application in real-life circumstances at Ankara City Hospital. The cardiac
experts tested the algorithm and mobile application over 162 individuals who visited the
clinic for regular check-ups. All participants were labeled both by the cardiologists and by
the mobile application. According to cardiologists, 88 people were detected as healthy and
74 people were detected as unhealthy. The unhealthy individuals determined by the cardi-
ologists were forwarded to further diagnostic tests. In these tests, it was confirmed that
all unhealthy diagnosed individuals have heart abnormalities. Therefore, the auscultation
diagnoses of cardiologists were accepted as the ground truth data. Detailed information
about the Ankara City Hospital recordings is presented in Table 2.
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Table 2. Data set used in verification tests at Ankara City Hospital.

Label Auscultation
Result

Confirmation
Results

Length
(Seconds)

Age
(Years) Recording Position Sensor

Normal 88 - 25–45 15–70 Four Typical Position ThinkLabs
44,100 Hz

Abnormal 74 74 25–45 15–70 Four Typical Position ThinkLabs
44,100 Hz

The recordings used in the verification phase are collected by the developed mobile
application. Those recordings are of vital importance since they represent the data quality
expected in clinical practice. Verification results that are presented in Table 3 show that
the mobile application can detect normal heart sounds above 92% specificity and 81%
sensitivity which is very close to validation results in Appendix A (Tables A1–A7). This
result shows the robustness of the developed classification algorithm since it can work
properly on a mobile device.

Table 3. Performance comparison of mobile application against validation/verification databases
and medical staff.

Performance
Metric

Against
Validation Data

Against
Verification Data

Trained
Cardiologists

General
Practitioners

Specificity 96.0% 92.0% 98.2% 81.0%
Sensitivity 83.7% 81.0% 69.6% 31.0%

In verification tests, an Android tablet was used and the prediction result of the
application was determined by the memory boosted diagnosis display (Figure 6). The
memory display is prompted by a function that accumulates the last five diagnoses in
a buffer and tries to catch the four or more same results. Within 25 s, the application
generates five diagnostic outputs, if four or five consecutive diagnoses are received, the
memorized decision of the algorithm is determined, and this result is accepted as the final
decision of the application.

Figure 6. Verification tests in Ankara City Hospital and screenshot figures of the mobile application
(tablet version).
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4. Discussion

Medical doctors without special auscultation training cannot perform well in de-
tecting murmurs. The accuracy of pediatricians in detecting heart murmurs is 24% [26].
Another study states that general practitioners can diagnose significant valvular heart
diseases with a sensitivity of 43% and specificity of 69% but cardiologists can predict up
to a sensitivity of 81% [27]. Even though some trained cardiologists can perform well,
clinicians have variable auscultation performance [28,29]. Therefore, both cardiologists and
non-cardiologist need a preliminary diagnostic tool to boost their auscultation accuracy.
Similarly, non-trained clinicians have a low accuracy rate with electrocardiogram data and
only cardiologists can diagnose successfully [30,31]. Moreover, electrocardiogram-based
artificial intelligence models such as KardiaMobile and Eko AI software can perform as
well as cardiologists [32]. Eko AI software requires users to upload their data to the cloud
for computation. Unlike these commercial products, the developed application can run
solely on the mobile device’s hardware thanks to its informative features and robust clas-
sification algorithm. Regardless of having an internet connection, one can evaluate his
or her heart health condition instantly with a sound recorder, preferably with a regular
digital stethoscope. As a result, users do not need to upload the recordings to a server or a
cloud for evaluation. This feature provides data privacy and flexibility for users. In the
near future, with the proliferation of AI-powered applications for telemedicine purposes,
data privacy issues will be more important.

Another key feature of the application is that it accepts the data from the start and
it perpetually outputs the predicted diagnosis result in five-second periods. For future
works, this property can be adopted to intensive-care units to trigger an alarm when
an abnormality is detected. Cardiac event monitors control electrocardiogram signals to
decide whether the patient’s heart continues its function or not. Those patient monitoring
systems do not provide any information about instant heart abnormalities. If this process
can be converted to listening to the heart and continuously analyzing its condition, the
effectiveness of patient monitoring systems will increase.

Given that we have a global pandemic, the medical system is under pressure, and
clinicians are overwhelmed by the increasing number of patients caused by coronavirus
disease 2019 (COVID-19). Telemedicine tools like the one presented in this study can
reduce the number of healthy individuals visiting hospitals and as a result, take the burden
off the medical system. Since the mobile application is designed to be used not only
for experts but also by users of no medical education, verification data should consist of
sounds that are recorded by ordinary users. To mimic the behavior of users with no medical
background, during the verification tests, medical staff pointed the digital stethoscope at
random locations on the chest near the heart. The verification results were successful but
this is partly due to the digital stethoscope’s filter property at the device level that can
eliminate unwanted sounds produced from other organs such as lungs, etc. To compensate
for the noise effect, an additional pre-processing block could be added in future works.

5. Conclusions

Without proper training, most clinicians fail to distinguish abnormal heart sounds
from normal ones, but auscultation is one of the oldest, easiest, and main methods used for
detecting heart diseases. To not miss a diagnosis, heart sounds should be listened to by
artificial intelligence too. For this reason, we present a mobile application design that was
developed in MATLAB. This application and its classification algorithm can work solely
inside the device hardware and produces quick responses. In the verification phase, it was
confirmed that the developed mobile application can work properly on mobile devices. As
a result, the presented mobile application is proven to be a valuable diagnostic tool not
only for clinicians but also for ordinary users.
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Appendix A

Note: Total number of observations is 13,015, and 70% of the observations were used
for training, 30% were held for validation.

Table A1. Detailed classification performance of logistic regression classifiers.

Algorithms Accuracy Sensitivity Specificity

Logistic Regression Classifiers 80.3% 42.7% 92.4%

Table A2. Detailed classification performance of naïve Bayes classifiers.

Algorithms Accuracy Sensitivity Specificity

Gaussian Naïve Bayes Classifiers 80.8% 64% 86.2%
Kernel Naïve Bayes Classifiers 80.7% 72.2% 83.5%

Table A3. Detailed classification performance of discriminant analysis classifiers.

Algorithms Accuracy Sensitivity Specificity

Linear Discriminant 80.7% 44.6% 92.2%
Quadratic Discriminant 82.1% 48.8% 92.8%

Table A4. Detailed classification performance of discriminant analysis classifiers.

Algorithms Accuracy Sensitivity Specificity

Fine Tree 86.6% 68.3% 92.4%
Medium Tree 84.9% 64.4% 91.4%
Coarse Tree 81.5% 37.4% 95.6%

https://github.com/mesuttguven/CardiacAI.git
https://archive.physionet.org/pn3/challenge/2016/
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Table A5. Detailed classification performance of support vector machines (SVM) classifiers.

Algorithms Accuracy Sensitivity Specificity

Linear SVM 80.7% 43% 92.7%
Quadratic SVM 87.7% 69.9% 93.4%

Cubic SVM 89.7% 78% 93.5%
Fine Gaussian SVM 85.4% 43.2% 98.9%

Medium Gaussian SVM 89.5% 73.7% 94.6%
Coarse Gaussian SVM 85.6% 58.6% 94.2%

Table A6. Detailed classification performance of k-nearest neighbor (KNN) classifiers.

Algorithms Accuracy Sensitivity Specificity

Fine KNN 92.8% 85.9% 95%
Medium KNN 90.9% 82.7% 93.5%
Coarse KNN 87.1% 64.5% 94.3%
Cosine KNN 89.2% 75.7% 93.5%
Cubic KNN 90.4% 81.8% 93.1%

Weighted KNN 92.1% 83% 95%

Table A7. Detailed classification performance of ensemble classifiers.

Algorithms Accuracy Sensitivity Specificity

Boosted Trees 87.7% 68.7% 93.8%
Bagged Trees 90.9% 79.5% 94.5%

Subspace Discriminant 76.3% 18.1% 94.9%
Subspace k-nearest neighbor 93% 84.6% 95.6%

RUSBoosted Trees 83.6% 89.4% 81.7%
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