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Abstract: The conversion from functional requirements (FRs) to design parameters is the foundation
of product customization. However, original customer needs usually result in incomplete FRs, limited
by customers’ incomprehension on the design requirements of these products. As the incomplete FRs
may undermine the design activities afterwards, managers need to develop an effective approach
to predict the missing values of the FR. This study proposes an integrative approach to obtain the
complete FR. The k nearest neighbor (KNN) algorithm is employed to predict the missing continuous
variables in FR, using the improved distance formula for two incomplete FRs. Support vector
machine (SVM) classifiers are adopted to classify the missing categorical variables in FR, combined
with directed acyclic graph for multi-class classification. KNN and SVM are then integrated into
a multi-layer framework to predict the missing values of FR, where categorical and continuous
variables both exist. A case study on the elevator customization is conducted to verify that KNN-
SVM is feasible in accurate prediction of elevator FR values. Furthermore, KNN-SVM outperforms
other five single and five composite methods, with average reduction in root mean squared error
(RMSE) of 39% and 21% against KNN and KNN-Tree, respectively.

Keywords: product customization; functional requirements; missing values prediction; categorical
and continuous variables; KNN-SVM

1. Introduction

Nowadays, more than half of the industrial products are related to customization [1].
How to satisfy personalized customer needs (CNs) and how to efficiently design the
customized products have been the important characteristics to evaluate manufacturing en-
terprises’ viability and competitiveness. There are four critical stages in product customized
design [2]: personalized requirements modeling [3], conceptual design [4], detailed design
(i.e., configuration in mass customization [5]), and virtual prototyping (including virtual
experience [6] and simulation [7]), as shown in Figure 1. The first stage in the design
process—personalized requirements modeling—is the foundation of product customiza-
tion, including elicitation, analysis, mapping, classification, prediction, specification, and
conversion. The process of requirements modeling is to transform CNs into functional
requirements (FRs) and FRs into design parameters (DPs), where FR is the intermediate
link [8]. FRs and DPs are then input into the design activities afterwards. If there is an error
in FR, all the design activities in customization will be susceptible to a domino effect of
defaults, which could undermine the final design schemes, lower customers’ satisfaction in
experience, and cause redesign. Thus, focusing on the requirements modeling and dealing
with the potential problems are imperative to product customized design.

After investigating CNs of different industrial customized products in different com-
munities and numbers of small and medium enterprises, it is obvious that most customers
cannot put forward specific and complete requirements to match the design requirements
of products. Thus, FR transformed by CN usually contains missing values, which may
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affect the conversion from FR to DP. Subjective CN is easy to propose, such as appear-
ance requirements in customized clothing [9]. Other quality requirements, which impose
constraints on the design or implementation (such as performance requirements, security,
or reliability) [10,11], are too professional for customers to put forward. Some customers
may leave some questions about requirement questionnaires consciously or unconsciously.
In addition, developing product customization systems is popular in many manufacture
sectors. However, the missing values of requirements or other aspects, caused by infor-
mation gap, measurement error, and equipment failure, are neglected. On the other hand,
each order is personalized in customization, where missing values prediction for each FR
needs to be personalized. Missing values in FR is a potential problem to be addressed
in requirements modeling of product customized design, which is the key motivation of
this paper.
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In this context, a number of researches have been conducted to predict the missing
personalized requirements, as detailed in Section 2.1. From a review of existing literature,
this research is helpful to collect more correct CN, which is also helpful to transform CN
into the more complete FR afterwards. However, this research is focused on predicting
CN instead of FR [12–15]. Many implicit CNs are still subjective requirements rather
than quality requirements [16–18], which results in FR still bei incomplete in parts of
performance requirements, structure requirements, or other design requirements. Starting
with incomplete FRs directly, this study aims to introduce an approach to predict the
missing values of FR. The principle objectives of this study are:

• Explore the interconnections among different orders from customers to predict the
missing values of FR.

• Determine the optimal predicted values with a feasible framework and algorithms for
missing values prediction of FR.

This study proposes an integrative approach to predict the missing values of FR
in product customization. By analyzing the attributes and values of FR in industrial
customized products, FR can be divided into continuous and categorical variables. Missing
values in different attributes are predicted by different methods. Thus, a multi-layer
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framework is proposed, where the k nearest neighbor (KNN) algorithm and support vector
machine (SVM) classifier are adopted to predict the missing continuous and categorical
variables in FR, respectively. A case study on the elevator customization is conducted to
verify the proposed approach. KNN-SVM is compared with five single methods (KNN,
GRNN, SVD, BPCA, and BBPCA) and five composite methods (KNN-GRNN, KNN-SVD,
KNN-BBPCA, KNN-Bay, and KNN-Tree), with average reduction in root mean squared
error (RMSE) of 39% and 21% against KNN and KNN-Tree, respectively. The computation
time of the proposed approach is always less than two seconds. The proposed approach is
helpful for managers to accurately predict the missing values in FR, is beneficial to obtain
the complete requirements in design process, and can improve product design efficiency.

This paper is structured as follows. Section 2 reviews the related work in requirements
prediction and missing values imputation. Section 3 presents the problem description
and framework formulation for missing values prediction. Following that, Section 4
details the proposed prediction approach, which integrates KNN and SVM into a multi-
layer framework. A case study on the elevator customization is conducted in Section 5.
Concluding remarks and future work in Section 6 end the paper.

2. Literature Review
2.1. Requirements Prediction in Product Customized Design

Personalized requirements modeling is the foundation of product customized de-
sign. Missing requirements prediction is a potential problem in requirements modeling,
gaining the ever-increasing attention of researchers. Many studies have been conducted
on this topic, including predicting the implicit requirements and forecasting the trends
of requirements.

One research field is implicit requirements prediction. With the development of the
Internet and Internet of Things (IoT), many researches extract implicit CN online or by a
cloud-service platform combined with some new techniques in data mining. Guo et al. [12]
tried to extract and normalize the implicit requirements by a series of techniques including
metaphor, clustering, mapping, and visualization; the requisite requirements collected and
predicted for product customization are neglected. Qi et al. [13] designed an automatic
filtering model integrated with the Kano model to analyse online reviews, and the mined
information is applied to improve product design strategies. Yan et al. [14] built a consumer-
centric relationship network by IoT technologies to predict the personalized requirements.
Jiang et al. [15] analyzed the online reviews by association rule mining based on multi-
objective particle swarm optimization for affective design. Zhou et al. [16] proposed a
two-layer model for latent CN elicitation through use case reasoning, where SVM is used
for sentiment analysis in the first layer, and case analogical reasoning is applied to identify
implicit CN characteristics in the second layer. The other research field of requirements
prediction concerns requirement status. Song et al. [17] integrated grey theory for fewer
requirements data, the Kano model for requirements classification, and a Markov chain for
local fluctuations to predict the dynamic requirements. Raharjo et al. [18] estimated and
transmitted weights in quality function deployment to the design attributes to deal with
dynamics of CN. Min et al. [19] combined theKano model and online reviews to analyze
dynamic requirements change in CN.

Many research studies have made full use of online reviews or big data for prediction,
which is inspirational. It is useful to link customer groups with clusters of requirements to
predict the missing values. However, there exist some technical challenges in requirements
prediction. First, most predicted results are indirect and need analysis and processing by
professional managers. Then, most approaches focus mainly on the subjective require-
ments, which is incomplete in real-world requirements for product customization. Finally,
CN is often regarded as an individual object, without considering the design activities af-
terwards. To bridge this gap, this paper presents an approach for predicting missing values
of FR, considering the characteristics of different requirements and providing valuable
predicted results.
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2.2. Imputation Approaches for Missing Values

Traditional missing values prediction methods in FR rely on managers’ experience,
investigation, and communications with customers, which are popular in mass production.
In smart customization, intelligent methods should be proposed to solve this problem for a
lot of personalized orders. Missing values imputation is a hotspot issue in data mining and
machine learning nowadays. Requirements prediction in product customized design can
learn from this research. We conclude the main methods of missing values imputation in
Table 1 for reference.

Table 1. Missing values imputation methods.

Category Model/Methodology Continuous Variables Categorical Variables Application

Rule-based

Imputation with master
data and a class of
editing rules [20]

√
Two real-word datasets

Five strategies used for
different attributes [21]

√ √
Preterm birth datasets

Statistics-based

Estimation of mean
values and covariance

matrices [22]

√ Surface temperature
data

Expectation
maximization with
bootstrapping [23]

√ √
Amelia II (software)

Model-based

Gray KNN [24]
√ √

Six real-world datasets

Sequential KNN [25]
√ DNA microarray

analysis

Generalized regression
neural network

(GRNN) [26]

√ 30 synthetic datasets +
67 public datasets + one
new real-world dataset

Bayesian principal
component analysis

(BPCA) [27]

√ Gene expression profile
data

Bicluster-based BPCA
[28]

√ DNA microarray
analysis

Random forest [29]
√ √

Four datasets for
continuous, three

datasets for categorical,
and three datasets for

mixed variables

Singular value
decomposition (SVD)

with KNN [30]

√ DNA microarray
analysis

Kernel density
clustering combined

with decision tree [31]

√ Eight real-world
datasets

Formal optimization
framework with KNN,

SVM, and decision
trees [32]

√ √
84 real-word datasets

Human–computer
interaction

Crowdsourcing
optimized by

knowledge base [33]

√ √ Two real-world
datasets

Crowdsourcing with
Bayesian network [34]

√ Two real-world
datasets
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Data in missing values imputation are divided into continuous and categorical vari-
ables, which are adoptable to predict missing values of FR. However, there are a few
methods considering continuous and categorical variables synchronously. To improve the
accuracy of predicted values, it is necessary to propose and integrate different imputation
methods for different characteristics of requirements. Model-based methods for missing
values imputation outperform other methods, which seem appropriate to the problem at
hand. In addition, the applications of these methods focus mostly on the public datasets.
To the best of authors’ knowledge, there are few research studies on the missing values pre-
diction in FR. Existing methods need to be improved for practical applications in product
customized design.

3. Multi-Layer Framework for Missing Values Prediction
3.1. Problem Description

This study addresses the problem about the missing value prediction in FR for product
customized design. We take customized elevators as an example to describe this problem.
Elevators, as a classic industrial product, are customized in each building. We present FR
of a real-word elevator product in Figure 2. Managers need complete FR to be transformed
into DP for the design activities afterwards.
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For the personalized CN, many elevator manufacturing enterprises have developed
the requirements management system online. Otis Elevator Company in Yonkers, NY,
USA, has developed Architect’s Assistant™ (http://aa.otis.com/aa/cda/cdalogin.aspx)
(Accessed on 2 March 2021) and CabCreat™ (http://cabcreate.otis.com/) (Accessed on
2 March 2021) for requirements elicitation online. Hitachi Company in Tokyo, Japan,
developed the smartDecorator software for customized elevator decoration. However, FR
transformed from the obtained CN is mostly incomplete in these systems. For example, FR
in the hoisting system of elevator (i.e., r1–r4 and r11 in Figure 2) cannot be directly obtained
or transformed from CN in Architect’s Assistant™, because these requirements are too
professional for customers to put forward. In addition, incorrect FR could impact the final
design schemes. For example, with the larger predicted value of hoisting motor power
(r1) compared with the ground truth in FR, the following negative situations may happen:
(1) the increase in the price of elevator may lower customers’ satisfaction; (2) there exists
more energy cost and it is not conducive to clean production; (3) long-time operation in
low power may shorten the service life and increase maintenance costs.

FR can be expressed as x with p values, where the number of categorical and con-
tinuous variables are p0 (j ∈ {1, 2, . . . , p0}) and p1 (j ∈ {p0 + 1, p0 + 2, . . . , p0 + p1}), re-
spectively, p = p0 + p1. Then, FR matrix X is composed of N pieces of x, X = {xi}N

i=1.
Incomplete FR matrix with missing values is denoted as Xmiss. The coordinates of missing
values are

M0 =
{
(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ p0, xijismissing

}
, (1)

M1 =
{
(i, j) : 1 ≤ i ≤ N, p0 + 1 ≤ j ≤ p, xijismissing

}
. (2)

We aim to predict the missing values with only Xmiss by mining the interconnections
among different x and provide the valuable predicted results to managers.

3.2. Framework Formulation

There are two data types, categorical and continuous variables, in FR. Traditional
imputation methods handle only the continuous variables [27,28,30]. They transfer the
categorical variables into continuous variables before imputation. Then, the predicted
categorical variables are mapped into labels. The errors in this process are unavoidable.
More advanced methods are proposed to divide these two data types [24,29,32]. We found
that categorical variables in FR are more important than the continuous ones. Customers
prefer to choose rather than fill in the blanks when proposing CN, and the predicted results
of categorical variables are easier to be judged by managers.

A multi-layer framework is presented in Figure 3. After classifying different data
types in Xmiss, the complete X can be obtained by layer-by-layer prediction with two
different imputation methods. The 1st layer is used for predicting missing continuous
variables. We can choose one regression imputation method in the first layer. Then, the 2nd
to the (p0 + 1)th layers in the framework are used for predicting categorical variables. For
example, in the second layer, we have p1 continuous variables with complete values in X,
denoted as Xmiss

2 , and the missing values of the first categorical variable will be predicted.
The first categorical variable is defined as the ath column in Xmiss

2 with the minimum
number K of missing values. Xmiss

2 is then separated into four parts: Y ∈ R(N−K)×1 are
the existing values in Xmiss

2 (:, a), T ∈ R(N−K)×p1 are the corresponding values to the index
of Y in Xmiss

2 (:, p0 + 1 : p), W ∈ RK×p1 are the values in Xmiss
2 (:, p0 + 1 : p) except T, and

P ∈ RK×1 are the K missing values to be predicted. T and Y are used to train a classifier,
and W is input into the trained classifier to predict the values in P, which is the predicted
results of Xmiss

2 (:, a). There are p0 categorical variables in FR for prediction, and the number
of layers in this framework is p0 + 1.

The workflow of the proposed framework is detailed in Algorithm 1, which is the
mathematical expression of Figure 3. The 1st layer of the proposed framework is conducted
by a regression method R for predict the missing continuous values ((p0 + 1)–p columns
in Xmiss). Xmiss

2 is the output of the 1st layer. Then, by counting the number of missing

http://aa.otis.com/aa/cda/cdalogin.aspx
http://cabcreate.otis.com/
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categorical values existing in Xmiss
2 , we have the set J. The missing categorical values in the

ath column in Xmiss
2 , where a is the position of the smallest non-zero element Ka in J, are

predicted by a classification method C. Finally, we remove Ka from J, and loop through the
classification imputation until a complete X without missing values is obtained.
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Algorithm 1. Prediction workflow of the proposed framework.

Input: Xmiss, M0, M1, c = 1
Output: X

1 Normalize Xmiss, transfer categorical into continuous variables
2 Impute the missing values using regression method R
3

Xmiss
2 = X(:, p0 + 1 : p) = R

(
Xmiss

)
//1stlayer

4 J = {K1, K2, . . . , Kp0} = {|M0 : (i,j)|j=1,2, . . . ,p0}
5 While existing missing values
6 c = c + 1 //cth layer
7 Ka = min(J)
8 T = 0(N−Ka)×(p1+c−2), Y = 0(N−Ka)×1, W = 0Ka×(p1+c−2), P = 0Ka×1

9 [T, Y, W, P] = separate(Xmiss
c )

10 Train classifier C using T and Y
11 P = C(W)
12 J = J/Ka
13 Xmiss

c+1 = Xmiss
c + P

14 End while

4. Layered KNN-SVM Methodology
4.1. Continuous Variable Prediction Using KNN

KNN is the most popular algorithm for classification or regression [35]. It is sensitive
to the local structure of the data. However, its predicted accuracy of categorical variables is
lower than other classifiers. Thus, KNN is used in the continuous variable prediction in
this study.

The key step for KNN is to calculate the distances between two vectors [36]. Then,
the k nearest neighbors of the specific sample can be obtained according to the calculated
distances. Thus, the predicted value is the average of the values of k nearest neighbors. For
two incomplete FRs, the calculations in this study are as follows.

The distance between xm and xn (m 6=n) are

d(xm, xn) =
p0

∑
j=1

dj(xmj, xnj)+
p1

∑
j=p0+1

dj(xmj, xnj). (3)

The coordinates of missing values in xm and xn are Mm and Mn.{
Mm = {M0 : i = m} ∪ {M1 : i = m},
Mn = {M0 : i = n} ∪ {M1 : i = n}. (4)

Mm and Mn are then separated into different subsets.
Mm

0 = {M0 : i = m},
Mm

0 =
{

i = 1, 2, . . . , p0 : i /∈ Mm
0
}

,
Mn

0 = {M0 : i = n},
Mn

0 =
{

i = 1, 2, . . . , p0 : i /∈ Mn
0
}

,

(5)


Mm

1 = {M1 : i = m},
Mm

1 =
{

i = p0 + 1, p0 + 2, . . . , p : i /∈ Mm
1
}

,
Mn

1 = {M1 : i = n},
Mn

1 =
{

i = p0 + 1, p0 + 2, . . . , p : i /∈ Mn
1
}

.

(6)
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The distance calculation can be obtained by

dj(xmj, xnj)
(1 ≤ j ≤ p0)

=


1xmj=xnj , j ∈ Mm

0 , j ∈ Mn
0 ,

1xmj=unj , j ∈ Mm
0 , j ∈ Mn

0 ,
1umj=xnj , j ∈ Mm

0 , j ∈ Mn
0 ,

0, j ∈ Mm
0 , j ∈ Mn

0 ,

(7)

dj(xmj, xnj)
(p0 + 1 ≤ j ≤ p)

=


(xmj − xnj)

2, j ∈ Mm
1 , j ∈ Mn

1 ,
(xmj − unj)

2, j ∈ Mm
1 , j ∈ Mn

1 ,
(umj − xnj)

2, j ∈ Mm
1 , j ∈ Mn

1 ,
0, j ∈ Mm

1 , j ∈ Mn
1 ,

(8)

where u denotes the pre-determined value for distance calculation. umj is the most frequent
value in {xij}i=1,2, . . . ,n, i 6=m, i 6=n when 1 ≤ j ≤ p0. When p0+1 ≤ j ≤ p, we have

umj =


δL, xnj < δ,
xnj, xnj ∈ δ,
δU , xnj > δ,

(9)

where δ is the pre-determined numerical range of xmj. The values in {xij}i=1,2, . . . ,n, i 6=m, i 6=n
are sampled as set S. δ is the confidence interval of S. Superscript U and L are the upper
and lower bounds of δ, respectively.

After calculating the distance between two different x one-by-one, we have the k
nearest neighbors’ coordinate Mm of xm. Mm={i : xi is the k nearest neighbor of xm} and
|Mm|=k. The predicted results of the missing continuous variables in xm using KNN is

x̂mj =
1
k ∑

i∈Mm

xij, j ∈ Mm
1 . (10)

4.2. Categorical Variable Prediction Using SVM

Starting from the second layer in the proposed framework, the prediction problem is
expressed as the multi-class classification problem. Many requirements with the categorical
variables are binary, where managers can easily and conveniently make a choice. However,
there also exist multiple options in FR. SVM is based on the small-sample statistical learning
theory, which does not require many historical FRs for prediction. The learning process
is based on the principle of structural risk minimization, which can avoid overfitting in
the training and has the characteristic of strong generalization ability. SVM is a classic
binary classifier. The structure of SVM classifier needs to be improved for the multi-class
classification problem.

4.2.1. Multi-Class Classification with Directed Acyclic Graph

To solve multi-class classification problem with binary classifiers, much research
has been conducted, such as winner-takes-all strategy (one-versus-all), max-wins voting
strategy (one-versus-one), directed acyclic graph (DAG), and error-correcting output codes
(ECOC). Supposing L classes in the classification problem, one-versus-all strategy needs L
classifiers, but the computation time of single binary classifier is long because of training
the whole samples. The accuracy is also not high because of the biased datasets in two
classes. One-versus-one strategy needs L(L–1)/2 classifiers. The number of classifiers
increases in quadratic form with the increase in L. For more classifiers, more errors are
accumulated. DAG needs (L–1) classifiers, and the upper bound of error accumulation is
fixed. No biased datasets exist when training SVM in DAG and the computation time is
shorter than one-versus-all or one-versus-one. Although ECOC has developed in recent
years, the settings of encoding and decoding need to keep pace with the times, where the
numbers of classes in categorical variables of FR is different and the number of classes is
also time-varying. Thus, we adopt DAG for the multi-class classification in this study.
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DAG for classifying L classes is shown in Figure 4 [37], where C(m,n) represents the
binary classifier classifies the mth and nth classes. C(m,n) equaling +1 or −1 represent this
sample belongs to nth or mth class. For example, if the outputs of all (L−1) classifiers are
−1, this sample is predicted as the Lth class.
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4.2.2. SVM for Binary Classification

Supposing a training set Z = {(xi, yi), xi ∈RN×p , yi ∈ {-1, +1}, i = 1, 2, . . . , m}, an optimal
hyperplane separates the space formed by {xi}m

i=1 into two subspaces, where xi can be
divided into two classes in the space. SVM is the method to seek the separating hyperplane
ωTx + b= 0 with the largest margin, which can be expressed as an optimization problem:

min 1
2‖ω‖

2 + ξ
m
∑

i=1
εi

s.t. yi(ω
Txi + b) ≥ 1− εi,

εi ≥ 0,
i = 1, 2, . . . , m,

(11)

where ξ is the penalty factor to balance the minimization of error cost and maximization of
margin, and εi is the distance from xi to ωTx + b = yi.

Problem (11) can be rewritten as Equation (12) using Lagrange multipliers αi and βi

L(ω, ε, b, αi, βi) =
1
2
‖ω‖2ξ

m

∑
i=1

εi −
m

∑
i=1

αi

[
yi

(
ωTφ(xi) + b

)
− 1 + εi

]
+

m

∑
i=1

βiεi, (12)

where φ(xi) is a mapping function that maps xi into a high dimensional space. SVM can
efficiently perform a non-linear classification using φ(xi).
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After partial derivative of Equation (12), problem (11) can be transformed into the
dual optimization problem:

min −
m
∑

i=1
αi +

1
2

m
∑

i,j=1
αiαjyiyjκ(xi, xj)

s.t. 0 ≤ αi ≤ C,
m
∑

i=1
αiyj = 0,

i = 1, 2, . . . , m,

(13)

where κ(xi, xj) is the kernel function, κ(xi, xj) = φ(xi)
Tφ(xj). Radial basis function is the

popular kernel function used in SVM,

κ(xi, xj) = exp
[
−‖xi − xj‖2/(2σ2)

]
. (14)

Problem (13) is efficiently solvable by quadratic programming algorithms. Then, ω
can be solved by

ω =
m

∑
i=1

αiyiφ(xi). (15)

The SVM classifier function can be written as:

C(x′) = sgn

(
m

∑
i=1

yiαiκ(xi, x′) + b

)
(16)

The calculation results of C(x′) is±1, where x′ can be classified into one of two classes.
Then (L−1) SVM classifiers with DAG can be used in Figure 3 for categorical variable
prediction in FR.

5. Case Study

In this section, predicting missing values of FR in KLK2 elevator product (Figure 2),
which is a star product in Canny Elevator, Co., Ltd. (Suzhou, China), is taken as a case
study to verify the application of the proposed approach in the real world. We explain in
this section that:

• The benefit of the proposed framework for predicting the missing values of FR.
• Why we integrate KNN and SVM for continuous and categorical variables prediction,

respectively?
• The adaption of proposed approach in the cold- and warm-start scenarios.

5.1. Experimental Setup
5.1.1. Dataset and Compared Methods

To test the performance of the proposed approach, we collected the 91 effective cases
of KLK2 elevator as the experimental dataset, in which the design, manufacturing, and
install of the elevators have been finished. FRs elicited from these cases are expressed as
X, X ∈ R91×26, p0 = 10, and p1 = 16. We randomly sample the values in X to be missing at
different missing rates, assuming that each entry is equally likely to be chosen.

We run some of the most commonly used and state-of-the-art methods described in
Table 1 to compare against KNN-SVM. The individual methods in this comparison are
single methods, including KNN [24,25], BPCA [27], BBPCA [28], GRNN [26], and SVD [30],
and composite methods, including KNN-SVD, KNN-GRNN, KNN-BBPCA, KNN with
naive Bayes classifier (KNN-Bay) [38], KNN with decision trees model (KNN-Tree) [32],
and KNN-SVM. The composite methods are all strengthened by the proposed framework.
k = 10 is adopted in KNN in this case study.
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5.1.2. Evaluation Metrics

The evaluation metrics used in this study are divided into three patterns, accuracy
(RMSE), similarity (Ang, Len, and FSN), and computation time. The known values{

xij : (i, j) ∈ M0 ∪M1
}

in X are the ground truth in evaluation. In particular, RMSE
between predicted and true values is calculated by

RMSE0 =
√

1
|M0| ∑

(i,j)∈M0

1{x̂ij 6=xij}

RMSE1 =
√

1
|M1| ∑

(i,j)∈M1

(x̂ij − xij)
2 ⇒ RMSE =

√
RMSE02 + RMSE1

2 (17)

where RMSE0 and RMSE1 are RMSEs of categorical and continuous variables, respectively.
Evaluation metrics of similarity include: (1) Ang, sum of angles of the first three

principal components calculated for true (θ) and predicted (θ̂) FRs (ideal value is 0); (2) Len,
sum of length of projections of θ to θ̂ (ideal value is 3); (3) FSN: mean fraction of the same
neighbors from the k nearest neighbors between true and predicted FRs (ideal value is 1).

Ang =
3

∑
i=1

arccos
〈
θi, θ̂i

〉
, (18)

Len =
3

∑
i=1

√√√√ 3

∑
j=1
‖υ
(
θi, θ̂j

)
‖, (19)

FSN =
1
N

N

∑
i=1

∣∣Mi ∩ M̂i
∣∣∣∣Mi ∪ M̂i
∣∣ , (20)

where ‖υ
(
θi, θ̂j

)
‖ represents the length of projections of θi to θ̂j; Mi and M̂i are the k nearest

neighbors’ coordinates of xi and x̂i, respectively.

5.2. Experimental Results and Comparison

We run all the methods by missing rate ranging from 10% to 50%. In the following
section, we first demonstrate that the methods using the proposed framework are better
than single methods. Then, the performance of KNN-SVM is significantly better than the
reference methods. Finally, we discuss the influences of cold- and warm-start scenarios in
prediction.

The single methods, KNN, GRNN, SVD, BPCA, BBPCA, are commonly used for
continuous variables. For the mixed data type, they put the categories as the continuous
numbers instead of labels. The predict values tend to be wildly inaccurate due to rounding
errors. As shown in Figure 5a, the performance of all single methods predicting with
categorical variables is negative. Compared with continuous variables, RMSE of categorical
variables triples.

By comparing the performance of different single methods, KNN outperforms other
methods in terms of RMSE1 (Figure 5b) and has reasonable computation time in real-world
applications (Figure 5c). GRNN has poor performance in not only the accuracy but also
the computation time. For the shortest computation time of SVD (<0.01 s), there is a fatal
flaw that when the missing rate is large, SVD is trapped into a loop without solution. For
BPCA, the predicted values of the same requirement are identical, which cannot be applied
to predict missing values of FR in product customization. Although BBPCA repairs the
gap in BPCA, the performance is still unsatisfactory.
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KNN seems to be the best method for regression in the first layer of the proposed
framework. Then, we compare the composite methods strengthened by the proposed
framework. As shown in Table 2, handling the continuous and categorical variables of FR
separately (in the proposed framework) is beneficial.

Table 2. Comparison of single and composite methods.

Method
RMSE0 RMSE Time (s) Ang

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

KNN-GRNN 0.53 0.52 0.56 0.58 0.57 0.59 33 111 222 0.01 0.02 0.05
GRNN 0.59 0.56 0.56 0.61 0.59 0.59 73 254 479 0.03 0.10 0.13

KNN-SVD 0.48 0.51 0.52 0.57 0.57 0.57 0.27 0.29 0.30 0.01 0.03 0.04
SVD 0.55 0.55 _ 0.64 0.60 _ <0.01 <0.01 _ 0.02 0.04 _

KNN-BBPCA 0.49 0.49 0.49 0.53 0.52 0.54 74 91 88 0.01 0.03 0.04
BBPCA 0.51 0.51 0.52 0.52 0.53 0.54 85 89 62 0.01 0.03 0.05

The significant benefit of KNN-GRNN is the shorter computation time than GRNN.
After KNN finishes the continuous variable prediction, there are fewer missing values for
GRNN to classify; thus, the training time of GRNN is shortened and the total computation
time is also shortened. For KNN-SVD, the problem of no solution in high missing rate is
solved. As parts of missing values have been predicted, SVD can be operated even with
high missing rate. The performance of KNN-BBPCA is a bit better than BBPCA. However,
the improvement is not significant for these methods, with average reduction in RMSE
of only 3.7% against single methods. It is found that SVD and BBPCA are not feasible
for categorical variable prediction. Meanwhile, GRNN costs too long computation time.
Thus, we search for other classification methods for predicting the missing categorical
variables in the proposed framework. The selected methods include the naive Bayes
classifier, decision trees model, and SVM, which are all classic and popular methods in
data classification. Some classic binary classifiers are advanced with DAG for multi-class
classification (Section 4.2.1).

As shown in Figure 6, all three new classifiers are better than the original three
composite methods. In detail, with the same method (KNN) predicting the continuous
variables, KNN-SVM outperforms other methods in terms of RMSE as well as Ang, Len,
and FSN. KNN-SVD and KNN-Tree are better than KNN-SVM in terms of computation time
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(Figure 6c), but KNN-SVM results in average reduction in RMSE of 46%, 39%, 30%, and 21%
against KNN-SVD, KNN, KNN-Bay, and KNN-Tree, respectively (Figure 6b). SVM usually
needs longer computation time for classification, which is its own short slab. Although the
computation time is not the shortest, SVM is feasible in the real-world application with
around 1.5 s for computation. With the missing rate increasing, the accuracy of prediction
decreases, but the performance of similarity in KNN-SVM outperforms the others even in
high missing rate. In the proposed framework, KNN-SVM is the most feasible method for
practical application.
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In addition, we randomly choose 10 and 50 FRs in X for test in cold- and warm-start
scenarios. Cold-start scenario refers to the initial scenario for FR prediction, where there are
no complete FRs for reference. Usually, experts are required to predict the missing values
of FR through their own experience, which is often in the early stage of the new customized
product development. Warm-start scenario means there is a number of completed FRs in
the resource library. It is the common scenario in product customization.
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As shown in Table 3, all methods can only provide the predicted suggestions to
managers with low accuracy in the cold-start scenario, especially with few incomplete FRs.
For only 10 FRs in the cold-start scenario, the KNN method cannot find the accurate nearest
neighbors for prediction, and the metric FSN is not applicable for all methods. Comparing
cold-start scenarios 1 and 2, although all FRs are incomplete, more FRs can improve the
performance. When the number of incomplete FRs increases, the proposed approach is
useful and beneficial, and the predicted results are valuable to managers. Comparing the
different start scenarios, KNN-SVM shows better performance in the warm-start scenario.
The values of Ang are minimum, which means the predicted values are very similar to the
ground truth. If there is a small quantity of incomplete FRs and a mass of complete FRs for
reference, the predicted results will be more accurate. It is obvious that KNN-SVM always
outperforms other methods and the computation time is acceptable in Table 3. We then
make a concrete analysis of the predicted values of a new FR in Section 5.3.

Table 3. Performance of different methods in cold- and warm-start scenarios.

Method
RMSE Ang FSN Time (s)

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

Cold-start scenario 1: 10 incomplete FRs without reference

KNN-SVM 0.44 0.52 0.63 0.04 0.09 0.17 _ _ _ 1.13 0.51 1.56
KNN-Bay 0.58 0.56 0.78 0.06 0.14 0.26 _ _ _ 2.19 1.92 3.19
KNN-Tree 0.56 0.53 0.76 0.11 0.14 0.30 _ _ _ 0.19 0.11 0.18

KNN _ _ _ _ _ _ _ _ _ _ _ _
GRNN 0.59 0.71 0.66 0.04 0.22 0.26 _ _ _ 9 11 18

Warm-start scenario 1: 10 incomplete FRs with rest 81 complete FRs for reference

KNN-SVM 0.09 0.18 0.23 4 × 10-5 1 × 10-3 1 × 10-3 1.00 1.00 1.00 0.33 0.69 0.60
KNN-Bay 0.28 0.37 0.38 1 × 10-3 2 × 10-3 4 × 10-3 0.99 0.97 0.96 1.36 1.68 1.81
KNN-Tree 0.32 0.33 0.29 1 × 10-3 3 × 10-3 5 × 10-3 0.99 0.97 0.96 0.24 0.27 0.28

KNN 0.49 0.53 0.50 1 × 10-3 2 × 10-3 4 × 10-3 0.98 0.96 0.96 0.19 0.21 0.20
GRNN 0.63 0.56 0.60 3 × 10-3 6 × 10-3 1 × 10-2 0.98 0.97 0.96 5 15 24

Cold-start scenario 2: 50 incomplete FRs without reference

KNN-SVM 0.31 0.39 0.42 0.01 0.02 0.04 1.00 0.99 0.99 0.50 0.49 0.42
KNN-Bay 0.56 0.59 0.59 0.06 0.10 0.17 0.95 0.86 0.92 3.54 2.77 2.18
KNN-Tree 0.51 0.59 0.55 0.04 0.08 0.14 0.96 0.90 0.90 0.63 0.21 0.16

KNN 0.68 0.62 0.61 0.07 0.15 0.17 0.95 0.92 0.93 0.08 0.07 0.05
GRNN 0.66 0.66 0.67 0.09 0.16 0.21 0.94 0.91 0.91 29 95 127

Warm-start scenario 2: 50 incomplete FRs with rest 41 complete FRs for reference

KNN-SVM 0.14 0.30 0.30 3 × 10-3 6 × 10-3 1.2 × 10-2 1.00 0.95 0.92 0.76 0.78 0.80
KNN-Bay 0.26 0.31 0.36 5 × 10-3 9 × 10-3 1.0 × 10-2 0.98 0.94 0.91 1.87 1.85 1.86
KNN-Tree 0.18 0.33 0.33 6 × 10-3 9 × 10-3 1.5 × 10-2 0.97 0.94 0.91 0.29 0.30 0.30

KNN 0.29 0.53 0.49 5 × 10-3 9 × 10-3 1.5 × 10-2 0.98 0.94 0.90 0.22 0.27 0.23
GRNN 0.46 0.53 0.55 1 × 10-2 2 × 10-2 41 × 10-3 0.97 0.94 0.89 26 73 119

5.3. Case Analysis

A new FR is used to analyze the predicted results using KNN-SVM. We randomly
sample the values of this FR to be missing in four cases, where cases 1, 2, 3, 4 contain 2,
5, 7, and 13 missing values, respectively. As shown in Table 4, the specific values under
four cases are the predicted values using KNN-SVM. Comparing the predicted values with
ground truth, we make a concrete analysis to different cases as following.
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Table 4. Predicted values of a new FR in elevator.

Index FR Ground Truth
Predicted Values in Different Cases

Case 1 Case 2 Case 3 Case 4

r1 Hoisting motor power 10 kW 11 kW
r2 Hoisting rope size φ 10 φ 10 φ 10
r3 Gear of hoisting machine Gearless Gearless
r4 Number of hoisting ropes 2 4
r5 Number of passengers 9 8
r6 Door opening Front and rear opening Front and rear opening
r7 Number of stops 15
r8 Counterweight position Side Side Side
r9 Compensating device Rope Rope
r10 Number of guides 2 2
r11 Length of hoisting rope 1219 1188.4
r12 Rated capacity 900 kg 840 kg
r13 Speed 4.1 m/s 3.64 m/s 3.64 m/s
r14 Car weight 1053 972.4
r15 Car depth 1328 1328
r16 Car width 1534 1570.6
r17 Car height 2729 2795.8
r18 Shaft depth 2076 2130.3 2119.3
r19 Shaft height 43,086
r20 Shaft width 1997
r21 Door width 939 1043.2 1024.9
r22 Door height 2232 2070.4 2057.2
r23 Door offset distance 0
r24 Machine room height 1638
r25 Headroom height 3386 3974.2
r26 Pit depth 4024 4845.2

(1) In cases 1 and 3, where the values of speed (r13) is missing, the predicted value is
3.64 m/s and the difference is acceptable comparing with 4.1 m/s. The shaft height (r19) is
43 m, the time cost is 11.8 vs. 10.5 s, where 1.3 s are negligible for passengers.

(2) The predicted results of categorical variables are accurate against the ground
truth. For the binary classification, the predicted values using KNN-SVM are the same as
the ground truth in gear of hoisting machine (r3), door opening (r6), and counterweight
position (r8). For the multi-class classification, such as hoisting rope size (r2), number
of hoisting roper (r9), and number of guides (r10), the predicted values are accurate. In
addition, the predicted values of hoisting motor power (r1) are larger than the ground truth.
One reason is the missing rate of case 4 is high. From another perspective, the candidate
values of r1 in the product family are {8, 10, 11, 12, 15, 17, 18} kW. Thus, the predicted value
of r1 is acceptable.

(3) Another important requirement is the number of passengers (r5) with rated ca-
pacity (r12). In case 3, r5 and r12 are missing and the predicted values are 8 and 840 kg,
respectively. Although there exist biases, the prediction of the more important requirement
r12 is acceptable. These two predicted values are also self-consistent.

(4) The missing continuous variables of FR are predicted using KNN. In the range of
the allowable biases, the predicted results (most requirements belong to building informa-
tion) are valuable and can give suggestions to managers.

(5) The computation time of all cases using KNN-SVM is less than one second, which
can provide friendly human–computer interaction in the design activities in product
customization.

5.4. Application and Discussion

We have developed a prototype system for elevator customized design based on
Java and MySQL, as shown in Figure 7. This design platform has been applied in the
elevator customization cooperated with Canny Elevator Co. Ltd. in China. There are
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four design stages in this design platform, as described in Section 1, and nine design tools
in each design stage (Figure 7a). The proposed approach is packaged in the design tool,
requirements forecast (Figure 7c), in the requirements modeling stage. In the real-world
elevator customized design process, the design tool, requirements elicitation, captures
customer requirements and outputs the incomplete CN to the requirements database. FR
often has missing values due to incomplete CN, which effects the requirements conversion
from FR to design parameters. Traditionally, managers fill in the missing values based on
their own knowledge and experience. The imputation results may not fulfil individual
customer requirements. After integrating the proposed approach in this design platform,
managers can choose the order in the requirements database and view the missing parts in
FR, and then automatically obtain the predicted results of the missing values, as shown in
Figure 7c.
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By performance comparison in Section 5.2 and case analysis in Section 5.3, the pre-
dicted results are valuable and effective in the practical design process. The response time
of the requirements prediction is less than two seconds, which is also acceptable to man-
agers. The proposed approach is feasible in product customized design, with the following
advantages: (1) avoiding managers manually filling in missing values of FR in the design
process; (2) the predicted results are similar to the real personalized requirements; (3) this
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approach solves a potential problem in requirements modeling and can aid product design
with rapid response ability.

6. Conclusions

Predicting the missing values of FR is necessary in requirements modeling of product
customized design. In this study, a multi-layer framework for prediction is introduced
with the KNN’s strengths in continuous variable prediction and SVM’s advantages in
categorical variables prediction. A case study on elevator customized design validates the
effectiveness and feasibility of the proposed approach. To conclude, the proposed approach
reveals the following advantages:

(1) A layered KNN-SVM approach is proposed to predict the missing values of FR
efficiently. It focuses on a potential problem arising in requirements modeling, therefore,
helps provide the complete function requirements to managers to design products that
fulfill individual customer requirements.

(2) The proposed layered KNN-SVM approach, considering continuous and categori-
cal variables synchronously, outperforms other five single and five composite methods in
terms of RMSE, Ang, Len, and FSN. Specifically, KNN-SVM results in average reduction
in RMSE of 46%, 39%, 30%, and 21% against KNN-SVD, KNN, KNN-Bay, and KNN-Tree,
respectively. The computation time of KNN-SVM is always less than two seconds, which is
acceptable in practical applications.

(3) The proposed layered KNN-SVM approach also performs better in cold- and warm-
start scenarios than other methods. With the number of FRs increasing in the cold-start
scenario, KNN-SVM can provide valuable and effective predicted results to managers.
In the warm-start scenario, which is the common scenario in practical application, man-
agers can obtain the accurate predicted results using KNN-SVM even in the high missing
rate cases.

(4) The case analysis and practical application on real-world customized elevator
validate the reasonability and reliability of the proposed layered KNN-SVM approach. The
predicted results of categorical variables in FR (such as requirements of hoisting system
and cab) are almost the same as the ground truth. The predicted results of continuous
variables in FR (such as speed and requirements of building information) can provide
valuable results to managers. With the help of the proposed approach, managers can obtain
complete and correct requirements and improve the design efficiency in design process.

In the future work, the proposed approach can be improved. For example, the
predicted results of continuous variables in FR could be the numerical range, where the
single value is less helpful to managers. KNN can be improved or integrated with other
state-of-the-art algorithms to improve the performance in the missing continuous variables
prediction. Furthermore, more validation is necessitated in other real-world customized
products. The developed design tool for manufacturers can be improved for better human–
computer interaction. Although this approach is applied in the domain of manufacturing,
exploring and researching whether the proposed approach might be useful in filling in
missing data in other domains are worthy and meaningful.
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