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machine learning for error compensation in additive manufacturing is conferred.

Abstract: Additive Manufacturing (AM) of three-dimensional objects is now being progressively
realised with its ad-hoc approach with minimal material wastage (lean manufacturing) being one of
its benefit by default. It could also be considered as an evolutional paradigm in the manufacturing
industry with its long list of application as of late. Artificial Intelligence is currently finding its
usefulness in predictive modelling to provide intelligent, efficient, customisable, high-quality and
sustainable-oriented production process. This paper presents a comprehensive survey on commonly
used predictive models based on heuristic algorithms and discusses their applications toward making
AM “smart”. This paper summarises AM’s current trend, future opportunity, gaps, and require-
ments together with recommendations for technology and research for inter-industry collaboration,
educational training and technology transfer in the AI perspective in-line with the Industry 4.0
developmental process. Moreover, machine learning algorithms are presented for detecting product
defects in the cyber-physical system of additive manufacturing. Based on reviews on various appli-
cations, printability with multi-indicators, reduction of design complexity threshold, acceleration
of prefabrication, real-time control, enhancement of security and defect detection for customised
designs are seen of as prospective opportunities for further research.

Keywords: additive manufacturing; machine learning; data-driven artificial intelligence; cyber-
physical system; error process control

1. Introduction

In recent years, Additive Manufacturing (AM) is one of the more recent and ad-
vanced manufacturing technologies which is expected to escalate the progress for the
next-generation manufacturing industry with lean manufacturing being its main principle.
It involves the process of layer-basis additive manufacturing of three-dimensional object
using 3D Computer Automated/Aided Design (CAD) models opposing the approaches
used in subtractive manufacturing like Computer Numerical Control (CNC) machining.
In additive manufacturing, the prefabrication stage aims to enhance the reliability and fea-
sibility of the process. A 3D printable model designed either via CAD or directly from 3D
scanned object is presented as triangle meshes usually in Stereolithography (STL) format
as an example and then converted into sliced layers with Numerical Control (NC) pro-
gramming language to instruct the fabrication process. Other 3D representation of a model
includes voxels, octree point cloud and graph based [1]. The prefabrication of image-based
slicing, path arrangement, orientation, support formation, repairing and packaging can
significantly speed up the construction time and reduce both cost and material wastes [2].
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By definition, additive manufacturing refers to a process by which digital 3D design
data is used to build up a component in layers by depositing material [3,4] according to
American Society for Testing and Materials (ASTM), an international standards organiza-
tion. The process typically uses extruder, binder, laser or electron beam to solidify materials
such as polymer, metal, and ceramic [5] one layer at a time. Usually, an extruder wheel or
a mobile bed can control the flow rate of fused material [6,7]. Throughout its inception,
AM has offered an improved mechanical strength throughout the years with new plastics
and alloys being tested out to balance both customisability of a design and the required
mechanical properties suited for its applications [8,9]. Figure 1 lists the attributes additive
manufacturing offers. One of the major benefits AM could utilise is cloud manufactur-
ing. Cloud manufacturing is the concept of distributing manufacturing capabilities and
resources on a cloud platform capable of offering intelligent decisions to deliver the most
sustainable and robust manufacturing route available [10]. In the additive manufacturing
paradigm, Social Manufacturing (SM) is realised by seamless connectivity with the Internet
and logistical networks where prosumers can directly participate in the entire cycle of
the production process through crowdsourcing. From an idea proposed in [11], a service
oriented networked product development model is proposed in which service consumers
are enabled to configure, select, and utilise customised product realisation resources and
services ranging from expertise support to pay-as-you-go concept.

« Availability of various CAD/CAM software.
 Automation and widely available technology.
Why is AM * A huge base of printable ready materials.
attracting * Large sums of government and industry

interest lately? investment.
+ Ease of rapid prototyping.

\\ pe « Highly customizable parts with no extra tooling
. 4 required.
* Direct translation from design phase to physical
p : build.
otential .
benefits of AM » Zero waste target realization

+ Substantial deduction in product development
time.

« Excellent scalability.
et * Manufacturing on demand/cloud manufacturing.

Figure 1. Prospects of additive manufacturing.

Lately, AM has been widely used in a list of domains including medical [12,13],
materials engineering [14-17], communication [18,19], pre-fabrication construction [20],
aeronautic [21,22], power electronic [23-25], food [26] and even making its way into the
space industry [27,28].

However, the limitations hindering the proliferation of AM still exist in the current
manufacturing operation. Excessive time consumption, lack of real-time control, potential
deviation, and the transition from mass production to mass real-time customisation are
principal problems that require being solved by computational aptitude, widely known
known as Artificial Intelligence (AI).

Al provides various algorithms and methods as well as offers great potential to transform
the current manufacturing technique under the situation of ever-increasing data repository.
Machine Learning (ML) for example, opens the possibility for machines to learn and improve
autonomously with little or no human intervention at all. Applying ML in manufacturing
allows the system to derive the useful information from existing data sets, which will provide
a basis for approximations or predictions to operate machines with future behaviours such
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as decision-making and automatic system improvement. It is also beneficial to detect certain
patterns or explore regularities in a dynamic manufacturing environment [29].

Many authors have invoked the notion of the process to be called a disruptive technology
that will inevitably influence the majority of the established production processes [5,30-32],
and [33]. AM has a potential to reduce production cost by more than USD 170 billion and
reduce carbon footprint by 130.5 Mt [34]. It is also estimated that AM could generate up to USD
200-USD 600 billion in transaction by 2025 [35]. General Electric has announced significant
investment over a billion dollars in metal AM for jet engine components of aircrafts with
one specific advantage being their future 3D printed jet engine fuel nozzle can improve the
efficiency of their jet engines by increasing the allowable combustion temperature [36,37].
Other companies like Airbus are 3D printing bracket for use in aircraft such as a cargo door
bracket [38]. The flexibility of 3D printing lets these companies achieve the same function at a
lighter weight which in-turn reducing the use of fuel in aircrafts [21].

AM is also used in the entertainment industry to create special effect [39]. In fact,
Hollywood was one of the earliest users of MIT’s 3D printer for the creation of the replicas
of the Aston Martin DB7. On a more personal application in medical devices, a study that
was published in the New England Journal of Medicine, where doctors and engineers at
the University of Michigan collaborated and 3D printed an implant for an infant with a col-
lapsed airway which was printed using a biocompatible material and was strapped around
the infant’s airway [40]. There are also great applications tooling wise, where AM is not
making parts but instead is improving the performance of tooling, for instance, enabling
conformal cooling channels close to the surface of an injection mould that would result in
improved part quality by reducing cycle time and minimising shrinking [41,42]. Table 1 de-
scribes the main additive manufacturing types with their respective attributes. In this paper,
we aim to provide a review on the prospect of how Al application will provide a sustainable
improvement in AM from various aspects and phases of this manufacturing technique.

Table 1. Major types of additive manufacturing.

Method Description Material(s) Technology
. i Molten material is selectively Polymers ° Fused deposition modelling (FDM
Material extrusion [43,44] dispensed through a nozzle or orifice o Metals [45] P 8 )
: II\’/Leltaalrsni de . Electron beam melting (EBM) [49]
Powder bed fusion [46,47 Thermal energy selectively fuses . Polyar letherketone N Selective laser sintering (SLS) [50]
owder bed fusion [46,47] regions of a powder bed . Polyst yrene . Selective heat sintering (SHS)
ysty . , . Direct metal laser sintering (DMLS)
. Various composites [48]

Focused thermal energy is used to . Metals .
Direct energy deposition [51,52] fuse materials by melting as the . Polymers * Laser metal deposition (LMD)
material is being deposited
. o Liquiq based boqding age'nt is Polymers . Powder bed and inkjet head (PBIH),
Binder jetting [53,54] selectively deposited to join powder Foundry sand ° Plaster-based 3D printing (PP)
materials
e - Droplets of build material are . Polymers . Multi-jet modelling (MJM
Material jetting [55,50] selectively deposited ® Waxes ) g (MIM)
) ° I[\)/?pei e Laminated object manufacturing
Sheet lamination [57] Sheet§ of material are bonded to form 4 V. et_a S ) (LOM),
an object * arious comp osite . Ultrasonic consolidation (UC)
thermoplastics
o Liquid photopolymer in a vat is Photopolymers, . Stereolithography
VAT photo polymerization [58-60] selectively cured by light-activated . Ceramic . Digital light processing (DLP)

polymerisation

The terms additive manufacturing and 3D printing have been colloquially used
interchangeably. Nevertheless, AM is the more broad and all-inclusive term in the industrial
or manufacturing field. AM also reflects large-scale production of components while 3D
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printing is commonly referred to anything that is ornate be it functional or non-functional,
though no standards have yet to be established regarding this matter. The structure of
this paper is as follows: the overview of different approaches in manufacturing and the
advancement in additive manufacturing is presented in Section 2 while Section 3 gives the
background of data-driven modelling in additive manufacturing. Section 4 presents the
implemented approach of the recent works of error generation and compensation in AM as
well as the performance metrics whenever available. Section 5 discussed the deep learning
for error compensation as well as the future prospects in the application domain followed
by the conclusion in Section 6.

2. Advancements in Additive Manufacturing

Additive manufacturing is a process of creating a physical object from digital design
and is typically used for rapid prototyping. The process starts with the creation of a design
using CAD software, the design is then digitally sliced into thin layers and uploaded to an
additive manufacturing machine. The manufacturing process begins once an extremely
thin layer of metal powder is spread across the platform. A heat source such as laser or
extruder melts the first layer of the 3D design. Subsequently, another layer of material
is spread across the platform. The layering or melting process is repeated until the part
is completed. The support materials are then removed, and the physical object that has
taken shape is revealed. Additive manufacturing allows us to produce parts that are
lighter, stronger, and more durable than traditionally made parts. Overall build times are
reasonably faster as the designers can add precise features and complex geometry with
minimal work is spent on tooling thus drastically reduced the cost overhead associated with
it. In DMLS, there has been substantial leap on resourcing new materials in practice as new
studies have been conducted to study on the inclusion of materials and their characteristics
such as composite alloys in AM for different types of applications [61-63].

In fact, additive manufacturing has allowed industry players to revolutionise the way
they work. The level of design customization that was previously unthinkable of with
conventional manufacturing, is no longer an issue in additive manufacturing which also
offers reduction in both material resource and the turnaround time, which are significantly
reduced with the introduction of machine learning based manufacturing frameworks.
Generally, a checklist that has been compiled need to be referred to for structural design
works and design reviews. These checklists are usually prepared from an accumulation
of previous experiences and know-how of experienced engineers or designers working
on similar products. The accumulated experience and know-how increase day by day
leading to amplified work time in verification tasks, which also substantiates manual labour
required on a design. For example, in structural design, custom shapes being modelled
will reflect the intentions of a designer to fulfil the standard requirement and functionality
of a model or design and would reflect on how suited the design is with the available
machining capabilities in conventional manufacturing.

This is where machine learning techniques could benefit a design process by elimi-
nating the need for designers to undergo a redundant process of verification which can be
considered as legwork tasks.

2.1. Additive Manufacturing in Industry 4.0

The fourth industrial revolution or Industry 4.0 is the current trend in the manufactur-
ing sector connoting the gradual fusion of traditional manufacturing and practices with
automation and data exchange. Additive manufacturing is considered as an essential and
prospective element in the recent movement of Industry 4.0 where cyber-physical systems
monitor the physical processes of the factory and decentralized decisions are bolstered.
As a whole, Industry 4.0 focuses on manufacturing technology’s intelligent automation
and data exchange merger aiming to redefine humans’ role in the latest generation of
smart factories thus offering profitable cooperation of the cyber and physical systems [64].
Figure 2 shows the flow of how smart factories flow under the Industry 4.0 concept.
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Figure 2. Smart factories schematics with general properties in Industry 4.0.

Its essential concepts are associated with virtual environment that comprises Big
Data, Internet of Things (IoT), Cloud Computing, wireless networks, cloud infrastructure
along with artificial intelligence to name a few, whereas its physical side includes additive
manufacturing, autonomous vehicles, smart materials, nanotechnology, and intelligent
robots. In contrast, the physical part is bound by the capability of the current mainstream
systems which makes a fresh manufacturing technology similar to AM a very enticing route
in the Industry 4.0 concept. Researchers in academia and in the industry have recognized
that the Fourth Industrial Revolution initiation will change our practices completely in
products manufacturing, business transaction, administration of healthcare and even how
we will live our daily lives [65].

In the cyber-physical system’s perspective, IoT can be described as the concept of
gathering information from physical objects using computers and accelerated wireless
connections. The extracted information from the 3D printers, prototype CAD models and
even the end products themselves constitutes to a substantial amount of statistical data to
be exchanged and analysed.

Together, this large quantity of data is defined as Big Data, which is another fundamen-
tal element in Industry 4.0. Furthermore, cloud computing, which is related to the gathered
information processing, can be in the virtual industrial world as one of the most significant
paradigms. All of these current technologies help to ensure the effective utilization of
existing information for a sustainable future in smart AM [66,67].

2.2. Transformations from Conventional Manufacturing

One of the biggest advantages that additive manufacturing has got to offer over
traditional manufacturing approaches is that no special new tooling is required in additive
manufacturing in creating a part. This would highly improve the turnaround time in rapid
prototyping other than reducing resources that would be normally allocated in tooling [68].
In addition, preparation of the production line and getting an assembly process set up could
be potentially avoided. Conventional manufacturing comprises formative manufacturing
which involves techniques like injection moulding [69]; a process that removes material
from a larger piece of material employing standard machining processes such as milling
and lathing until the prototype part is created.

Additive manufacturing has a clear advantage in rapid prototyping which is a speedy
process of creating a three-dimensional model of a physical part or product before being
manufactured in higher quantities [70]. Currently, prototypes are usually done by layered
manufacturing technology in the likes of polymers and various metal types [71].
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One of the known perks of additive manufacturing over conventional manufacturing
processes is the lean nature of the source required in printing the product [72]. In additive
manufacturing like polymer extrusion, only material intended to be in the exact represen-
tation of the CAD model is estimated beforehand and fully utilised with minimal waste.
In injection moulding, the use of extra material is required in order to fill the mould [73].
In sheet metal assembly, a by-product in the form of scrap metal will be produced [74].
The scrap metal is often recyclable, but it would involve an upfront cost for the material to
be salvaged. In most instances, additive manufacturing will produce almost zero material
wastage in rapid prototyping process when a correct process configuration is followed.
The types of additive and conventional manufacturing types are described in Figure 3.

jo

U° &

Additive Subtractive Formative
-Material -Milling -Molding
Extrusion -Drilling -Casling
-Laser P
= -Grinding
Deposition ! &
-Powder Bed
Fusion

Figure 3. Different classes of conventional manufacturing.

However, additive manufacturing is rather less efficient in the post prototyping phase.
Albeit the unnecessary and irrelevant retooling, the rate at which the printer could complete
a whole assembly of a finished product leaves much to be desired if we were to compare
to the most conventional manufacturing process like CNC milling and moulding. This is
because only a single layer will be laid out or fused together at one time to accommodate
the customizable nature of the process.

Although additive manufacturing has a much shorter lead time in prototyping tasks,
with the current technology available, it cannot sustain the rate that is required to be used
for a full-fledged manufacturing line [75]. So, when it comes to making a limited-run
prototype of a part, 3D printing has a clear edge over the traditional method of tooling
an entire production line but not suited for a high output production. All in all, although
additive manufacturing has a very short turnaround, it is only suitable to cater to the need
of a manufacturing process like the prototyping phase due to the intricate steps involved
and the resolution of details it can offer. To justify the cost of tooling, manufacturers do not
require to produce as much of the volume required due to the high rate of reproduction of
a single design.

Traditional manufacturing like machining and casting provides high quality level
parts, good surface finishing, and very high dimensional accuracy for all sorts of materials.
Nonetheless, 3D printing technologies like Aerosol Jet has recently made significant gains
against traditional manufacturing processes by offering better material selection, ranging
from ceramics to dielectric adhesives [76,77]. However, when it comes to making a limited-
run prototype of a part, 3D printing has a clear edge over the traditional method which
requires tooling for the entire production line. Table 2 incorporates the pros and cons of
both additive manufacturing with traditional manufacturing.
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Table 2. Additive and conventional manufacturing attributes.

Manufacturing Type Additive Manufacturing Traditional Manufacturing

: Eggglfetesideilg?}?ams - Parts manufactured quality
Advantages SUPPY - The wide range of materials
- Production of integrated components .
- Low cost for large-scale production

- Highly personalized customer market

- Relatively short range of available materials - Inefficient for prototyping
Drawbacks - Relatively time-consuming for large-scale production - Time-consuming to create tooling and cast
- Relatively low finishing quality - High material wastage

The widespread deployment of low-cost sensors and the improvement of internet
infrastructure have boosted the interest and excitement on the topic of future of manu-
facturing. This is where data-driven manufacturing comes in offering responsive and
efficient production system integration [78]. Table 3 highlights the multitude of challenges
for its successful implementation. In the dawn of shifting from industry 3.0 to 4.0, offering
interconnected systems will benefit the previously overlooked collection of data to further
improve sustainability level of the manufacturing ecosystem. Data-driven systems will un-
doubtedly yield new opportunities for a highly fine-tuned control and monitoring system
in newer manufacturing systems like AM which has the promise to simplify supply chains.

Table 3. Underlying challenges of data driven manufacturing.

Challenges Details

- On-demand based production process that is deterministic with no
external randomness factor. All events are time-triggered based.

- A new paradigm of event-triggered control with high
customization being its key factor.

From Time-Triggered to
Event-Triggered Control Systems

- Previously, transaction-oriented resource planning system
processes data independently since they are not designed to
A Unified Data Model: Data Sharing, communicate and share information with the other
Not Just Data Exchange sub-components in a manufacturing line.
- Data sharing will enable quick changes to real-time demand
required in a production line process from design to distribution.

- In newer factories, multiple systems can be found including logic
controllers and data acquisition systems even at the machine level.
- The notion of starting everything from a clean sheet should not be
The Integration of Legacy Systems the focus but rather the integration within the existing operable
manufacturing and design environment efficiently is the
appropriable solution.

- Unauthorized access by malicious attackers can cause outages since
recent IoT devices installed in a factory which in turn connected via
gateways might introduce a risk of its own.

Security Challenges - These gateways will impose a cost most manufacturers often
overlooked to cope with the demanding computing power in
tackling networking and security tasks.
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3. Data-Driven Modelling in Additive Manufacturing

Additive manufacturing for three-dimensional designs is being realized more through-
out the years, considered as an evolutional paradigm in the manufacturing industry [79,80].
Artificial intelligence is currently finding wide applications to 3D printing for an intelligent,
efficient, high quality, mass customised and service-oriented production process.

Several data-driven analytics that depend on architectures in the likes of Artificial
Neural Networks (ANN) and Genetic Algorithms (GA) are renowned for their quality
prediction in a variety of applications [29,81,82]. However, Al implementation has yet to
be fully utilized in AM to maximize its chance of successfully achieving its productivity
and sustainability goals. The advantages of identifying the various predictive deviations
and classifications tasks using machine learning models are discussed in this chapter.

3.1. Artificial Neural Network Framework

In AM, the thermal nature of materials and processes may cause uncertainties in the
temperature gradients during construction phase. As a result, the parts being built undergo
irregular deformations that usually leads to dimensional inaccuracies from the modelled
to finished parts. An ANN based approach is proposed in [83], to tackle the problem of
unwanted thermal deformations in manufactured parts adapting FDM.

ANN is a computation system loosely inspired on how human brains process informa-
tion. A feedforward neural network has three types of neurons composed of input neurons,
hidden neurons and output neurons. There is only one input and output layer, but there
can be multiple hidden layers in between. Every connection of neurons is assigned with
weights where weighted outputs from previous nodes are introduced with activation
function [84].

The proposed model is a feedforward ANN which is trained using backpropagation
algorithm [85,86] to obtain the information on deformity. Previously, slice and stere-
olithography (STL) based compensation approaches are showcased for geometric errors in
fabricated parts using the Rapid Prototyping (RP) method [87,88].

On the proposed thermal geometry compensation method, finite element model is
used to simulate the creation of solid materials in AM process. Two sequential steps are
involved, firstly the temperature history together with the thermal gradients across all
layers are computed using finite element analysis, next, the overall deformation induced in
the part is determined using ANN implementing Lavenberg-Marquardt variant of error
backpropagation algorithm for training. Two sample parts were tested using the proposed
method showing a significant error reduction of manufactured parts conforming to the
original CAD file with a reduction in conformity error by 58.86% to 63.99% using an ANN
setup shown in Figure 4.

3.2. Markov Decision Process

The lack in the ability to monitor real-time quality control in AM can be seen as a
limitation since quality assurance is provided by a more traditional offline data-driven
techniques and optimization approaches such as design of experiments, which poses great
challenges for widespread applications. In order to fully utilize the potential of sensing
data for AM, effective analytical tools and methods that are able to handle complex image
data to reflect the microstructure and mechanical properties of AM builds are seen as a
key factor.

By extracting useful information on the process dynamic and defect conditions, an op-
timal control approach for AM parts is proposed in [89] using Laser Powder Bed Fusion
technique. Quality assurance in AM is laid out by first measuring in-situ measuring,
then estimating real-time defect states in layer wise AM images, and finally optimising
layer-by-layer control actions. A formulation on the in-situ AM control problem adapting
Markov Decision Process (MDP) is simulated with the objective of finding an optimal
control plan.
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Markov Decision Process (MDP) is a decision-making model working in a discrete
and stochastic manner in sequential environments. The core principle of the model is that
a decision maker, or agent, inhabits an environment, which changes the state randomly in
response to action choices made by it [90].

Network Weighted Inter-nodal connections
Input Actual Desired
(Deformed Node Network Network
Hy Output Output
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——

X X
XI : H2 °
Y' H3 Yo Y
o
(]
’ °
Z Zo Z
g J Hyy
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His | Error = Desired Output-Actual Output |
! Error Backpropagation |
Weight update

Figure 4. Schematic of ANN-based geometric compensation model.

The defect level is characterized in the corresponding layer images with nonhomoge-
neous patterns or irregularities. Then, layer-by-layer control actions are taken by extracting
The Hoteling T? information [91,92] from the multifractal spectrum. A stochastic dynamic
model is represented as Markov process to determine the optimized control policy where
experimental results signifies that the proposed method has a huge potential for an on-the-
fly build quality and real-time defect mitigation assessment in AM. Figure 5 encapsulates
the basis of a Markov Decision Process model discussed.

Agent

State Reward
S R, Action

St41 Environment

Figure 5. Markov decision process flow.

In additive manufacturing, microstructures created from the process can be quite
complex than conventional counterparts like CNC deductive manufacturing. With the
introduction of impermanent and spatial heat sources [93,94], microstructural heterogeneity
in the processed part is imminent. In a study conducted in 2017, a kinetic Monte Carlo
model is proposed to predict three-dimensional grain structure in AM [95], Figure 6
illustrates the flowchart of the Monte Carlo model being used.
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Figure 6. Flowchart of the Monte Carlo model.

The model proposed uses molten zone shape, surrounding temperature gradient,
and scan pattern to represent the evolution in the microstructural level. The microstructural
variation is rather prominent in metal-based additive manufacturing process is due to the
non-uniform local solidification behaviour occurring throughout the process [96,97]. A cost
ratio, c¢/c,, using the value of failure cost over corrective action cost is being implemented
to evaluate the performance of the proposed method. The results show that the model was
able to reproduce distinct and varied classes of AM microstructures with a relatively low
computation requirement.

3.3. Genetic Algorithm

In Selective Laser Melting (SLM), the parameter settings will impact the outcome of
the processed material. Properties such as the bead width, tensile strength, compressive
strength and wear are some of the properties affected by the SLM configuration imposed.
A multi-gene genetic programming is proposed in [98], to optimize the parameter set-
ting with the evolutionary stage of the method called the Modified Multi-gene Genetic
Programming (M-MGGP).

Genetic Algorithms (GA) works on the basic principles of evolution as it is a meta
heuristic to natural selection and the various subprocesses that occur spontaneously. The cy-
cle of GA is initiated by the assessment of fitness score of all the agents in the current
generation as shown in Figure 7, then with the selection of the top percentile of all models,
the models are crossed over with one another arbitrarily and finally, mutated in order to
introduce randomness. The cycle stops if the criteria is met or resets from the mutation
phase onwards [99].

Offspring New

Generation Populatign Decoded Strings
{Chromosomes)
.4
Genetic Fitness
Operators X Evaluation
Parents
X
Selection

s

Manipulation (Mating Pool) Reproduction

Figure 7. Flowchart of the GA cycle.
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M-MGGP is in the form of weighted sum of several genes with least square method for
regression phase. Figure 8 shows gene 3 with p value lower than 0.05 is eliminated with
the other two genes combined using the stepwise regression method. In the simulation
tested together with two other methods namely ANN and normal Multi-gene Genetic
Programming (MGGP), root mean square (RMSE) error shown in the proposed method is
63.8% lower than ANN and 47.9% lower relative to the normal MGGP method. The rela-
tively better generalization ability of the M-MGGP method proposed is beneficial for rapid
prototyping users in which the production time can be further decreased by optimizing
the SLM process beforehand. In addition, the bead width increases with the increase in
laser power and powder layer thickness meaning that by regulating the scanning speed of
the SLM machine, a higher variation in bead width can be obtained. A squared correlation
coefficient, R%, of up to 0.98 was recorded indicating good agreement with the experimental
data. A mean standard error of 0.25 was recorded, outperforming ANN and the normal
MGPP being benchmarked against.

0, 0, O

ONNO ® O O ©

PO®O 00®O OO

©

7sin(x;)/(10x5) 5x;/10x, 3x;/3

M — MGGP Model = P, + P, (7sin(xy)/(10x5)) + P>(5x; /10x5)

Figure 8. M-MGGP formulation using stepwise regression approach.

3.4. Genetic Algorithm

Although additive manufacturing offers a number of unique capabilities like design
freedom, its full potential might be hindered by a number of factors including the lack
of available predictive models that correlate the properties of the processed parts to the
processing parameters [100].

It includes part quality, repeatability, and the lack of material and process standards.
A predictive model for learning and prediction of metallic part’s porosity is developed
using a Gaussian Process (GP) regression model in [101] using SLM based AM.

GP is a discriminative machine learning process with the additional advantage of
providing a full conditional, statistical description for the predicted variable that can
primarily be used to establish confidence intervals and set hyperparameters which gives
an alternative to regression problems [102]. GP models are formed from classical statistical
models by substituting latent functions of parametric form by random processes with
Gaussian prior.

The Gaussian-based predictive model expresses the porosity as a function of laser
power and scanning speed identified as two of the most influencing parameters on part
porosity. The use of spatial covariance functions is extended with re-parameterization from
the rather limited application in geographical spaces to generalize 2-dimensional spaces
with different physical units. Then, a Bayesian updating methodology was adapted to
estimate the statistical model’s parameters and Kriging prediction [103] was employed
to estimate the resulting porosity at various power-speed combinations. Figure 9 sum-
marises the prediction methodology using the proposed model. It is demonstrated that the
proposed method offers accurate predictions in part porosity of stainless-steel specimen
with parameter combinations resulting in low porousness of 0.325% at 50 W laser power
consumption and scanning speed of 275 mm/s.
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Figure 9. Predictive methodology flow using Spatial Gaussian Linear model.
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This section discussed how data driven Al is impacting various AM methods and
has proven to provide improvements in several ways. Table 4 compiles the findings and
possible improvement that could be taken in the data driven Al methods discussed.

Table 4. Major findings on data-driven Al based methods and their potential improvements.

Method

Major Finding(s)

Potential Improvement(s)

Type of AM

Manufacturing
Task(s)

Surface data from manufactured AM
prototypes extracted using 3D

Artificial Neural
Network [83]

Pre-defined tolerances are
applied to the extremities of
the bounding box to account
for part deformations.

scanning techniques may be used for

creating the training datasets for the

Material Extrusion

ANN. Additional intermediate steps
will also be needed to refine the data

from 3D scans.

Quality assurance

Markov Decision
Process [89,95]

The optimal policy derived
from the proposed MDP
framework yields the smallest
expected total cost under
different cost ratios since
corrective action is conducted
only when the defect signal is
beyond the upper limit.

Simple algorithm could be

introduced to further reduce the

number of updates where graph

Powder Bed Fusion

partitioning method can be included.

Process monitoring
and optimal control

Genetic Algorithm [98]

Focused on the study of the
bead width of an
Al-powder-based fabricated
prototype in the SLM process
subjected to a continuous
laser power mode.

Other vital characteristics such as
surface roughness, waviness, and

bead width using a pulse laser mode

in the SLM to identify and evaluate

any differences.

Selective Laser Melting

Optimal control

Gaussian Process [101]

Metal-based AM is
characterized by low
repeatability due to the
complexity of the underlying
physical transformations that
take place during fabrication,
the proposed method offers a
systematic approach that
enhances the determination
of these parameter settings
while keeping the number of
experiments to a minimum.

Generalizing the model to a higher
dimensional space accounting for

additional SLM processing

parameters (e.g., hatch distance,

layer thickness, among others) and

considering the effect of the

characteristics of the raw powder
(e.g., powder morphology, particle

size distribution, fabrication

procedure) on the part porosity.

Selective Laser Melting

Optimal control and
quality assurance
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4. Error Compensation in Additive Manufacturing

Unlike other manufacturing processes, AM defects’ analysis and modelling has yet
to be fully established and explored. 3D printing which can be considered as non-linear
system possess a rather difficult error control generally [104]. The research field of error
compensation in 3D printing is still in its inception stage, however, it benefits from the
maturing techniques of various data mining analytics and machine learning. Their suc-
cessful applications in a list of engineering fields proved that similar approaches could be
applied in additive manufacturing processes specifically for error compensation which in
turn, provide congruous end products.

AM geometric deviation modelling has been investigated for various AM processes
from various aspects, including characterization of geometric approximation errors during
conversion from CAD model to standard input files, parametric modelling of machine
errors and identification of influential process factors on shape shrinkage ratio. The focus of
these methods is concentrated on a global improvement of geometrical accuracy. To derive
more specific models of shape deviation, Huang et al. decompose an AM shape deviation
into in-plane and out-of-plane deviation, and developed deviation models incorporating
only the shape parameters based on statistical methods [105].

In an AM process, the error generation mechanism can be explained by three main
eITor sources:

e  Material related error such as thermal shrinkage and material distortion arising from
the rapid heating and cooling process [106,107].

e  Production process induced error resulting from machine errors and process charac-
teristics [108,109].

e  Error due to conversion from scanned/CAD model to the standard file input as
mathematical geometry approximation [110,111].

Due to the nature of AM which lays out one layer at a time, the effect of error sources
could arise in both inside each layer and between layers, resulting in in-plane and out-of-
plane deviations of the product shape from its nominal design [105]. An in-plane situation
is considered in this research [112], where small layer thickness allows the authors to
reduce the problem into a two-dimensional (2D) problem by approximating the boundary
of a layer with a 2D shape. Calculation of the variation effects on the designed 2D shape is
essential to the effective modelling of AM shape deviation, thus motivating us to investi-
gate the transformations of the designed shape resulting from the complex error sources.
Mechanical wise, AM methods like LSTM benefits from error compensation by predicting
the tensile strength of the printed parts by utilizing in-process layer wise features acquired
by infrared sensing data [113], with a prediction RMSE of 1.8 x 102 kN.

The transformation perspective can be reasonably justified since, the process-induced
error, such as unexpected displacement of machine axes or variation in electrical compo-
nents, may cause slight translation and rotation of shape with respect to the original ma-
chine coordinate system, and a material-related error, such as thermal shrinkage, may cause
local variations of shape from its original software form. The accumulation of these devia-
tions can a result in the deviation in dimensionality from the original CAD dimensions.

The stack-up of layers will accumulate these deviations and affect the overall product
form. Therefore, three kinds of transformations can be defined on a 2D shape in the x -y
building plane: translations in x- and y- direction Ax, Ay, rotation with respect to the origin
and scaling in x- and y-direction ¢x, ¢py. Figure 10 illustrates the transformation effects on
the designed shape during AM process.
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Figure 10. Variation of product’s geometrical shape in 2D form.

A mathematical relationship between the designed shape (Jo and the final shape
()* can be established based on the transformation parameter set C = {¢x, dy, «, Ax,
Ay}. Suppose corresponding points on Qo and O* are denoted as (x*, ) and (x*,y*) in
the Cartesian coordinate system, this relationship is defined as Equation (1), in which
M3, MR, MT are homogeneous transformation matrices composed of scaling, rotation and
translation parameters, respectively:

(", y" )" = MEMRMT (2, y7,1) (1)
resolving Equation (1) yields:

(x") = (", v %), (2", y", %)) @)

Transformation parameters can be applied to the overall shape where the parametric
function can capture the global trend of an in-plane shape deviation. However, to char-
acterize variations along a shape boundary that are location dependent which includes
far more complex patterns, a learning capability should be incorporated in the deviation
model to simultaneously learn deviation of data represented in different shapes. Here is
where a multi-task Gaussian Process (GP) learning algorithm as discussed in previous
chapter comes in for local variations modelling.

In a study conducted, overlapping detection and removal algorithm to improve
repositioned-fragments of the 3D bone model that significantly affect the assembled quality
of 3D-printed bones was proposed in [114]. It focused on developing an overlapping
finding and removal algorithm to improve the 3D bone model for supporting the assembly
and disassembly of 3D printed bones. The study also shows that the averaged gap error
between two 3D-printed fragments is less than 3 mm, a significant reduction compared
to that of 3D printed bones before mesh overlapping was removed. Contours overlap in
measurements utilisation is considered with the matching properties observed.

Material extrusion or Fused Deposition Modelling (FDM) is the process of fabricating
three-dimensional parts with deposition of layer-by-layer formation of liquefied thermo-
plastic filament. Acrylonitrile-co-butadiene-co-styrene (ABS) is the most used type of
polymer in FDM. ABS possesses rigid and amorphous engineering thermoplastic copoly-
mer meaning it has a list of useful properties for prototype build. Some of these traits
include durability, toughness, and its relatively low cost [115]. Other polymer types have
been tested to be used hand in hand in FDM such as Semi-crystalline polymers, they are
often considered deformable, have high service temperatures relative to amorphous poly-
mers [116,117]. However, Semi-crystalline when used in FDM tends to deform under
varying temperatures during part cooling. During the crystallization phase that occur
during the cooling down phase of such material, polymer chains will be drawn very closely
together which form a higher density area on the printed part. This will cause the lower
layer of the bind to be prone to warps. In tackling this problem, researchers have proposed
many solutions such as addition of fillers to improve the actual FDM on its building pro-
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cess itself where carbon fibre is introduced. This dramatically improved the stiffness of
the final components being formed other than their perceived strength value. Moreover,
the carbon fibre enhanced the coefficient of thermal expansion (CTE) of the polymer which
leads to reduction of distortion, more apparent in large scale productions [118]. Relative
to conventional injection moulding of PLA materials, FDM printed parts are tested with
different strain rates with 45° raster angle (angle at which the materials are laid at every
layers) [119], achieved higher ultimate tensile strength (UTS) of 61.42 MPa than injection
moulding (49.45 MPa) with 24.2% UTS improvement at 2.5 x 10~4s~! strain rate.

Nowadays, online model regression techniques are required by the manufacturers
to assist in the increase of productivity and reduce quality defects by tracking the system
variations promptly. Model regression is used to improve the product quality or do failure
prognosis for the machines. Very few of these algorithms have considered the regression of
time-varying systems. The proposed model in [120], addresses the online model regression
for time-varying manufacturing systems with random unknown model variations during
production. For comparison, the suboptimal method is also tested in another scenario and
defined the following average MSE over all points as the metric to compare the performance
of the two methods. In this study, a standard Gaussian Process Regression (GPR) method
was adapted for the model regression of time varying manufacturing systems with shift
and drift parameters unknown. In addition, a suboptimal GPR method was proposed
which ignores the correlation between the latest measurement and the historical data as a
trade-off between the storage expense and the estimation optimality. Verification of the
effectiveness of the two proposed methods have been simulated and compared.

A new method of predictive model based on Gaussian process approach is proposed by
Tapia et al. using selective laser melting [121]. The estimate of statistical model parameters
is collected via Bayesian inference framework, and porosity of the parts predicted using
the Kriging method for a range of pre-defined setting. A predictive modeling framework
is proposed based on Gaussian process models to predict the resulting density in parts
manufactured using selective laser melting as a function of the processing parameters.
The most impactful parameters that have been reported on SLM parts’ porosity include
laser power, scanning speed, powder layer thickness, hatch distance and laser beam size.
A Gaussian process-based predictive model that assumes the porosity of the fabricated part
as a function of laser power and scanning speed is formulated, which have been identified
as two of the most significant processing parameters affecting part porosity. The proposed
methodology was validated using a real-world case study of predicting the porosity of
17-4 PH stainless steel specimens manufactured on a ProX 100TM SLM system.

5. Deep Learning for Error Compensation in Additive Manufacturing

Accuracy and finishing of 3D printed objects are relatively at lower levels compared to
traditional mass manufacturing methods. The main reason behind this is that the models
to be printed are usually arbitrary and are printed in small quantities. The deformation is
affected by the shape of the object and there is a lack of a widely accepted universal method
for the error compensation. It is neither easy nor economical to perform the compensation
manually. Several Al methods including emerging technique like deep learning, are cur-
rently being widely investigated for a wide variety of manufacturing systems. To give an
overview, the applications of the state-of-the-art deep learning techniques in manufacturing
are discussed, in this chapter. We will highlight the present framework for automatic error
compensation implementing Al based algorithms.

5.1. Learning-Based Framework with 3D Deep Learning

The finished shape of a 3D printed object can be acquired by technologies, such as
scanning. In this method proposed by Shen et al., ‘3D deep learning’” method is used
to train a deep neural network [122]. This method is demonstrated for a specific task
which is dental crown printing, where the network can learn the function of distortion
when a large amount of data is used for training. According to the authors, it is the
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first application of the deep neural network to the error compensation in 3D printing.
The “inverse function network” to compensate for the error is also adapted in the overall
framework. Four deformations of the dental crowns are used to verify the performance of
the neural network:

1.  Translation.

2. Up-scaling.

3.  Down-scaling.
4. Rotation.

Based on a standard encoding method in [123], it represents a 3D model as a probability
distribution of binary variables on a 3D voxel grid, with ‘1’ indicating the voxel is inside
the mesh and ‘0’ is not. This way, the model is digitised. The 3D convolutional operation is
rather similar to a 2D convolutional operation. However, the input, output, and filters are
3D matrix with width, height, and depth. Kernels move at a certain step in the 3D space,
and the overlap of the kernel and the input executes a convolution operation to form a voxel
in the output. Post convolution with the input, the value of the voxel in output is summed
up. According to the authors, the network follows the idea of an auto-encoder with Unet
architecture [124], where the network contains an encoder and a decoder. The encoder and
the decoder are concatenated by the structure of “U-net” and the fully connected layers are
not used. A latent representation of the input volume is extracted by the encoder, and the
decoder outputs a prediction according to spatial knowledge gathered by the encoder.

The cross-entropy loss function is common. However, an improved cross-entropy loss
function with « as the weighting penalty parameter is applied. It is set at 0.85 to punish
more false negative case. This idea is inspired from [125], due to the sparsity of voxel
data, it may be more probable that the neural network recognizes 1 as 0. The value of «
is gained by experiments. The y is the target value in {0, 1} and the y’ is the output of the
neural network in (0, 1) for each voxel. From the results presented, the inverse deformation
approximate performance is proven to be able to compensate the changes from the nominal
model used in the tests solely from the voxel representation of STL form of the 3D build.

5.2. Long Short-Term Memory for Layer Manufacturing Analytics

A data-driven predictive model is proposed by Jhang et al., taking the printing process
into account in a deep learning network structure, using Fused Deposition Modeling
(FDM) as a demonstrative case study [113]. Temperature and vibration data are measured
to reveal the layer-wise thermal and mechanical activities as well as the process variations,
and the inter-relationship among different printing layers is characterized by a Long Short-
term Memory (LSTM) network. Process parameters and material property data combined
with data collected from sensors are fused in order to estimate the tensile strength of
manufactured parts. A modified Layer-wise Relevance Propagation (LRP) is applied to
calculate the effect of each process parameters on the prediction result.

In a previous work adapting Design of Experiment (DoE) approach [126], additional
machine setting played a big role in the surface roughness where the slice height and
width played major roles whereas factors like temperature was insignificant. In another
study [127], consideration of material properties and machine settings taking into account
factors like tool path and layer thickness on warp deformation is scrutinised. However,
these methods are highly dependent on quantitative correlations to support the proposition
of thinner printing layers alongside the preferred setup for FDM manufacturing.

In order to improve part tensile strength prediction performance in FDM, a machine
learning method has been developed based on an LSTM network and in-process sensing
data. The main goal is to better understand the effect of sequential layer-by-layer printing
process which is the main trait of FDM. Firstly, a set of sensors including IR sensor, a thermo-
couple and an accelerometer capture the layer-wise activities. The sensing data is taken as
input to the individual LSTM cells that reflect the individual printing layers. The inter-cell
communication through the LSTM forward path is used to model the layer-wise thermal
history. The processed sensing data from each LSTM cell, representing the contribution
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from each of the printing layers to the part property, are then combined with the process
parameters and material property to predict the tensile strength of manufactured parts
hand in hand. Additionally, Layer-wise Relevance Propagation (LRP) algorithm has been
modified and adapted in analysing the extent of process parameters” impact in tensile
strength prediction.

Experimental results show that the LSTM-based predictive model outperforms sev-
eral machine learning techniques, such as Support Vector Regression and Random Forest.
In process sensing, it shows that significant improvement was made in part tensile strength
prediction. Specifically, it reduces the prediction RMSE by 44% and improves the pre-
diction of variation by 22.6% reflected by the R2 value over the model that only uses the
process parameters and material property as network input. From the relevance analysis,
it is proven that three process parameters namely extruder temperature, printing speed
and layer height, massively contribute to the tensile strength prediction in the model.
The proposed LSTM model managed to outperform the RF and SVR models for part ten-
sile strength prediction, with improvement of 9.8% and 24.3%, respectively. This further
approves the efficacy of the sequential layer-by-layer modelling of the FDM process via the
LSTM network.

5.3. Wear Prediction for Component Production

In FDM characteristics such as surface roughness, mechanical strength and dimen-
sional accuracy are found to influence the wear strength of components manufactured via
FDM. The wear strength of the FDM fabricated prototypes is measured based on five input
variables as demonstrated in [128]. The variables are:

Thickness.
Orientation.
Raster angle.
Raster width
Air gap.

SRR

Wear strength is a crucial attribute for the durability of part and little work has been
done to better understand the wear characteristic of the rapid prototyping processed part.

For each of the input process variables, values at varied levels are considered as per
guidelines of machine manufacturer and industrial application. Wear volume is determined
by the difference in height by multiplying it to the cross-sectional area, while sliding
distance is obtained by multiplying time with speed of rotation. For the wear testing,
pin on disk apparatus is used. The proposed method using Improved approach of Multi-
gene Genetic Programming (Im-MGGP) is compared to that of the other three potential
models; standardised MGGP, SVR and ANN [129].

To understand the concepts of MGGP method, the basics of Genetic Programming
(GP) is discussed in brief. GP generates models automatically based on the given data using
Darwinian’s principle of survival of the fittest [130]. The same working principle applies in
GP with Genetic Algorithm (GA) but the only difference between them is that, GA evolves
solutions represented by strings (binary or real number) of fixed length, however GP
generates solutions represented by tree structures of varying sizes. GP algorithm initiates
by randomly generating models. The number of models generated is represented by
the population size. The models are formed by combining the elements randomly from
the functional and terminal set. A function set which usually comprises elements such
as basic arithmetic operations, Boolean operators or other operators predefined by the
user. The terminal set comprises elements such as numerical constants and input decision
variables of the process. Dissimilar to GP, the evolutionary phase of the MGGP algorithm
evolves models, where every model is formed by the combination of trees or genes.

It is validated that the robustness of the model by unveiling dominant input parame-
ters and hidden non-linear relationships. It was found that the wear strength decreases
with an increase in layer thickness, raster width but strength increases with increase in air
gap. The high generalisation ability of the Im-MGGP model is highly beneficial for rapid
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prototyping process, where it requires contingency that involves high-fidelity models that
can predict wear strength in ambiguous input process conditions. The model provides an
explicit functional relationship between wear strength and the input process parameters,
and thus can be further extended for offline prediction.

Table 5 summarises the three error compensation approaches incorporating different
deep learning algorithms and the major findings.

Table 5. Summary for error compensation methods in additive manufacturing.

Error Compensation Method

Approach

Major Finding(s)

Learning-Based Framework with 3D Deep
Learning [123]

Four deformation parameters are used to
estimate finishing errors presented by the
means of voxelised representation of dental
crown adapting U-net auto encoder.

Inverse deformation approximate performance
is proven to be able to compensate the changes
from the nominal model used in the tests
solely from the voxel representation of STL
form of the 3D model.

Long Short-Term Memory for Layer
Manufacturing Analytics [113]

Temperature and vibration data are collected
to estimate process variations adapting Long
Short-term Memory network.

Inverse deformation approximate performance
is proven to be able to compensate the changes
from the nominal model used in the tests
solely from the voxel representation of STL
form of the 3D model.

Wear Prediction for Component
Production [129]

Difference in height product with its
cross-sectional area is used to calculate the
wear volume adapting.

Improved approach of Multi-gene

Genetic Programming.

Robustness of the model is validated by
unveiling dominant input parameters and
hidden non-linear relationships. Wear strength
decreases as layer thickness and air gap
decreases.

6. Future Directions

Of late, we see a steady increase in awareness in the industrial segments on the differ-
ent applications AM can support. The application driven approach is getting more and
more attention and we see that coming from the financing world [131], where today several
investment funds are claiming that interest to invest in traditional machine manufactur-
ing is slowly declining, instead they opt for start-ups that apply 3D printing in certain
domains [132,133]. The acquisition of Makerbot by Stratsys for USD 403 million is one of
the indicators for the proliferation of market interest and confidence in this manufacturing
technology [134]. Today they are looking at methodologies to simulate consultancy and
co-creation in a wide group of industries that started using 3D printing. This is the way that
they create a market and a demand for a product rather than a supply for a non-existing
market. That is why the application driven approach and the stimulation of the users’
demand is going to really simulate 3D printing or AM further.

With regards to materials, 3D printing in the near future will more work in the opposite
direction of the well-known phrase of “less is more”, we will be seeing more different
materials and we will be able to target more application-based approach rather than an
available manufacturing technology driven approach. 3D printing and materials have
always been an unending cycle, whereas you see that materials are not being developed
because they are not processable on commercially available machines. However, there is a
drive now that is fuelled by the willingness and the versatility in large materials supply
from producers to enable the push in this technology. This means that there is still a
steadfast growth in the importance of 3D printed products. Many highly demanding
industries like the aerospace and automotive sectors have a demand that are different
than the ones being supplied, at the moment they are willing to make compromises to
make advances in additive manufacturing in various ways, but in the future with new
materials developments it will not be necessary anymore for such compromises. Designers
can go towards the materials that they want to use for their exact application either in
functional prototypes or even in series manufacturing. In practical manufacturing industry,
the printability or complexity calculation of a product is not based on a single indicator but
rather an integration of multiple indicators for instance, time, cost, raw material, model size,
and geometry. The problems on how to test and determine multi-indicators and the effects
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of the indicators have proportionately transformed into an optimization problem solved
by Genetic Algorithms (GA) and genetics-based ML method to achieve an optimal effect
proportionate to the aim of minimising the complexity value that has been a focus as of
late. The motivation as to why GA is adapted is due to the ability of large data could to
be expressed in string binary format [135]. In relation to other methods, this probabilistic
search method requires less assumptions in the objective functions as shown in [136].
Moreover, the scheme being highlighted is developed on the basis of the current level
of 3D printing. To further popularize 3D printing, more research should be focused on
printing technique optimization in order to dramatically lower the complexity threshold
in a multi-indicative setting. As a result, by combining the assistance of the printability
checker and the improved printing method, more and more products are in the printable
state than earlier.

When we look at the revolution of 3D printing has undergone over the past years, it is
clearly proven that there is a big impact in rapid prototyping architecture and from there
had evolve into other aspects in design and manufacturing process as a whole. The big
evolution that we are beginning to observe nowadays is that 3D printing is being adopted
for serial manufacturing. A number of mass manufacturers have been looking at 3D
printing and are actually integrating it into their ecosystem [137]. In order for AM to
become a part of the mass manufacturing ecosystem, productivity of the technology is a
key element. The industry is always trying to increase the productivity, so software plays a
big role in this day and age by looking at a number of innovative ways of automating tasks.
Automation of steps that are not just intending to reduce labour time but more importantly
to improve the efficiency of the entire process by automating legwork steps, and by doing
so, we can enhance the number of parts that are being built at a specific time on a specific
machine. This can be done by working on the simulation process before the build is started
or even in real-time in the software department. Nowadays, a new direction that is getting
more attention is to incorporate the 3D printing process with edge computing to hinder
bottlenecking of unnecessary information from being bundled up and processed. Another
advantage of simulating prior to production is the possibility of reducing any incoming
errors and most importantly preventing them from happening in the first place by taking
the countermeasures. Though the computational simulation has verified the scheme shown
in [6], it is possible to simplifying and accelerate a 3D printing process, evidently, there are
still some defects which may be affecting the printing precision and optimal solution. In the
case of the Christofides algorithm utilising the distance as a criterion, it can only prove
that a nozzle traversing distance or time is optimal. However, it has yet to be proven
that the total time consumption is the shortest under the circumstance of neglecting the
retraction time. In [6], it points out that a retraction method has to be considered due to the
generation of excess filament leaking, which usually happens in a typical printer. Moreover,
in the effort to reduce the computing and printing time, researchers proposed a simplified
method to unite the small, connected print segments into integrated segments based on
the consolidation threshold rate.

Regarding the connectivity of AM process, the biggest change expected is that new
players entering the market have a new set of paradigms by default since 3D printing
technologies are becoming more accessible by the years. Whereas companies having
traditional grounds in traditional manufacturing tend to have a pre-set of an old and
proven perspectives that are usually not as environmentally friendly as AM. However,
there are a lot of complementarity and opportunities that these major companies can bridge
with more proven techniques expected to be infused with the core principles of AM.

By making the process smoother, AM can provide a more cost effective and efficient
solutions, hence enabling more designers getting up to a speed that is not usually possible
with the current knowledge that we have on AM today. In a lot if instances, ordering a 3D
printed part is not easy because of the way 3D printing process is set up. In terms of 3D
printing manufacturing we are still in an early stage of the product lifecycle, working with
the early adaptors and innovators. Another important element in connectivity nowadays
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is the cloud platform. A comprehensive cloud platform is not only about the collection of
abundant resources. Much research still focus on the technical innovation, resulting in the
lack of attention to system security and safety for future deployment and adaptation of 3D
printing in major companies. Even though the sharing platform may highly improve the
resource usage and provides the opportunity to middle or small-scale manufacturers to
accomplish their production, it also leads to the malicious attacks from unexpected parties,
causing the risks of information leak in these competitive and harsh environment [138].
A method of establishment of a private cloud platform, offering benefits and services from
public platform environment and self-management is proposed in [139]. Although it may
reduce the risk to some extent, the specific criteria and standard to implement still requires
extensive research.

Governments globally [138,139] are getting more involved in 3D printing way of
manufacturing because the developers have reached a level of maturity in creating more
sustainable and energy efficient 3D printers. The AM sector is leaning more towards
various manufacturing technology approaches providing a more significant impact in
the lives of people especially in the research and education sectors. Currently the term
‘3D printing’ is widely being adapted for additive manufacturing from polymer based to
metal and concrete, so the expectation of what can and cannot be done is still vague with
the colloquial term, meaning there is not a limit to what can be produced by this particular
method at least on the perspective level. This can be challenging towards government
bodies to estimate what the possible risks and benefits are for this means of manufacturing.
The two main concerns are basically, the Intellectual Property (IP) and the other one is
the product liability, causing the same effect as the Internet has brought to the music and
movie industries. Nonetheless, it will disrupt the traditional supply chains and part of
the value will shift from the material objects to the digital file, thus solutions on how to
protect and regulate CAD files needs to be a focus in the near future. With every parties
being on the same page, it is possible to create a good and safe regulatory framework
that protects their designers and programmers from malicious forms of attacks relating
to cybersecurity issues. Social cloud manufacturing comes into the picture as it enables
large firms to outsource a portion of their manufacturing tasks to smaller independent
companies to allow the phases of ideation and fabrication in co-creating a product design
while protecting the confidentiality of the design [140]. Cloud manufacturing (CM) pro-
vides a list of breakthroughs for challenges faced in sustainable manufacturing. Some of
the major challenges faced by companies are namely; insufficient niche expertise present
within an enterprise and the lack of information on quantitative environmental impact
on a specified manufacturing process [141]. One key factor of cloud manufacturing is
the basis of collective knowledge of data retrieval, storage and sharing in a supply chain.
The parties which share a data can determine what type, how much, to whom the data is
shared with. Initially, a partnership between cloud users only allows specific type of data
to be shared, but as the requirement and trust progresses, it may involve various forms
of classified information being disclosed. In Social Manufacturing, manufacturers and
selected individuals touted as prosumers contribute to the actual design of a product [142]
by crowdsourcing information to simulate innovative designs and ideas. Cloud manu-
facturing platform can be used to match developers to relevant expertise thus allowing
ubiquitous access to sensitive design information [143]. Even with the uncertainty of how
far intellectual property’s barriers could be stretched, cloud manufacturing will benefit
from CM’s principles from a share-to-gain philosophy [144].

Thus, a comprehensive cloud platform is not only about the collection of abundant
resources. A lot of research still focus on the technical innovation, resulting in the lack
of attention to system security and safety for future deployment and adaptation of 3D
printing in major companies. Though the sharing platform may highly improve the
resource usage and provides the opportunity to middle or small-scale manufacturers to
accomplish their production. It also leads to the malicious attacks from unexpected parties,
causing the risks of information leak in these competitive and harsh environment [145].
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A method of establishment of a private cloud platform, offering benefits and services
from public platform environment but self-managed is reported in [146]. Although it may
lower the risk to some extent, the specific criteria and standard to implement still require
extensive research.

All in all, in the coming years we do not need to expect for a major explosion of the
market, but at the same time we do not have to be pessimistic since the study growth will
continue steadily. A steady growth will ensure an increasing number of customers and end
users in AM and an increased number of companies that are willing to convert or at least
merge AM with traditional methods in their manufacturing lines.

7. Conclusions

This paper provides a comprehensive review of present works bridging machine
learning and additive manufacturing in overcoming various manufacturing and design
process challenges. Error prediction in additive manufacturing is presented, ranging from
various techniques to tackle the issue of variations in manufactured model from the initial
designed form. Error compensation methods through quality assurance, process monitor-
ing and optimal control could further improve the final product’s build quality and the
production timeline with the inclusion of computerized algorithms has been summarized
with significant improvements observed especially in FDM and DMLS. Although a lot
of simulations are carried out by researchers, there are still a huge gap to be filled in the
efforts to implement Al in additive manufacturing to further build the confidence of major
manufacturers around the globe to apply this technique as an integral part of the design
and manufacturing process of a product. As additive manufacturing is expected to become
the mainstream mode of production soon, further developments on Al architectures in
this relatively new field are necessary to accelerate the proliferation of this manufacturing
solution in the Industry 4.0 umbrella in providing a reliable cyber-physical system to be
tested out and ultimately implemented. This paper would hopefully give a constructive
step by step overview on people who are new to AM and the inclusivity of Al frame-
works in different AM tasks could efficiently improve the overall process of this new form
of manufacturing.
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