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Abstract: The allelopathic potential of plant species and their related compounds has been in-
creasingly reported to be biological tools for weed control. The allelopathic potential of Garcinia
xanthochymus was assessed against several test plant species: lettuce, rapeseed, Italian ryegrass,
and timothy. The extracts of G. xanthochymus leaves significantly inhibited all the test plants in a
concentration- and species-specific manner. Therefore, to identify the specific compounds involved in
the allelopathic activity of the G. xanthochymus extracts, assay-guided purification was carried out and
two allelopathic compounds were isolated and identified as methyl phloretate {3-(4-hydroxyphenyl)
propionic acid methyl ester} and vanillic acid (4-hydroxy-3-methoxybenzoic acid). Both of the sub-
stances significantly arrested the cress and timothy seedlings growth. I50 values (concentrations
required for 50% inhibition) for shoots and roots growth of the cress and timothy were 113.6–104.6
and 53.3–40.5 µM, respectively, for methyl phloretate, and 331.6–314.7 and 118.8–107.4 µM, respec-
tively, for vanillic acid, which implied that methyl phloretate was close to 3- and 2-fold more effective
than vanillic acid against cress and timothy, respectively. This report is the first on the presence of
methyl phloretate in a plant and its phytotoxic property. These observations suggest that methyl
phloretate and vanillic acid might participate in the phytotoxicity of G. xanthochymus extract.

Keywords: Garcinia xanthochymus; growth inhibitory compounds; allelopathy; vanillic acid;
methyl phloretate

1. Introduction

With the world population increasing, maximizing agricultural production is essential.
Weeds constrain agricultural production by directly competing with crops for growth
resources [1]. Using synthetic herbicides may be the most efficient and cost-effective
weed management strategy that has contributed to improving crop production over the
last few decades [2]. However, non-judicious use of synthetic agrochemicals has had
a significant negative effect on the planet and human wellbeing [3]. The evolution of
resistant weeds is another consequence of extensive herbicide use [4]. Thus, to achieve
safer agriculture, it is essential to replace hazardous synthetic herbicides with eco-friendly
weed-management approaches. Natural compounds with diversified structures and modes
of action could offer a new way to develop natural bio-herbicides [5]. Plants produce
secondary metabolites called allelochemicals, which can negatively influence the process
of growth, and development of surrounding plants [6,7]. In recent years, plant-derived
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natural phytotoxic compounds have been broadly investigated for herbicidal properties
and have been shown to suppress weeds. These compounds can then be used as promising
templates for standard bio-herbicides [8].

Garcinia xanthochymus Hook. f. ex T. Anderson (Clusiaceae) is a medium-size tree that
has straight trunk with spreading type branches rising in a whorl [9]. This plant is generally
found in Bangladesh, India, Myanmar, Thailand, and China [10,11]. G. xanthochymus is
popularly known as false mangosteen because the shape of its fruit is similar to that of
mangosteen. The leaves of the plant are light green color during young stage and become
dark green when mature [12]. Distinct parts of this tree have traditionally been used for
different therapeutic practices for many years in different south Asian countries [13]. In
Bangladesh, G. xanthochymus is usually treated as folk drug for the treatment of diarrhea,
dysentery, and vomiting. This plant is also used to treat worms and food toxins [14].

Earlier reports revealed that G. xanthochymus contains several phytochemicals that
have antibacterial, anti-inflammatory, and antioxidant activities [15]. Although extensive
research on different biological activities of G. xanthochymus have been conducted, very little
is known about its phytotoxic potential or the constituents responsible for its phytotoxicity.
Hence, this study aimed to (i) examine the phytotoxic potential of G. xanthochymus and (ii)
detect phytotoxic substances which can be used as a potential candidate for bioherbicide.

2. Materials and Methods
2.1. Plant Sample

The leaf samples of Garcinia xanthochymus Hook.f. ex T.Anderson were obtained from
a North-Eastern district (Netrokona) of Bangladesh (24.8750◦ N 90.7333◦ E) in the time
of June and July 2017. A voucher specimen (SAUCB 19127) was submitted to the Crop
Botany Herbarium at Sylhet Agricultural University, Sylhet-3100, Bangladesh. Collected
leaves were thoroughly washed and dried under room temperature. Then, the leaves were
powdered in a grinder and kept for further use at 2 ◦C.

2.2. Model Test Species

Four model test plant species Italian ryegrass (Lolium multiflorum Lam.), lettuce (Lac-
tuca sativa L.), rapeseed (Brassica napus L.) and timothy (Phleum pratense L.) were chosen for
conducting the phytotoxicity assay.

2.3. Extraction and Bioassay

In total, 100g leaf powder of G. xanthochymus was extracted with 500 mL aqueous
methanol (70% (v/v)) at room temperature for two days. After filtration with single layer
filter paper (No. 2, 125 mm; Toyo Ltd., Tokyo, Japan), the residue was re-extracted for
one day with equal volume of methanol and filtered again. The two filtrates were then
mixed and dried in a rotavapor at 40 ◦C. The bioassay experiment was conducted with
G. xanthochymus crude extracts against selected tested plants at different concentrations
as 0.001, 0.003, 0.01, 0.03, 0.1, and 0.3 g of dry weight (DW) equivalent extract/mL as
described by Rob et al. [16]. To prepare desired concentrates, an aliquot of the extracts was
applied to a sheet of filter paper (No. 2) in 28 mm Petri dishes. Then, the solvent of the
mixture (methanol) was dried in a draft chamber and 0.6 mL of 0.05% (v/v) aqueous Tween
20 (polyoxyethylene sorbitan monolaurate; Nacalai, Kyoto, Japan) solution was added to
each Petri dish. Tween 20 was used as a non-toxic surfactant. Then, seeds of test plants
were set. The seeds in the Petri dishes treated with Tween 20 without extract were used as
a control.

2.4. Purification of The Active Substances

Powder of Garcinia xanthochymus leaves (2 kg) was extracted as aforementioned pro-
cedure. The obtained extracts were then evaporated with a vacuum evaporator at 40 ◦C
to produce an aqueous residue and adjusted to pH 7.0 with phosphate buffer (1M). This
residue was partitioned with an equal volume of ethyl acetate for three times. The un-
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wanted aqueous part in ethyl acetate fraction was removed by adding anhydrous Na2SO4.
As described above, a bioassay with the generated aqueous and ethyl acetate fractions was
conducted against cress. The ethyl acetate fraction imposed stronger phytotoxic activity
compared to the aqueous fraction (data not shown). Therefore, ethyl acetate fraction was
selected for further bio-guided fractionation by different column chromatographic steps
including silica gel, Sephadex LH-20, C18 cartridge and reverse-phase HPLC (500 × 10 mm
I.D. ODS AQ-325; YMC Ltd., Kyoto, Japan) monitoring cress phytotoxicity assay in each
purification step following the procedure described by Rob et al. (2019) which led to the
isolation of two substances, 1 and 2. These substances 1 and 2 were then re-purified with
reverse-phase HPLC (4.6 × 250 mm I.D., S-5 µm, Inertsil® ODS-3; GL Science Inc., Tokyo,
Japan) at a flow rate of 0.8 mL min−1 with 5% and 30% aqueous methanol and obtained
at 10–15 min and 50–60 min retention time, respectively. Finally, the two substances were
characterized by spectral data analysis.

2.5. Bioassay of the Isolated Compounds

The identified compounds were dissolved in 2 mL methanol to make different concen-
trations (1, 3, 10, 30, 100, 300, and 1000 µM). Then, prepared concentrations were applied
on cress and timothy to perform bioassays described above.

2.6. Statistical Analysis

Bioassays were replicated thrice with 10 seedlings and repeated twice. The obtained
data were subjected to ANOVA followed by Tukey’s HSD test with the help of statistical
software “SPSS” Version 24 [17]. Concentrations required for the suppression of 50%
growth of the tested plants (I50 value) in assay experiments were estimated by the logistic
regression equation of the concentration-response curves.

3. Results
3.1. Phytotoxic Activity of the G. Xanthochymus Extract

The effect of aqueous methanolic extract obtained from G. xanthochymus is presented
in Figure 1. All the applied concentrations suppressed the growth of all test plant species,
except 0.001 g DW equivalent extract mL−1 concentration. At concentration 0.1 g DW
equivalent extract mL−1, lettuce growth was completely restricted while at the same
treatment, shoot and root length of rapeseed, Italian ryegrass and timothy were restricted
to 3.88, 3.41, 3.05% and 2.9, 5.5, 0.0% of control seedlings, respectively. The seedling length
of all test plants limited to less than 3% of control, when treated with the concentration
obtained from 0.3 g DW equivalent extract mL−1. The I50 values of G. xanthochymus extract
for all tested plants varied from 4.7 to 17.2 mg DW equivalent extract mL−1 as shown in
Table 1.

3.2. Bioativity of Different Fractions in The Separtion Steps

Different fractions in silica gel column chromatography showed different level of
activity at the concentration 0.3 g dry weight equivalent extract/mL of G. xanthochymus.
(Figure 2). The highest bioactivity was achieved with the fractions containing 60 and 70%
ethyl acetate in n-hexane and inhibited the seedling growth of cress by less than 13 and 2%,
respectively. Combined crude of both of these fractions was subjected to separate expected
bioactive compounds. In each step, the highest bioactive fraction was selected for the next
separation steps (data not shown).
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Figure 1. Effect of the G. xanthochymus extracts on the shoot and root growth of (A) lettuce, (B) rapeseed, (C) Italian
ryegrass, and (D) timothy at different concentrations. Mean ± SE was calculated from two independent experiments
(Replication = 3 times, number of seedlings/treatments = 10, n = 60). Asterisks denote significant variations between
indicated plants (** p < 0.01 and *** p < 0.001).

Table 1. I50 values (concentrations causing 50% growth inhibition) of Garcinia xanthochymus
leaf extracts (mg dry weight equivalent extract/mL) on lettuce, rapeseed, Italian ryegrass, and
timothy ± standard deviation.

Aqueous Methanol Extracts of G. xanthochymus (mg Dry Weight Equivalent Extract/mL)

Test plant Species Shoot Root

Lettuce 7.13 ± 0.94 4.73 ± 0.61
Rapeseed 17.20 ± 0.68 14.23 ± 0.85

Italian ryegrass 15.84 ± 0.78 8.53 ± 0.99
Timothy 7.13 ± 0.72 4.81 ± 0.97

3.3. Characterization of The Compounds

Two phytotoxic substances were identified by bio-guided fractionation from the
leaf extract of G. xanthochymys by spectral analysis. The formula of the substance 1 was
assigned as C8H8O4 based on HRESIMS at m/z 167.0349 [M–H]- (calcd for C8H7O4,
167.0344, ∆ = +0.5 mmu); 1H NMR (400 MHz, D2O) δH 7.52 (d, J = 7.50 Hz, 1 H, H-2),
7.45 (dd, J = 8.5, 2.0 Hz, 1 H, H-6), 6.93 (d, J = 8.5 Hz, 1 H, H-5), 3.90 (s, 3 H, H-8); 13C NMR
(100 MHz, D2O) δC 173.5 (C-7), 147.9 (C-4), 146.7 (C-3), 128.1 (C-6), 123.2 (C-1), 114.8 (C-
5), 113.1 (C-2), 55.8 (C-8). Comparing this spectral data with previously published data
substance was recognized as vanillic acid with the systematic name 4-hydroxy-3-methoxy
benzoic acid shown in Figure 3 [18].
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Figure 2. Effect of silica gel column fractions on the seedling growth of cress at the concentration 0.3 g dry weight equivalent
extract/mL of G. xanthochymus. The column was eluted with raising quantities of the ethyl acetate (10% per step, v/v)
in n-hexane: F1, F2, F3, F4, F5, F6 and F7 contained 20%, 30%, 40%, 50%, 60%, 70% and 80% ethyl acetate in n-hexane,
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bars are standard error of the mean. Asterisks show major variations between treatments and control by least significant
difference (LSD) test (* p < 0.05 and *** p < 0.001).
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Figure 3. Molecular structure of the vanillic acid and the methyl phloretate from the G. xanthochymus leaf extract.

The molecular formula of the substance 2 was assigned as C10 H12O3 based on HRES-
IMS at m/z 181.0830 [M + H]+ (calcd for C10 H13O3, 181.0865, ∆ = −3.5 mmu); 1H NMR
(400 MHz, CDCl3) δH 7.07 (d, J = 8.7 Hz, 2 H, H5, 9), 6.76 (d, J = 8.7 Hz, 2 H, H6, 8),
3.67 (s, 3 H, H10), 2.88 (t, J = 7.8 Hz, 2 H, H3), 2.60 (t, J = 7.8 Hz, 2 H, H2). The substance
was identified as methyl phloretate {3-(4-hydroxyphenyl) propionic acid methyl ester}
(Figure 3) by investigating original data with previously documented literature [19].

3.4. Biological Activity of the Isolated Substances

The phytotoxic activity of two identified substances was checked on cress and timothy.
Vanillic acid caused significant inhibition on growth of cress and timothy at concentrations
30 and 10 µM, respectively (Figure 4). The I50 values of vanillic acid for the shoot and
root growth of cress were 331.7 and 314.7 µM, respectively, while those values for timothy
were 118.8 and 107.3 µM, respectively (Table 2). Similarly, methyl phloretate also possessed
strong phytotoxicity against the test plants with the I50 values ranged from 104.7 to 113.7 µM
for cress seedlings and 53.4 to 40.6 µM for timothy seedlings (Table 2). It is notable that,
the inhibition was concentration dependent and timothy was more susceptible to both
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compounds compared to cress. Moreover, methyl phloretate was more phytotoxic than
vanillic acid concerning the I50 values of the compounds (Figure 4).
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Table 2. The I50 value (concentration causing 50% of growth inhibition) of vanillic acid and methyl
phloretate (µM) on cress and timothy standard deviation.

Tested Species
Vanillic Acid Methyl Phloretate

Shoot *** Root *** Shoot *** Root ***

dicot Cress 331.7 ± 7.1 314.7 ± 8.3 113.7 ± 3.8 104.7 ± 2.9

Monocot Timothy 118.8 ± 4.4 107.3 ± 4.1 53.4 ± 2.8 40.6 ± 1.9
Significant differences between vanillic acid and methyl phloretate represented by *** p < 0.001 (paired t-test).

4. Discussion

The results revealed that G. xanthochymus extract markedly inhibited both the dicot
species (lettuce and rapeseed) and the monocot species (Italian ryegrass and timothy).
The phytotoxicity of the extract against all the test plants increased with the increase in
concentration. Other researchers have also documented such concentration-dependent
inhibitory activity of different plant extracts [20–26]. Our previous experiment with Garcinia
pedunculata also showed strong inhibition against several test species [27]. In addition,
the phytotoxic activity of the extracts varied against different test plants. Tuyen et al. [28]
also reported species specificity of Castanea crenata extracts against radish, lettuce, and
barnyard grass. These concentration-dependent and species-specific phytotoxicity of the G.
xanthochymus leaf extract led us to assume that the extract contains potential phytotoxic
substances.

Bio-guided isolation resulted in obtaining two phytotoxic substances from the G. xan-
thochymus leaf extract, which were identified as vanillic acid, and methyl phloretate through
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spectral analysis. Vanillic acid is one of the most common phenolic compounds found in
different plant parts. It was previously identified in extracts from different plants such
as Alnus japonica, Gossypium mexicanum, Rosa canina, Panax ginseng [29], and Chenopodium
murale [30]. Vanillic acid can act as an antimicrobial, antioxidant [31], anti-inflammatory,
and antidiabetic agent [32]. However, phytotoxic effects of the vanillic acid have also been
narrated by many researchers [33]. Methyl phloretate is a methyl ester of phenylpropanoid
phenol, phloretic acid [34], which is a naturally occurring phenolic compound that can be
obtained from p-coumaric acid hydrogenation or synthesized from phloretin, a secondary
metabolite of apple leaves [35]. In phloretic acid, there is a propionic acid side chain
that is suitable for esterification, leading to production of methyl phloretate [36]. Methyl
phloretate is a potential synthetic intermediate and can be used to prepare antidiabetic
agents [37].

In our study, the inhibitory activity of vanillic acid and methyl phloretate depended on
the concentration and species. In previous reports such inhibitory activities were noted from
different phytotoxic substances [20,38]. Piyatida et al. reported that vanillic acid has strong
growth-inhibitory activity against cress and timothy, and the inhibition is more pronounced
against timothy than cress [39]. This species specificity of allelochemicals might be because
of different physical and physiological features of receptor seeds including thickness of seed
coat, cell membrane permeability, and sensitive enzymes in seeds [40]. In our experiment,
timothy was much more affected by both the allelochemicals compared with cress. Our
finding is in line with that by Pèrez et al. [41], who reported that small-seeded tested
plants were usually more susceptible to phytochemicals, because the concentration of the
phytochemicals necessary to produce suppression is influenced by seed size. Taking into
consideration the 1000 seed weight, the weight of timothy is around 5-times lower than
cress, which is why timothy is more sensitive to the allelochemicals [42,43].

The data from our experiment also revealed that methyl phloretate has much more
inhibitory activity than vanillic acid against tested plant species. The allelochemicals
affect plant growth through different chemical reactions. The toxicity of phytochemicals
is regulated by the various functional groups in the structure of compound, which act
on different positions of the enzymes, and affect their activity [40,44]. Vanillic acid is a
mono hydroxy benzoic acid with one methoxy group in its aromatic ring. Maffei et al. [45]
reported that the methoxy groups on benzoic acid ring increase the phytotoxicity, whereas
the hydroxy groups decrease the phytotoxicity of benzoic acid derivatives in cucumber
seed germination and early growth. Maffei et al. [45] also showed that the hydroxy
group in the C4 position scavenges the inhibitory action of the methoxy group in vanillic
acid. Levi-Minzi et al. [46] showed that 4-hydroxy-3-methoxy benzoic acid is much more
phytotoxic against wheat growth compared with 4-hydroxy benzoic acid. We therefore
conclude that the methoxy group in the C-3 position contributes to the phytotoxicity of
vanillic acid.

On the other hand, methyl phloretate is a monohydroxy derivative of cinnamic acids.
With cinnamic acid derivatives, the more hydroxyl groups in its benzene ring the less the
phytotoxicity [47]. Therefore, a single hydroxyl group in benzene ring of methyl phloretate
may influence its phytotoxic potential. In addition, some researchers proposed that the
hydrophobicity of the compound corresponds with higher toxicity in case of cinnamic acid
derivatives [48,49]. Hydrophobic compounds bearing lipophilic properties make them
capable of passing through the cell membrane more readily [50]. Some researchers reported
that the methyl ester of cinnamic acid derivatives has higher growth-inhibitory activity
corresponding to their free acids because esterification of the carboxyl group results in
more hydrophobic compounds having more phytotoxic potential [51,52]. Accordingly,
esterification of phloretic acid (corresponding free phenolic acid of methyl phloretate)
which is already documented to have growth-inhibitory activity, might lead to producing
more phytotoxic methyl phloretate. Waśko et al. [52] showed that the allelopathic activity
of methyl p-coumarate, which has a similar structure to methyl phloretate, was more
inhibitory than its corresponding free phenolic acid, p-coumaric acid.



Appl. Sci. 2021, 11, 2264 8 of 10

In general, cinnamic acid derivatives are more phytotoxic than benzoic acid derivatives
due to their higher hydrophobicity [47,53]. Our results corroborate this finding because
the more phytotoxic methyl phloretate is a derivative of cinnamic acids, while the less
phytotoxic vanillic acid is a derivative of benzoic acid.

5. Conclusions

The aqueous methanol extract of G. xanthochymus significantly inhibited four test
plant species, lettuce, rapeseed, Italian ryegrass, and timothy. Generally, leaves of G.
xanthochymus are not consumed and are classified as waste material. However, from our
experiment, it is evident that leaves of G. xanthochymus have the potential to be used to
manage weeds. Two identified substances, vanillic acid and methyl phloretate, isolated
from the G. xanthochymus leaf extract imposed significant growth inhibitory activity on
cress and timothy. Methyl phloretate had around two- and three-fold higher inhibitory
activity against timothy and cress, respectively, compared with vanillic acid. This report is
the first on the existence of methyl phloretate in a plant. Therefore, field experiments could
determine the potential of the crude extract of G. xanthochymus and methyl phloretate it
contains as a biological agent to control weeds in an eco-friendly way.
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