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Abstract: In the last decade, predictive maintenance has attracted a lot of attention in industrial
factories because of its wide use of the Internet of Things and artificial intelligence algorithms for
data management. However, in the early phases where the abnormal and faulty machines rarely
appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it
is difficult to perform a training process for fault classification due to the imbalance of input data.
Therefore, data augmentation was required to increase the accuracy of the learning model. However,
there were limited methods to generate and evaluate the data applied for data analysis. In this paper,
we introduce a method of using the generative adversarial network as the fault signal augmentation
method to enrich the dataset. The enhanced data set could increase the accuracy of the machine
fault detection model in the training process. We also performed fault detection using a variety of
preprocessing approaches and classified the models to evaluate the similarities between the generated
data and authentic data. The generated fault data has high similarity with the original data and it
significantly improves the accuracy of the model. The accuracy of fault machine detection reaches
99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set
(only use generate data only). Based on this, we concluded that the generated data could be used to
mix with original data and improve the model performance.

Keywords: generative adversarial network; data augmentation; machine fault detection

1. Introduction

Machine maintenance is one of the most important fields in the industrial environment.
In the normal working condition, the maintenance costs range from 15% to 40% of the total
production cost [1]. Most manufacturing industries today use preventive maintenance,
which replaces the machine parts based on a fixed schedule, to guarantee high maintenance
safety. However, preventive maintenance cannot be considered as an effective maintenance
method because the fixed schedule could not make full use of resources. This method
can save costs ranging from 8% to 12% of the traditional maintenance cost and 40% of the
reactive maintenance cost [2]. In the last decade, predictive maintenance has a more and
more important role in manufacturing because of the improvement of the Internet of Things
(IoT) and real-time data management. In the modern industrial environment, predictive
maintenance focuses on the IoT and artificial intelligence (AI) platforms. In Figure 1,
the maintenance includes data collection and signal processing to conducts early fault
detection and diagnosis. Based on these platforms, the system can perform data collection
and signal processing to conducts early fault detection and diagnosis by applying the
concepts of data collection and management [3]. Some signal are popular in machine fault
detection, such as vibration and acoustic signal. However, the acoustic signal is harder to
collected, and more sensitive to noise, compared to vibration signal [4]. Various predictive
maintenance schemes and AI models, which mostly use supervised learning, have been
proposed lately [5,6].
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Figure 1. An example of Internet of Things (IoT) and artificial intelligence (AI) in fault detection
application.

However, in the early phases when abnormal operations and fault machines rarely
appeared in real-time scenarios, the initial fault vibration samples set is restricted. In
the case of absent or limited fault samples, the training process for fault classification
applications is difficult to conduct because of the imbalance of the input data. Therefore,
data augmentation is necessary to increase the performance of the model training process
when dealing with small fault datasets. An approach for the limited training data is transfer
learning, where the target signal is created based on the source signal, which has the same
distribution [7,8]. However, the source signal using for transfer learning also requires
the balance between the normal and fault data set. Therefore, data augmentation is also
necessary for the transfer learning techniques when dealing with small fault datasets at
the initial phase. In practice, the works of data augmentation in the time-series region
are very limited and mostly focus on the traditional data transformation methods. The
example of these methods is jittering [9,10], scaling [9,10], window slicing [10,11], and
flipping [10,12,13]. In these studies, the traditional data transformation methods do not
significantly improve the accuracy of the model [9–11,14]. Data augmentation, therefore, is
not fully evaluated in time-series data analysis and fault detection applications. With the
increase in the demand for fault detection applications in smart factories, the requirement
for effective methods for data augmentation has been increasing [9,15].

The general generative models produce outputs similar to the samples in the training
dataset [16] by mimic the probability distribution function of the original data. The most
popular generative method in data augmentation is the generative adversarial network
(GAN) [17,18]. The GAN algorithm is mostly applied in image processing and image
generation. The main drawback of GAN is its instability during the training process,
where the discriminator and generator try to fool each other [19]. Several studies have
been conducted to improve GAN stability in the training process [20]. However, the
limitation in GAN evaluation required human inspection, especially for picture generation
and computer vision.

In this paper, vibration data from Spectra Quest’s Gearbox Prognostics Simulator
(GPS) is tested using various fault detection approaches for both limited and unlimited
input data. Another data source that can be considered is the real-scenario data, such as
Reference [21]. However, the experiments are not compatible with the GPS dataset, and
the measurement is not conducted thoroughly. Therefore, we only consider using the GPS
dataset for the data augmentation in this study. Using GAN, we generate the broken signal
to improve the training performance of the model. Using different approaches in both
the experiment and test, we evaluated the generated data comprehensively and avoided
misjudging during the data generation process for obtaining the final results. Our main
contributions in this paper are as follows:

• We briefly review the characteristic of the vibration signal data with different ap-
proaches in fault detection applications. These approaches are mainly used to verify
that the generated data are high quality and suitable for fault detection applications.
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• We introduce GAN algorithms to generate a broken machine signal, which has high
quality and is similar to the original signal.

• The main contribution of this paper is the different approaches used to evaluate the
generation data and to guarantee similarity with the original data. These approaches
include different preprocessing processes and a variety of machine learning techniques
in pattern recognition.

The remainder of this paper is organized as follows. Section 2 describes the fault
diagnosis input data and the Fast Fourier Transform (FFT), which provides the refined
signal for further data processing and classification. Section 3 provides the working
scheme with real data, which includes the full signal, principal component analysis (PCA)
transform, and statistical analysis (SA). We also introduce different machine learning
techniques for each approach and perform a comprehensive analysis. We discuss data
generation using GAN and compare it with the original data in Section 4. With various
preprocessing approaches and AI models, the generated data is evaluated carefully with
high similarity with the real data. Conclusions for the data augmentation using GAN are
presented in Section 5.

2. Vibration Data and Early Data Processing
2.1. Gearbox Data

The vibration signal used in this study is collected from the GPS and then uploaded to
OpenEI data storage [22]. The GPS simulates a real gearbox device and has configurations
with different options and working behaviors. Based on these configurations, the GPS
can simulate gearbox working behavior, condition monitoring, and vibration data for
further study.

The basic GPS includes replaceable parts that are combined for gearbox operation
simulation as follows:

• one shaft test gearbox with two parallel stages;
• different torsion and radial loadings;
• replaceable gears with large spaces for additional devices;
• parallel gearbox that can support rolling element bearings or sleeve bearings;
• option for installing intentional error gearing to study the changes in the vibration

signature;
• modular design that keeps the simulation easy to understand and doable;
• different mounting locations; and
• gearbox fault simulation and diagnosis methods.

Based on these characteristics, the GPS can be customized to handle and examine
heavy loads. GPS is also designed with a large reserve space so that the users can place,
set up, and install new monitoring devices. In this paper, we collected data in the four
directions: g_x, g_y, g_z, and g_t. In Figure 2, the GPS is set at 50% of the load condition,
and we record the vibration signal under normal conditions and the broken tooth condition.
The GPS data includes 450 s of normal machine vibration signal and 400 s of broken
machine vibration signal.



Appl. Sci. 2021, 11, 2166 4 of 16

Figure 2. Vibration signal of normal machine (a); broken machine (b) in the g_x direction.

2.2. Fast Fourier Transform

In the first phase, we extract significant characteristics of the input signal by perform-
ing feature extraction. These characteristics vary from signal to signal and are statistical,
domain-specific features, or both. In Figure 2, the vibration data are collected and stored as
the time series, and we transform it into the frequency domain using Fast Fourier Transform
(FFT) (Figure 3). The main purpose of this study is to generate and evaluate broken data
that is limited in the experiments. Therefore, we need to analyze both the original and
generated data with different approaches and AI models that can affect final results.

Figure 3. Fast Fourier Transform (FFT) transform of a (a) normal machine; (b) broken tooth machine
in the g_x direction.

The Fourier Transform is a function of frequency, which has the magnitude to represent
the frequency in the time domain. The Fourier Transform can vary in the domains, but the
original function is mostly considered as the time domain. The definition of the Fourier
Transform of a Discrete Function is as follows.
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Let x0, . . . , xN−1 be complex numbers. We can calculate the Discrete Fourier Transform
(DFT) in the time domain by using the following formula:

xk =
N− 1

∑
n=0

xne−i2πkn /N , (1)

where x0, . . . , xN−1 are complex numbers, and ei2π/N is a primitive N-th root of 1 [23].
For FFT, the formula changes into the following expression:

xk =
N/2− 1

∑
m=0

x2me−i2πk(2m) /N +
N/2− 1

∑
m=0

x2m+1e−i2πk(2m+1) /N , (2)

xk =
N/2− 1

∑
m=0

x2me−i2πk(m) /(N/2) +
N/2− 1

∑
m=0

x2m+1e−i2πk(m) /(N/2). (3)

By transforming Formula (1) into Formula (2) and (3), the Fourier Transform is
split into two smaller transforms with odd-numbered values and even-numbered val-
ues. At this point, we did not decrease the computational complexity, which consists of
2 × [(N/2) × N], for a total of N2.

With the symmetrical characteristics of Formulas (2) and (3), we can reduce the
number of computations. The value of k is defined as 0 ≤ k < N, whereas the value of n
is 0 ≤ n < M ≡ N/2; each sub-problem required half the computation of the original one.
The total computation is reduced from O[N2] to O[(N/2)2] [24].

The FFT requires lower computation as compared with the original FFT, which is
suitable for real-time applications. In this study, we focus on the commercial application in
the industrial environment, which requires both high accuracy and real scenario response.
Due to these reasons, FFT would be a better choice compared to the DFT. The advantage of
FFT is that we can process more significant features in the frequency domain classification
between the normal and broken machine signals. Another advantage of the FFT transform
is that the generated signal is evaluated indirectly, which leads to better performance
analysis. We can consider FFT as one of the most effective methods used to extract the
vibration input pattern [5]. Therefore, we use FFT as the basic processing method for
further research. Based on the FFT input signal, we propose three approaches: full analysis,
PCA transform, and statistical analysis. In the next section, we will discuss different
approaches and AI models that can be applied to the fault diagnosis results.

3. Fault Diagnosis with Original Data

In general, data augmentation is mostly used in image processing [15] because it
is easy to evaluate whether the generated data is similar to the original data based on
the judgement of human. In contrast, it is difficult to evaluate the data augmentation in
data analysis because it depends on a different characteristic of the data. Therefore, to
evaluate the generation data, we require a comprehensive test with various conditions.
This section introduces three fault detection approaches for vibration signals, which can
be applied to the generated signal. The overall fault diagnosis diagram with different
data processing and multiple AI models is shown in Figure 4. The vibration data in each
direction is windowed and transformed into the frequency domain for further process.
Then, we provide 3 different methods for feature extractions, includes full analysis, PCA
transform, and statistical analysis. After that, all four signal is combined and feed to
different AI algorithms, includes artificial neural network (ANN), support vector machine
(SVM), and K-mean clustering. All the approaches introduced in this section will be the
basis for further analysis and evaluations.
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Figure 4. Overall fault diagnosis diagram with different data processing and multiple AI models.

Figure 5 introduces the training and testing process using both generated data by
GAN and real data. The input data is divided into 3 groups: training data includes 70% of
total data, testing data includes 30% of total data, and GAN data includes 11.75% data of
fault machine of the training data (8.2% of total fault machine data).

Figure 5. Training process using both real data and generated data by generative adversarial
network (GAN).

3.1. Full Analysis and PCA Transform

In this approach, the FFT of the signal is fed directly into the AI model to determine
whether or not the machine has errors. The AI models analyzed in this study are arti-
ficial neural network (ANN) [25], K-mean clustering [26], and support vector machines
(SVM) [27]. These models have proved to be robust for classification applications. More-
over, ANN, K-mean clustering, and SVM are very flexible when dual with different data
types and structures. However, K-mean clustering and SVM-based models are not effective
when applied with high-dimension input data [28]. Therefore, we also consider the PCA
to reduce the dimensions of the input data. Figure 6 shows normal and broken sample
data of the signal after the PCA process, which transforms high-dimension input data into
low-dimension input data for K-mean clustering and SVM algorithms.
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Figure 6. Principal component analysis (PCA) in g_x direction of the normal and broken machine.

The vibration signals, which include full FFT and PCA transform, are fed into the
ANN networks. The inputs are different so we consider two ANN structures for the
machine fault detection application. The first ANN model for the full FFT of the signal has
a large structure because the input contains all four signals in the g_x, g_y, g_z, and g_t
directions. This ANN model has an input shape of 200 × 4, 200 input neural, 100 hidden
units, and 2 output neural with the Softmax activation function for classification. The
Softmax function is defined as follows:

σ(zi) =
ezj

∑K
k=1 ezk

, (4)

where i = 1, . . . ,K and z = (z1, . . . ,zK). The predicted probability of an output of the neural
network classified as normal (or broken machine) is:

P(y = j|x) =
exTwj

∑K
k=1 exTwk

, (5)

where x is the input vector; w is the weighting vector of the output neural network; and xTw
is the inner product of x and w. In this formula, we have i = 1, . . . , K and z = (z1, . . . ,zK).

The PCA transform reduces the FFT of the signal into a 20 × 1 vector, which is
much smaller than the original signal. Therefore, the ANN has a small structure with 64
input neural, 32 hidden units, and 2 output neural with the Softmax activation function
for classification. For comparison, we apply the same optimization for both the ANN
structures. Xavier initialization [29] is applied to set up the weights of all ANN cells, and
the Dropout technique [30] with 0.7 keeping probability is also used to improve the ANN
performance. We use Leaky Rectified Linear Unit (Leaky ReLU) [31] as the activation
function for both the input and hidden layers, which is defined as follows:

f (x) =

{
0.01x f or x < 0

x f or x ≥ 0
. (6)

Sparse categorical cross-entropy is used as the loss function for our ANN models,
and Adaptive Moment Estimation (ADAM) is selected as the optimization algorithm with
1000 epochs.

Table 1 shows the accuracy of ANN, K-mean clustering, and SVM based on two input
data (full FFT of the signal and PCA transform signal). The accuracy of ANN, K-mean
clustering, and SVM reaches 100% in both cases. Compared with the acoustic signal in
Reference [4], we achieve higher accuracy with a simpler data collection method. However,
with high training and testing speed, the K-mean clustering and SVM are more suitable in
the real-time scenario. Table 2 shows the test results with a small broken machine signal
training set (40 s of broken signal, only 10% of the original amount). When there is a lack of
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small broken machine signal data, the accuracy drops significantly as compared with the
original condition. Table 3 shows the result with traditional data augmentation, includes
jittering, scaling, and slicing. The accuracy improves slightly as compared with Table 2,
which shows that this method cannot significantly improve the performance of the model.

Table 1. Performance of artificial neural network (ANN), K-mean clustering, and support vector
machine (SVM) with full FFT and reduced FFT of the signal.

Full FFT Reduced FFT

ANN 100% 100%

K-mean clustering 100% 100%

SVM 100% 100%

Table 2. Performance of ANN, K-mean clustering, and SVM with 10% broken signal input data using
full FFT and reduced FFT of the signal.

Full FFT Reduced FFT

ANN 78.48% 85.88%

K-mean clustering 74.24% 80.35%

SVM 85.88% 87.74%

Table 3. Performance of ANN, K-mean clustering, and SVM with traditional data augmentation
using full FFT and reduced FFT of the signal.

Data Augmentation AI Model Full FFT Reduced FFT

Jittering

ANN 79.28% 88.24%

K-mean clustering 75.71% 80.35%

SVM 85.88% 86.74%

Scaling

ANN 80.21% 87.25%

K-mean clustering 75.36% 82.35%

SVM 83.91% 85.74%

Slicing

ANN 82.57% 89.41%

K-mean clustering 76.71% 81.85%

SVM 91.76% 87.74%

3.2. Statistical Analysis

The third approach is that of statistical analysis, which uses the extracted features from
the FFT of the signal. The FFT of the signal is analyzed based on the statistical features that
have eight parameters: mean, median, min, max, kurtosis, skewness, standard deviation,
and range. These features are obtained along all four axes: g_x, g_y, g_z, and g_t. Each
data sample contains 32 elements. Due to low input data dimensions, these approaches
are suitable with ANN, K-mean clustering, and SVM. The statistical approach not only
provides another efficient method for fault classification but also plays an important
role in evaluating the generated data. Using statistical analysis, we extract the overall
characteristics of the vibration signal. Based on these characteristics, we can compare
the generated data with the original data. If the generated data has high accuracy in the
statistical analysis, we can conclude that it has a high similarity level with the original data
and can be used for the training process. Before feeding data into the AI models, we should
understand the variations in the statistical characteristics of the FFT of the signal.

The statistical relationship between the normal and broken machine signals can be
considered a reliable classification method, as shown in Figure 7. The statistical elements
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of the normal and broken signal are similar in the g_y, g_z, and g_t directions, but they are
different in the g_x direction. The most difference is seen in the maximum value (4) and
kurtosis value (5) of the g_x signal. In Figure 8, if we break down the relationship between
them, we can easily classify the normal and broken machine signals.

Figure 7. Statistical elements of normal and broken FFT of the signal. (Reprinted with permission
from Ref. [32]. Copyright 2020 IEEE).

Figure 8. Relationship between the maximum and kurtosis values of the normal and broken FFT of
the signals. (Reprinted with permission from Ref. [32]. Copyright 2020 IEEE).

The performance of ANN, K-mean clustering, and SVM based on statistical analysis
are shown in Table 4. The ANN algorithm reaches over 95% accuracy in three scenar-
ios, which proves that robust classification features were adopted. In contrast, K-mean
clustering and SVM have the worst performance as compared with full FFT analysis. In
the classification using real data, K-mean clustering and SVM showed poor performance
as compared with a full analysis approach. However, this characteristic can be used to
analyze the performance of the generated data for an unstable classification method. This
approach needs to be considered when the generated data is used.
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Table 4. Performance of ANN, K-mean clustering, and SVM with statistical analysis.

ANN K-Mean Clustering SVM

SA of FFT (100%) 100% 62.94% 91.17%

SA of FFT (10%) 95.32% 45.29% 64.71%

SA of FFT (Jittering) 94.35% 45.29% 63.23%

SA of FFT (Scaling) 95.13% 45.29% 61.53%

SA of FFT (Slicing) 95.32% 45.29% 62.43%

4. Data Generation in Machine Fault Detection

In the previous section, we concluded that the lack of vibration signals in the training
process will decrease the accuracy of the predictive models, regardless of the kind of data
process. To improve the accuracy of the predictive model, we introduce data augmentation
using GAN to generate broken data similar to the original data. Data generation is based
on the original data of the vibration signal of the broken machine, which includes 47 sof
vibration and uses 11.75% of the normal signal. The generated signal is analyzed based on
the approaches described in Section 3. With different approaches and AI models, we can
guarantee the evaluation process with high accuracy and similarity with the original data,
which can help to improve the predictive model.

4.1. GAN

GAN is a technique designed by Ian Goodfellow to generate new data from a fixed
training data set. In this technique, the discriminative and the generative neural networks
compete in a zero-sum game to improve themselves. Using a limited training set, the
GAN techniques learn by themselves to generate data using the specific structure. The
most well-known GAN applications are those in computer vision, in which a photograph
set is trained to generate new output with realistic characteristics for human observers.
Although previous studies were mostly focused on unsupervised learning, GANs were
then used in semi-supervised learning and reinforcement learning. The core idea is to
“indirectly” train a generator using the discriminator. Based on this idea, the generator is
trained to fool the discriminator but not to minimize the total loss of the function, which
leads to the ability to generate new data in a different manner.

GAN was first proposed in Reference [33] to generate images similar to the original
image. In a practical situation, GAN can be considered as the competition between a
discriminative network D and a generative network G. With normal contribution or random
noise, which ranges from 0 to 1 as the input, the generative network G generates the “fake”
data G(z), in which distribution pg is close to that of the data distribution pdata. The role
of the discriminative network D is to distinguish the true data sample x ∼ pdata(x) and the
generated sample G(z) ∼ pg(G(z)). In the original GAN, this adversarial training process
was formulated as follows:

minGmaxD V(D, G) = Ex∼pdata(x) [log D(x)]+Ez∼pz(z) [ log(1− D((G(z)))]. (7)

The adversarial procedure is illustrated in Figure 9. Most existing GANs perform a
similar adversarial procedure in different adversarial objective functions. In this paper,
the GAN algorithm is used to generate the broken machine data signal; therefore, only
broken training data is fed into the generator. The generator generates the broken data
using random noise, which ranges from 0 to 1 with normal distribution to guarantee the
difference in the output data.

The generator G and discriminator D have the ANN structure and are implemented
as shown in Tables 5 and 6, respectively. The generator G has a complex structure to
generate a broken high-quality signal, whereas the discriminator D has a simpler structure
for classification. Note that the output of the generator G has the same shape as the input,
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whereas the output of the discriminator D is a single value between 0 and 1 because the
sigmoid activation function for classification is applied.

Figure 9. GAN model for vibration data augmentation.

Table 5. ANN structure of the generator G.

Number of Neural Networks Activation Function

Input Input shape ReLu

Layer 1 256 ReLu

Layer 2 512 ReLu

Layer 3 1024 ReLu

Output Input shape Tanh

Table 6. ANN structure of the discriminator D.

Number of Neural Networks Activation Function

Input Input shape ReLu

Layer 1 512 ReLu

Layer 2 256 ReLu

Output 1 Sigmoid

4.2. Data Generating

The data generated using GAN includes 500 s of vibration signals, which includes
the four signals g_x, g_y, g_z, and g_t. The generated broken signal is shown in Figure 10,
which contains the individual g_x vibration signal. The preprocessing procedure for the
generated signal is the same as that for the original signal, and, based on that, we can
evaluate its quality using previous fault detection methods. Note that we generate the
signal only for the broken machine because the broken signal is assumed to be less than
the signal obtained for the original data. The FFT of the g_x signal is calculated and shown
in Figure 11.

Figure 10. Generated vibration data for a broken machine.
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Figure 11. FFT of generated vibration data for the broken machine.

4.3. Fault Diagnosis Using Generated Signal

Based on both the original and generated data, we evaluated the final results using the
three approaches described in Section 3. Keeping the same testing data, we simulated the
actual situation of the AI model in real life. In contrast, the training data is a mix of the real
data and the generated data. The ratio of the real data over generated data is 100%, 80%,
60%, 40%, 20%, and 0%. With this testing condition, different signal processing approaches,
and AI model, the generated data will be evaluated comprehensively if it can satisfy the
data augmentation requirement in a fault machine detection application.

To verify the similarity between original data and generated data, we conducted the
Kolmogorov-Smirnov test using Python version 3.7.4 [34]. The statistic value is 0.059, while
the p-value is 0.336, so we can accept the hypothesis that signals are drawn from the same
distribution. Figure 12 illustrates the relationship among all statistical elements between
an original broken machine signal and a generated signal. The generated signal has a
larger data variation distribution with taller boxed, which shows the variations during the
generation phase. In Figure 13, by continuing to break down the relationship between the
maximum and kurtosis values of the original and generated broken FFT of the signals, we
can see high variations in the generated values. The linear regression test [35] is conducted
to verify the correlation between the maximum and kurtosis values. The coefficient of
determination is calculated and shown in Table 7. With the high value of Coefficient of
Determination in all dimension g_x, g_y, g_z, and g_t, we can conclude that the maximum
and kurtosis has a high correlation in fault signal. Compared with the original signal, the
generated signal has a lower Coefficient of Determination, indicating that it has higher
variation and less dependent on each other. This variation is good for the training phase
because it can improve the machine learning models with different input patterns.

Figure 12. Statistical elements of the original and generated broken FFT of the signals.
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Figure 13. Relationship between the maximum and kurtosis values of the original and generated
broken FFT of the signals.

Table 7. Coefficient of Determination value of maximum and kurtosis with linear regression test.

g_x g_y g_z g_t

Original 0.77 0.69 0.66 0.85

Generated 0.44 0.37 0.45 0.50

Table 8 shows the accuracies of ANN, K-mean clustering, and SVM with different
approaches based on the FFT of the vibration signal. With the full FFT of the signal
approach, the data augmentation with the original data larger than 40% worked well
under the testing condition with 100% accuracy (ANN). This result is better than the 0%
original data set, which has the accuracy of 89.4% (ANN), 60.2% (K-mean clustering), and
93.1% (SVM). The classification algorithms worked much better in the case where 20%
original data were used, which achieve the accuracy of 95.1% (ANN), 61.3% (K-mean
clustering), and 95.3% (SVM). In the case of using PCA transform for the FFT signal, the
data augmentation with the original data larger than 40% worked well under the testing
condition with 98.1% accuracy (ANN). This result is better than the 0% original data set,
which has the accuracy of 87.2% (ANN), 55.3% (K-mean clustering), and 91.0% (SVM).
The classification algorithms worked much better in the case where 20% original data
were used, which achieve the accuracy of 93.1% (ANN), 65.2% (K-mean clustering), and
94.7% (SVM). In the last approach, the statistical analysis of the FFT of the signal, the ANN
provides almost 100% accuracy with more than 20% original data. The accuracy of the
ANN algorithm decreases to 79.41% when there is 0% original data; this is much better than
the traditional augmentation method in Section 3. In this approach, the K-mean clustering
and SVM have poor performance as compared with ANN. The SVM has high accuracy and
stable with different test sets, so it is strong enough to be considered in real-life scenarios.
In contrast, the K-mean clustering is not stable and requires more accuracy to be considered
as a reliable classification approach. The result shown in Table 8 indicates that the general
data have high similarity as compared with the original data in the FFT of the signal and
can be replaced in the training process.
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Table 8. Performance of ANN, K-mean clustering, and SVM with generated training data using different approaches.

100% Original
Data

80% Original
Data

60% Original
Data

40% Original
Data

20% Original
Data

0% Original
Data

Full FFT
of the signal

ANN 100% 100% 100% 100% 95.1% 89.4%

K-mean
clustering 100% 95.7% 81.3% 78.1% 61.3% 60.2%

SVM 100% 100% 98.7% 96.4% 95.3% 93.1%

PCA transform
of the signal

ANN 100% 100% 99.2% 98.1% 93.1% 87.2%

K-mean
clustering 100% 96.2% 85.4% 76.6% 65.2% 55.3%

SVM 100% 100% 97.2% 95.4% 94.7% 91.0%

SA of the
signal

ANN 100% 99.41% 100% 99.41% 99.41% 79.41%

K-mean
clustering 62.94% 67.37% 64.21% 71.05% 68.42% 57.32%

SVM 91.17% 76.84% 80.52% 73.68% 81.05% 84.74%

Data augmentation is useful in the training process when the number of fault sam-
ples is so small that the model cannot be trained effectively. This characteristic is very
suitable in machine fault detection because of the lack of fault machines at the start of
the implementation phase. With the improvement of GAN, we can generate fault data
for applying the machine fault diagnosis with high similarity to the original data. Using
various experiments and evaluations, we can conclude that the generated data has a high
similarity with the original data in both the time domain and frequency domain. The
generation data significantly improved the application of training performance with a large
machine fault sample. Although we could generate high-quality input data, the original
fault data are also necessary for testing and partial training.

5. Conclusions

This study proposed a novel method to generate the fault machine vibration signal
data, thus enhancing the model performance in the case of a limited fault dataset for
training. In this study, our generated fault data improve the accuracy of the model to 93.1%
with 0% original fault machine data set (Full signal analysis) and 99.41% with 20% original
fault machine data set (statistical analysis). After testing, we conclude that the generated
data has high similarity to the original data and significantly improves the accuracy of the
model with limited real fault machine data in the training dataset.

However, the data augmentation method using GAN still has a limitation, since the
high variety can reduce the output signal. Another drawback of GAN is unstable during
the training process, in which the balance between the discriminator and the generator
needs to be maintained. Therefore, the architectures of both the generator and discriminator
should be considered carefully, and the output of GAN has to be carefully evaluated.

With the disadvantages of GAN, we consider to provide other generative AI models
for the data augmentation and compare with the current scheme. Another option is to
provide a model to generate the fault data for different machines, only using the fault data
of one machine and normal data of other machines.
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