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Abstract: The prevalence of skin diseases has increased dramatically in recent decades, and they are
now considered major chronic diseases globally. People suffer from a broad spectrum of skin diseases,
whereas skin tumors are potentially aggressive and life-threatening. However, the severity of skin
tumors can be managed (by treatment) if diagnosed early. Health practitioners usually apply manual
or computer vision-based tools for skin tumor diagnosis, which may cause misinterpretation of the
disease and lead to a longer analysis time. However, cutting-edge technologies such as deep learning
using the federated machine learning approach have enabled health practitioners (dermatologists) in
diagnosing the type and severity level of skin diseases. Therefore, this study proposes an adaptive
federated machine learning-based skin disease model (using an adaptive ensemble convolutional
neural network as the core classifier) in a step toward an intelligent dermoscopy device for dermatol-
ogists. The proposed federated machine learning-based architecture consists of intelligent local edges
(dermoscopy) and a global point (server). The proposed architecture can diagnose the type of disease
and continuously improve its accuracy. Experiments were carried out in a simulated environment
using the International Skin Imaging Collaboration (ISIC) 2019 dataset (dermoscopy images) to test
and validate the model’s classification accuracy and adaptability. In the future, this study may lead
to the development of a federated machine learning-based (hardware) dermoscopy device to assist
dermatologists in skin tumor diagnosis.

Keywords: federated machine learning; E-health; skin tumor detection; intelligent dermoscopy;
adaptability

1. Introduction

Improving and ensuring healthy lives and promoting wellbeing in the community are
some of the United Nations’ Sustainable Development Goals. For that reason, empowering
and strengthening health practitioners with sufficient technological advancement (to attain
the maximum potential of their health practices) is mandatory. Among other kinds of
diseases, skin diseases have increased dramatically in recent decades, and they are now
considered a major chronic disease globally [1]. People suffer from a broad spectrum of
skin disease types (ranging from low to high severity level), such as eczema, chickenpox,
measles, warts, acne, skin tumors, and others [2–4]. Skin tumors (melanoma, basal cell car-
cinoma, squamous cell carcinoma, and others) are the most dangerous type of skin disease
and may be fatal if not treated early. For example, melanoma is a form of skin tumor that
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begins in cells known as melanocytes. Melanoma is more dangerous because of its ability to
spread to other organs more rapidly if it is not treated early. To avoid complexities in skin
tumors, an initial consultation with a healthcare professional is mandatory. Furthermore,
health practitioners must also be equipped with a more accurate, robust, and sustainable
solution for diagnosing and treating such diseases. Artificial intelligence can reduce the
skin disease epidemic by providing on-time assistance or advice toward the appropriate
action for the diagnosis and treatment of skin diseases (assisting the dermatologist) [5].
Some recent studies participated in diagnosing skin diseases using machine learning.

Hyperspectral imaging, laser doppler flow meter [6], and fluorescence spectroscopy
have been used to diagnose skin flow oxidation for early diabetes complications [7]. The in-
fluence of blood pulsation is essential when analyzing skin disease, and it can be measured
by pulse oximetry and photoplethysmography measurements [8]. One study [9] proposed
applying mechanical pressure (using a fiber-optic probe) on the diffuse reflectance spectra
of human skin measured in vivo [10]. A recent study presented a snapshot from a multi-
wavelength imaging device for in vivo skin diagnostics [11]. In comparison, laser doppler
flowmetry and skin thermometry are also essential for functional diagnosis [12]. Some
efforts also have been made to diagnose skin disease using high-dimensional imaging data.
One study [13] proposed a compact hyperspectral-based analysis system to visualize skin
chromophores and blood oxygenation. Furthermore, polarized hyperspectral imaging
and machine learning represent a practical approach to diagnosing skin complications of
diabetes mellitus at a very early stage [14].

Another study [15] proposed a transfer learning-based deep convolutional neural
network (CNN) to classify skin diseases. The proposed solution is continuously fine-tuned
through a weight upgradation approach (using backpropagation) to universally classify
skin disease. However, the obtained classification accuracy was not desirable and simu-
lated scenarios could not be applied to clinical trials. The two significant issues primarily
reported when identifying skin disease (using machine learning) through dermatological
images are data collection [16] and image transformation and feature extraction. Derma-
tologists are underrepresented in publications describing these technologies. Increased
involvement and leadership of dermatologists are paramount to designing clinically rel-
evant and efficacious models [17]. Notably, in clinical trials, dermoscopy, microscopy, or
biopsy [18] devices have been used to obtain skin disease for analysis purposes. For exam-
ple, an early study [19] used image segmentation and feature extraction to diagnose skin
diseases. Another study [20] proposed an artificial neural network (ANN) based skin lesion
classification model to classify the lesion into melanoma, abnormal, and typical classes.
Moreover, [21] proposed a melanoma detection system using multiscale lesion-biased
representation (MLR) and joint reverse classification (JRC). However, the abovementioned
solutions are extensively expensive in terms of processing time and are not clinically used.

The existing studies are evidence that significant advances have been made in the field
of dermatology. The broad implementation of machine learning-based tools is still pending,
and prospective clinical trials are lacking. Thus, more appropriate and advanced solutions
are required, which could be utilized practically by dermatologists. Therefore, this study
proposes an adaptive federated machine learning-based skin disease detection model,
which can assist dermatologists in the initial diagnosis of skin tumors and determine their
severity level. The proposed model’s adaptive nature also allows the system to improve
continuously (by learning on the fly), as well as add new types of skin disease. At the same
time, the federated machine learning-based approach can address data privacy concerns.

Contribution

The notable contributions of this study are as follows:

1. This study proposes the idea of an adaptive federated machine learning-based skin
disease detection system to assist dermatologists.

2. This study proposes a federated machine learning-based adaptive framework for skin
disease.
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3. This study validates the proposed model’s classification performance and adaptability
at the edge (local device) and cloud (global server) level.

Section 2 of this study surveys the related work and formulates a theoretical founda-
tion. Section 3 proposes the idea of artificial intelligence-based dermoscopy and details
the proposed model design. Section 4 presents the experiments and discusses the model
validation process. Section 5 highlights the conclusions and future work.

2. Related Work and Theoretical Foundation

Previous research primarily focused on the early screening of skin cancer, whether a
lesion was malignant or benign, or whether a lesion was a melanoma. However, upward of
90% of skin problems are not malignant, and addressing these more common conditions is
also essential for reducing the global burden of skin disease. Especially in tropical regions,
environmental changes (such as urbanization and industrialization) have increased the
prevalence of skin diseases [22]. This section discusses the existing dermatology equipment
(devices) and existing machine learning-based solutions for skin disease detection. This
section also discusses the limitation of current technologies and highlights the motivation
for developing adaptive federated machine learning-based dermoscopy devices.

2.1. Existing Devices Used for Skin Disease Analysis

Currently, manual or computer vision-based tools are used to diagnose skin diseases.
Figure 1a shows a dermoscopy device widely used in advanced countries to diagnose
melanoma cancer. It has demonstrated success in diagnosing other skin conditions such as
psoriasis [4], lichen planus [4], and cicatricial alopecia. Dermoscopy visualizes the subtle
clinical patterns of skin lesions and subsurface skin structures not typically visible to the
unaided eye. However, when using this device, the health professional has to decide the
severity and disease condition. Figure 1b presents the dermalite device, a user-friendly
dermoscopy device attached to a smartphone. It enables capturing highly magnified
dermatologist-grade photos of moles or other skin lesions that can be further shared with
professional dermatologists for proper examination and diagnosis.

Figure 1. Existing skin disease detection devices: (a) dermoscopy; (b) dermalite; (c) laser microscopy.

Figure 1c shows a microscope device developed by Stanford scientists to spot the seeds
of cancer, diagnose diseases that include skin cancer, and perform exact surgery (without
cutting the skin). However, laser-based imaging tools are expensive, slower, bulkier, and
less accurate, and they are usually not meant for public adoption [23].

2.2. Current State of Machine Learning in Skin Disease Detection

In recent years, with the progress of machine learning technology, the expectations of
artificial intelligence have been increasing, and research on its applications in dermatology
has actively progressed [24]. In the literature, several studies proposed shallow learning-
based skin disease solutions. For example, one study [25] used the artificial neural network
to detect melanoma cancer from color images. The model used a discriminant feature to
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diagnose the tumor shape, categorize the melanoma skin disease into three main categories,
and separate melanoma-like diseases. Another study [26] used the fuzzy c means region
segmentation approach based on color discrimination. In this approach, a histogram (two-
dimensional) is calculated along with the principal components and the Gaussian low-pass
filter analysis. Similarly, an extreme machine learning-based approach was proposed in [27]
to detect skin cancer. This approach requires an extensive process for feature extraction
and texture analysis; thus, it is not feasible for clinical trials.

In contrast, some other studies worked on optimized feature extraction processes and
determined that the spread of chronic skin diseases in different regions may lead to severe
consequences. For example, [28] proposed a support vector machine-based model that
automatically detects eczema and determines its severity on the basis of three different
stages, i.e., effective segmentation, extraction of optimized features (color, texture, and
borders), and severity of the disease itself. Another impressive attempt was made by [29]
to extract more appropriate features. This study used the joint power of computer vision
and machine learning to detect six types of skin disease. However, these studies were not
adequate when addressing similar features across multiple diseases (e.g., some types of
eczema show similar features to cancer); as such, wrong classifications may be obtained.
The feature similarity issue can be overcome using low-level feature extraction techniques.
For that reason, deep learning approaches (such as the convolutional neural network) are
more desirable due to their pixel-level feature extraction process. Recently, several studies
used deep learning-based techniques to classify similar features more accurately. In [30],
a hybrid approach was designed by using a combination of shallow learning- and deep
learning-based pretrained models, such as AlexNet and support vector machine. A recent
study [31] highlighted the enormous potential of deep understanding to detect skin diseases
with human-like diagnosis accuracy or better. Furthermore, this study urged the utilization
of deep learning-based real-time intelligent healthcare systems for clinical utilization. The
current approaches are only based on the batch learning approach and are static; thus,
they do not welcome any future change (i.e., the model would need to be retrained if any
changes are required). However, clinical procedures require a continuous upgradation to
increase their accuracy and add new kinds of skin disease, rendering the current static deep
learning approaches inapplicable. Accordingly, new adaptive mechanisms are required to
ensure adaptability with high classification accuracy.

After an extensive analysis of the literature, it can be safely concluded that health
practitioners usually apply manual or computer vision-based tools for the diagnosis of skin
diseases, which may lead to misinterpretation and a longer analysis time. Existing devices
such as laser microscopy and multimeter wave devices are only applicable in particular
situations and are not soon expected to be implemented in clinical practices. On the
contrary, dermoscopy and dermalite are majorly used clinically, but they require extensive
health practitioner input to observe skin diseases. Overall, the current technologies are
more expensive and need more time to analyze the actual condition and severity level.
Deep learning-enabled dermoscopy is an essential approach to diagnose skin diseases and
reduce the proliferation of the skin disease epidemic. Research has shown that, with proper
training, diagnostic accuracy with dermoscopy is reportedly 75–84% [32,33], which does
not meet the desirable level of classification accuracy. Additionally, these devices are static
in nature and, thus, do not fulfill the current technological needs. Therefore, it is essential
to provide a solution that could help health practitioners (dermatologists) reduce the skin
disease epidemic.

3. Methodology

This section elaborates on the proposed solution and presents the developed al-
gorithms. Figure 2 illustrates a system-level diagram of intelligent federated machine
learning-based dermoscopy. The proposed solution would be placed on the edge. The mas-
ter model would be placed in the cloud server. However, the federated machine learning
approach can allow continuous upgradation of the master copies by learning the averaging
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weights from all edges after each classification (classification done by the dermatologist).
The proposed model is adaptive with respect to new disease knowledge (to be classified),
and it can improve as a function of experience (by learning from recent examples identified
by the dermatologist) during deployment.

Figure 2. The system-level architecture of adaptive federated machine learning-based skin disease detection.

Figure 3 depicts the application-level design. Two separate mobile applications are
shown. They represent the two kinds of edges, one for the community (this module is
not covered in this study) and the other for health practitioners (dermatologists). The
community module aims to support patients in getting fundamental knowledge regarding
skin diseases, as well as to motivate and assist users in visiting relevant health practi-
tioners (nearest available dermatologists). In comparison, the health practitioner module
is equipped with a dermoscopy device, which performs more detailed analysis of the
captured dermoscopy images until diagnosis. This module also continuously transfers
the updated weights of new samples (after each classification) to its cloud counterpart.
Fundamentally, the health practitioner module can work together with the dermoscopy
device by providing predictions (to health practitioners) regarding the skin disease type.
Figure 4 represents the module and detailed architecture of the proposed model. This
prototype was initially developed for the four most common skin diseases (mentioned in
the International Skin Imaging Collaboration (ISIC) 2019 dataset). Later, it can incorporate
new skin diseases through its adaptability feature. In future work, the provided model will
be tuned with a multimodal solution (taking into account the input skin disease image and
the patient’s medical history) to detect and monitor the patient’s progress, as depicted in
Figure 5.

In this proposed approach, the authors used the ensemble mechanism’s diversity
from previous models (used to adapt to new spectral bands), which enabled handling the
possible arrival of new classes and samples. Remarkably, the proposed approach (ensemble
approach) contributes to diversity in a simple yet effective manner. This study also used
the single-instance optimized CNN model inspired by [34,35] (which was carefully devised
after numerous experiments) as an instance in the cloud server’s ensemble. Furthermore,
the authors trained the proposed model using a challenging dataset (the ISIC 2019 dataset).
The proposed model contains two core contributions: (1) the model was deployed on the
cloud server, and (2) its deployment on the edges majorly contributes toward adaptability
by continuously updating. The authors used online training (OT) and online classifier
updating (OCU), presented in [36], with some internal tweaking parameters to make the
approach suitable for the federated machine learning environment.
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Figure 3. The application-level architecture of adaptive federated machine learning-based skin disease detection.

Figure 4. The detail-level architecture of the proposed model.

Figure 5. The module-level architecture of multimodal skin disease detection.
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Averaging Mechanism: The global model (server) collects the trained weights from
all local models (edges). The global model updates the global weight matrix, called G,
such that G = G + (Ik * w1k/S), where Ik is the number of data points used to obtain w1k,
and S is the sum of the number of data points across all local models (edges). Among all
the available clients K, the server considers a small fraction of clients (C) in each round
to update the global weight. Ic = max(C * K, 1), where Ic is the number of local models
(edges).

3.1. Federated Machine Learning-Based Algorithm for Cloud Server

The cloud-based adaptive ensemble CNN was inspired by a previously proposed ap-
proach [36]. The primary difference is that this study restructured the previously proposed
framework into the federated machine learning-based architecture. Thus, the core dynamic
ensemble classifier and other modules such as OT and OCU were used to perform online
training and continuously update the new samples. The additional neuron layers and
weight update mechanism were mostly used to ensure runtime learning. However, such
approaches are yet to be investigated for complex and high-dimensional data streams. In
this module, the existing instance classifiers are updated (trained on old data) according
to the individual updated weights from unique local models (edges). The primary objec-
tive is to update the current classification weight into the newly obtained classification
weight to continuously update the global module, as depicted in Figure 6. Similar class
weight differences were considered a challenging task, and the maintenance of classifica-
tion accuracy for the global and local modules was a primary requirement. Algorithm 1
outlines the steps followed in performing cloud-based adaptive ensemble CNN tasks.

Algorithm 1: Cloud-Based Adaptive Ensemble CNN

Input: The proposed model contains the instances I = (I1, I2, . . . , In), which are trained initial
classes of skin disease, contains classes such as Cntrain: (cn1, cn2, . . . , cni), and classifies the input
sample from dermoscopy device samples from edge DS. DS can have multiple samples
(dermoscopy images), whereby S = (s1, s2, . . . , sn) is related to classes such as Cn (cn1, cn2, . . . ,
cni, cni + j,) at time interval (t + 1). Samples from cni + j are novel image samples or the same
classes with additional complex features.
Initialization: Threshold value for performance (Th) = 50
1: Counter (c) = 1
2: While data source > null
//validate the input data source
3: Classify (S) using a single instance module (optimized CNN network) [34]
4: Identify the misclassified images using the activate performance feedback module
5: Determine the ensemble accuracies using the majority voting mechanism
6: if (percentage of) % accuracy for S ≥ Th //correctly classify
7: Repeat algorithm steps 3, 4, and 5
8: if % accuracy for S < Th //wrongly classify
9: Save S //save samples
10: Counter++
11: Repeat algorithm steps 3, 4, and 5
12: if the counter is equal to 100 //number of wrongly classified instances reaches 100
13: Identify possible new classes using Algorithm 2 [36].
14: Repeat step 3
15: Send the updated model to the edge node
16: End while
Output: Module with (in+1) instances and classification using Cni + j.
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Figure 6. Illustration of global and local model updates.

3.2. Federated Machine Learning-Based Algorithm for Edges

Fundamentally, this algorithm distributes and enables edges to perform collaborative
learning, and it avoids sending the sample data to the cloud server for its upgradation. This
process reduces the massive computational complexity and resolves the privacy issues (a
critical issue) when using a cloud-based server. The deployed model (global model) is first
trained on a server using some initial data. Each edge (smart dermoscopy or mobile) then
improves the model using data available on the device (samples of diseases which were
correctly tested), i.e., federated data from the device. The edge is trained using the newly
observed data and updates the local model’s latest gradient weights. The changes made
to the local model are summarized (as an update) and sent to the global model for global
upgradation. However, to ensure faster transmission and avoid latency issues, random
compression and quantization techniques are used. The process is done after several itera-
tions (until a high-quality global model) is obtained on the cloud server. The edges send
their trained models to the global model, which are averaged to obtain a unified cloud ser-
vice model. TensorFlow federated and federated core application programming interfaces
(APIs) are utilized for experimental purposes. A gradient guarantees convergence, whereas
the model average cannot. The detailed steps of this algorithm are shown in Algorithm 2.

Algorithm 2: Edge-Based Adaptive Ensemble CNN

Input: Edge receives the computed gradient (model M), ∑W, and computes the new gradient ∆W.
Initialization: The edge model downloads the global model
1: Receive the sample data to perform classification//Initial model is received from the server
2: If sample data belong to existing classes, then
3: Perform the classification//regular operation
4: Perform training within the edge device//to compute the updated gradients
5: Update gradient weight to update the global model
6: Send the global updates to all local models
7: If sample data do not belong to existing classes, then
8: Create and train and update the new instance//using Algorithm 1 [36]
9: Update gradient weight to update the global model
10: Send the global updates to all local models
Output: The edges send the updated ∆W to the cloud model.

4. Experimental Results

This section presents three subsections to validate the effectiveness and performance
of the proposed ameliorated framework. Section 4.1 details the data preparation and trans-
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formation of the datasets. Section 4.2 presents the experimental criteria and experimental
setup. Section 4.3 display the obtained results, along with their analysis.

4.1. Data Preparation and Transformation

For evaluating the proposed model, this study used a challenging dataset, i.e., ISIC
2019 to verify the proposed framework (the ISIC skin disease dataset is considered one of
the most challenging due to its sophisticated features).

Skin Disease Data Stream Pipeline Preparation to Simulate Concept Drift (CD)

In this study, the authors selected a challenging real dataset created by the Interna-
tional Skin Imaging Collaboration (ISIC). ISIC released this dataset to the research and
professional communities for open competition (skin lesion analysis toward melanoma
detection) in 2019. The ISIC competition provides a challenging task to the research com-
munity with the aim of obtaining optimized solutions worldwide. ISIC is developing
proposed standards to address the technologies, techniques, and terminology used in
skin imaging with attention to the issues of privacy and interoperability (i.e., the ability
to share images across technology and clinical platforms). In ISIC 2019, the skin disease
(https://challenge2019.isic-archive.com/) dataset contains imbalanced classes. Further-
more, the samples in the classes have several similar features, which makes this dataset
more challenging. ISIC 2019 is an archive repository of dermoscopic images for clinical
training and supporting technical research to assist in automated algorithmic analysis. In
total, the dataset contains 25,331 dermoscopy image samples consisting of nine classes,
namely, melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic
keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), vascular lesion (VASC),
squamous cell carcinoma (SSC), and unknown (UKN). Class UKN is the ninth class of the
ISIC 2019 dataset, containing the image samples that are unrelated to the other eight class
types, which helps increase the generalization of the developed model. A few random
image samples are depicted in Figure 7.

Figure 7. Random image samples from International Skin Imaging Collaboration (ISIC) dataset; (a) melanoma (MEL); (b)
melanocytic nevus; (c) basal cell carcinoma.

The maximum number of samples was 12,875 (for class 1), and the minimum number
of samples was 239 (for class 5), which represents the highly imbalanced classes. In addition,
for each class, the available number of samples was 4522, 12,875, 3323, 867, 2624, 239, 253,
and 628 in classes 0, 1, 2, 3, 4, 5, 6, and 7, respectively, as shown in Figure 8. This class
imbalance problem can cause overfitting issue (bias toward classes for which the number
of samples is greater). Therefore, image augmentation techniques were used to handle
the overfitting issue, such as image flipping, random cropping, random scaling, central
zooming, and increasing/decreasing brightness and sharpness, to balance the number
of classes in each class. Figure 9 depicts the random samples generated using image
augmentation. Python libraries were also used with appropriate parameters to increase
each class image sample. The image pixel intensity values were also normalized from 0 to
255 to 0 to 1 to reduce the computational complexity.

https://challenge2019.isic-archive.com/
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Figure 8. The number of samples was 4522, 12,875, 3323, 867, 2624, 239, 253, and 628 in classes 0, 1, 2,
3, 4, 5, 6, and 7, respectively.

Figure 9. Representation of augmented image samples after applying image augmentation techniques; (a) represents the
augmented image sample for melanoma skin disease, (b) represents the augmented image sample for melanocytic nevus
skin disease.

4.2. Experimental Criteria and Performance Measures

To simulate a federated learning environment, we designed two primary situations:
(1) validation of the global model and local models by measuring the classification eval-
uation measures before and after observing new data samples, and (2) validation of the
local models’ overall classification accuracy and histogram clustering gradient for online
training dataset formation.

4.2.1. Environment and Libraries

The experiments were carried out on the Google Cloud Platform (GCP) and Google
Colaboratory on the GCP server (us-west1-b region) with a computed engine virtual
machine and additional machine learning and deep learning libraries. To speed up the
complex computing jobs, the authors used 16 virtual central processing units (vCPUs),
with 104 GB random-access memory (RAM) and a single NVIDIA graphics processing unit
(GPU) Tesla K80. The experiments were implemented using the Python 3 programming
language and the libraries below.

Environment setup:

1. Python version (Python 3.6.3), installed using PyPI;
2. Virtual environment from Anaconda;
3. TensorFlow (1.13), Theano, and Keras (as backend) for complicated deep learning

classification.
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Library setup:

1. TensorFlow federated;
2. Federated core API;
3. Scikit-learn library to perform basic machine learning tasks;
4. OpenCV to perform image processing tasks;
5. NumPy and Pandas for data manipulation and processing;
6. Seaborn and Matplotlib for visualization of the results.

4.2.2. Hyperparameter Optimization and Performance Measures

To select hyperparameters for training the model, the authors of this study used a man-
ual search strategy [37]. The authors acquired the optimized training hyperparameters after
various tuning iterations through the manual search strategy, as shown in Table 1. They
also followed best practices outlined by the research community, for example, selection of
an optimization function (Adam) and cross-entropy selection (one-hot encoded). The clas-
sification accuracy is considered the most suitable metric to evaluate model performance in
a nonstationary environment [38]. This study has used performance measures recognized
as primary classification performance indicators by the research community [39,40].

Table 1. Training hyperparameters (tuning values and optimized values).

Training Hyper-Parameters Tuning Values Optimized Values

Mini-Batch Size 16, 32, 64, 128, 256 120
Learning Rate 0.1, 0.01, 0.001 0.001

L1 regularization (lambda parameter) 0.001, 0.0003 0.0003
Number of epochs 10–100 100

Optimization function Adam Adam
Cross-entropy One-hot encoded One-hot encoded

4.3. Experimental Results and Discussion

The authors of this study performed two experiments to analyze the performance of
the proposed framework. Initially, experiment 1 was carried out to validate the global and
local models by measuring the classification evaluation measures before (case 1) and after
(case 2) observing new data samples. Later, in experiment 2, the overall classification accu-
racy of local models (at edges) was measured. These experiments also allowed validating
the histogram of clustering distance during edge training and validating the performance
(accuracy and loss) during new sample adaptation.

4.3.1. Experiment 1: Validation of the Global and Local Models by Measuring the
Classification Evaluation Measures before (Case 1) and after (Case 2) Observing New
Data Samples

The primary intention of this experiment was to evaluate the performance of the
proposed framework in a stable condition. The obtained results were promising with a
recorded classification accuracy of 95.6%, loss of 2.50 (as shown in Table 2), and 0.95 pre-
cision and recall (as shown in Table 3). This study analyzed the proposed framework’s
performance with a challenging dataset (complex features), i.e., the ISIC skin disease
dataset. Here, the proposed framework was trained using four classes of the skin dis-
ease dataset, which were dermatofibroma (DF), vascular lesion (VASC), squamous cell
carcinoma (SSC), and unknown (UKN). Despite the complex features and class imbalance
problem in the skin disease dataset, the model’s performance was satisfactory, even better
than highlighted in the literature. In case 2, the proposed model was trained on the first
four classes and correctly classified them. Later, the proposed model incorporated four
new classes (which were not trained on the proposed framework), with a subsequent
degradation in performance.
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Table 2. Accuracy and loss for ISIC 2019 (skin disease) streams in different cases.

Model Configuration Classification Accuracy (%) Loss

Case 1 Case 2 Case 1 Case 2

Model1_SD 95.6 89.0 2.50 3.50

Table 3. Precision and recall for ISIC skin disease data streams in different cases.

Model Configuration Precision Recall

Case 1 Case 2 Case 1 Case 2

Model1_SD 0.95 0.90 0.95 0.91

The intent behind this experiment was to determine the accuracy of the proposed
model at the cloud level. It was shown that the proposed framework outperformed those in
the literature and achieved satisfactory classification accuracy. The reported classification
accuracy was 89% (as shown in Table 2). Moreover, a significant level of precision and recall
was noted. However, in this case, the loss increased to 3.5 from 2.5 in case 1 (as shown in
Table 2). The model’s overall performance after adapting new classes was noticeably lesser,
because model training in offline mode is always better than that in online mode (online
mode creates online training dataset formation, which might contain noisy data). Thus,
more advanced techniques are required to overcome these differences. Additionally, all
the individual classification accuracies showed good performance after the arrival of new
samples, as shown in Figure 10b.

Figure 10. Confusion matrix: (a) confusion matrix before adaptation (dermatofibroma (DF), vascular lesion (VASC),
squamous cell carcinoma (SSC), and unknown (UKN) ISIC dataset classes); (b) confusion matrix after adaptation (class 1:
melanoma (MEL), class 2: melanocytic nevus NV, class 3: basal cell carcinoma (BCC), and class 4: actinic keratosis (AK);
ISIC dataset classes).

This study also generated receiver operating characteristic (ROC) curve plots to
demonstrate the tradeoff between sensitivity and specificity. A possible increase in sensitiv-
ity, accompanied by a decrease in particularity was observed in the proposed framework
before and after new class arrival, as depicted in Figure 8a,b. The ROC curve was closer to
the left-hand border and the top edge of the ROC space. This shows the true positive rate
vs. the false positive rate. In model1_SD, the obtained ROC curve was desirable in both
cases, as shown in Figure 11.
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4.3.2. Experiment 2: Local Model Overall Classification Accuracy Performance, the
Histogram of Clustering Distance during Edge Training and Testing, and Validation of
Performance with New Samples

The intent behind this experiment was to test the overall classification accuracies of
our deployed model, as well as apply its feature extraction technique to prepare for online
training dataset formation. Lastly, the updated training and validation accuracies and loss
are presented to validate the model’s successful incorporation of the new dataset at the
edges and on the cloud server.

Overall Classification Performance of the Cloud Models

Figure 12 shows the confusion matrix for all trained eight classes. It can be noted that
the global model performed well in the stable scenario, with classification accuracy above
90%. Simultaneously, some classes performed exceptionally, such as class 5 and class 1,
with maximum correct predictions of 4005 and 3900 samples, respectively.

Histogram of Clustering Distance during Edge Model Training for New Samples

The histogram of clustering distances identifies how correctly the new samples are
extracted and clustered for new dataset formation. New dataset formation is an essential
procedure for training edges with newly collected samples. Table 4 represents the four
classes of updated samples that were collected and clustered after the feature extraction
process. The feature extraction process was done using the pretrained network. Later, the
extracted features were clustered using the k-means clustering algorithm. In Table 4, it
can be noted that class 6 means clustered well, showing a mean values of 99.85, variance
of 160.55, and standard deviation of 12.6. Class 4 showed worse performance with a
mean value of 78.5, variance of 144.34, and standard deviation of 12.10. Well-clustered
features ensure better training and validation accuracies when updating the edge models.
Furthermore, they reduce the overfitting issue by neglecting the condition of bias toward a
particular class.
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Figure 12. Confusion metrics representing the correct prediction rate of the cloud server (global) model.

Table 4. Precision and recall for ISIC skin disease data streams in different cases.

Classes Mean Variance Standard Deviation

Class AK 78.5 144.34 12.10

Class BCC 94.32 281.02 17.201

Class NV 99.85 160.55 12.6

Class MEL 87.12 134.6 11.64

Figure 13 represents each prediction input used for computing the cluster distance,
assigned into histogram bins. Here, the y-axis is the number of predictions and the x-axis
represents the cluster distance. Notably, the histogram represents how frequently the
prediction/classification falls within a particular range of cluster distances.
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Figure 13. Cont.
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Figure 13. The histogram of cluster distances representing the model that successfully clustered the features of the classes:
(a) histogram of cluster distance of each prediction for class AK; (b) histogram of cluster distance of each prediction for class
BCC; (c) histogram of cluster distance of each prediction for class NV; (d) histogram of cluster distance of each prediction
for class MEL.

Training Performance of Edge Models with New Samples

Figure 14 illustrates the training and validation accuracy and loss for the new sam-
ple adaptation at the edges. Figure 14a shows the correlation reported for training and
validation accuracy and loss during the retraining of new samples at epoch 3. Figure 14b
depicts the correlation reported for training and validation accuracy and loss during the
retraining of new samples at epoch 6. Interestingly, in the presented results, it can be noted
that the edge model retrained the new samples by continuously increasing its training and
validation accuracy and minimizing loss after each epoch. Furthermore, it can be noted
that the observed loss and accuracy were stable at every epoch.
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Figure 14. Training and validation accuracy and loss for new sample training in edge models; (a) validation accuracy
(val_acc), testing accuracy (test_acc), validation loss (val_loss), and testing loss (test_loss) when new samples were trained
at epoch 3; (b) validation accuracy (val_acc), testing accuracy (test_acc), validation loss (val_loss), and testing loss (test_loss)
when new samples were trained at epoch 6.

5. Conclusions and Future Work

The majority of diagnoses in dermatology are based on visual pattern recognition
of morphological features. Skin imaging technology currently involves dermoscopy de-
vices, very-high-frequency (VHF) ultrasound, and reflectance confocal microscopy (RCM).
Each method of skin imaging has its advantages and limitations. Dermatologists need to
choose different imaging methods according to varying conditions of skin lesions. Skin
imaging technology has become a vitally important tool for the clinical diagnosis of skin
diseases, and it is widely accepted and applied in the world. At the same time, machine
learning-based dermoscopy is exceedingly suitable for improving the diagnosis capabilities
of dermatologists. Accordingly, this study proposed an intelligent dermoscopy device,
which can be used by health practitioners for the clinical diagnosis of skin tumors. This
study offers a continuous improvement in classification accuracy by developing a more
robust solution through the adaptability mechanism. To ensure adaptability, this study
proposed an adaptive federated machine learning-based model that can correctly classify
the dermoscopy images for skin disease classification, capable of learning new features
(new samples acquired during the classification task through the dermoscopy device). This
study used the previously proposed online training and online classifier update (k-means
clustering method for new training dataset formation). However, this study found that
using the clustering-based mechanism to distinguish different classes for similar features
resulted in some classification degradation after adaptation. Hence, a supervised learning
mechanism should be used for new dataset formation. The proposed framework showed
satisfactory performance for both the cloud and the edge models. The results demonstrated
adequate classification performance (in terms of accuracy) for the edge models, which is
essential for clinical trials.

Furthermore, a patient-level mobile application is also offered to help patients locate
the nearest dermatologist and to provide the necessary information regarding the skin
disease to prevent negligence. However, this module was not practically tested herein and
will be addressed in a future study. The authors also aim to develop a prototype (hardware)
intelligent dermoscopy device for dermatologists (using the proposed federated machine
learning-based model), which will be tested clinically.
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