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Abstract: The objective of this research is to investigate the feasibility of utilizing the Elman neural
network to predict the surface roughness in the milling process of Inconel 718 and then optimizing
the cutting parameters through the particle swarm optimization (PSO) algorithm according to the
different surface roughness requirements. The prediction of surface roughness includes the feature
extraction of vibration measurements as well as the current signals, the feature selection using
correlation analysis and the prediction of surface roughness through the Elman artificial neural
network. Based on the prediction model of surface roughness, the cutting parameters were optimized
in order to obtain the maximal feed rate according to different surface roughness constraints. The
experiment results show that the surface roughness of Inconel 718 can be accurately predicted in
the milling process and thereafter the optimal cutting parameter combination can be determined to
accelerate the milling process.

Keywords: Inconel 718; slot milling; surface roughness prediction; Elman neural network; particle swarm
optimization; cutting parameter optimization; empirical mode decomposition; frequency normalization

1. Introduction

The material of Inconel 718 has been broadly used in manufacturing the components
of aircraft and space vehicles in the aerospace industry. In the milling process of Inconel 718,
the surface roughness is one of the important indicators to assess the work-piece quality.
The surface roughness of work-piece is mainly influenced by the combinations of cutting
parameters, tool machine vibrations, tool wearing and other external factors. In order to
improve the surface condition of work-piece and enhance the manufacturing efficiency, the
essential tasks involve the accurate prediction of surface roughness quantities as well as
the optimization of the cutting parameter combinations.

The traditional studies indicated that the surface roughness of work-piece is domi-
nated by the cutting speed, feed rate and cutting depth [1]. Therefore, the different combi-
nations of cutting parameters were utilized to predict the surface roughness of work-piece
in the machining process through the artificial neural network (ANN) and regression
scheme [1,2]. As the concept of intelligent manufacturing was proposed, the vibration
measurements of machining process were utilized to improve the prediction accuracy
of surface roughness. Grzenda and Bustillo [3] presented a semisupervised approach to
the development of roughness prediction models in the milling process. In their study,
the vibration data are used in combination with the K-nearest Neighbors and random
forest techniques to increase the accuracy of the prediction models. Alternatively, the
classifier of support vector machine was employed to predict the surface roughness of
aluminum plate during the end milling process through the feature sets that include the
statistical parameters, FFT spectra and wavelet packets [4]. In addition, a prediction model
based on energy consumption was proposed to estimate the surface roughness in turning
operation [5]. The cutting energy consumption and cutting parameters were extracted
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as the inputs to the prediction model in their research. Ambhore et al. [6] conducted the
research to develop the predictive model through evaluating the tool vibration acceleration
and the surface roughness of AISI 52100 steel with different machining parameters. Their
investigation indicated that the prediction of ANN is more accurate than the regression
analysis. A series of artificial intelligence methods, including random forest, standard
multilayer perceptrons, regression trees and radial-based functions, are tested to predict
the surface roughness deviation through taking the tool wear into account [7].

Traditionally, the selection of cutting parameters in the machining process is mainly
based on the Taguchi method. Camposeco-Negrete [8] presented a cutting parameter
optimization approach to minimize the cutting energy consumption and surface roughness
of AISI 6061 T6 during the turning operation through the Taguchi method. The results of
the research work showed that the feed rate is the most significant factor for minimizing
energy consumption and surface roughness. Owing to the rapid development of artificial
intelligence techniques and optimization algorithms, several approaches have been applied
to search the optimal combination of cutting parameters for different machining conditions.
Mahdavinejad et al. [9] employed the multiperceptron ANN to build the surface roughness
model and used the artificial immune algorithm to find the optimal parameters, including
cutting velocity, feed per tooth and cutting depth, to minimize the surface roughness in the
milling process of Ti-6Al-4V. Additionally, the particle swarm optimization (PSO) technique
was utilized to find the optimal cutting parameters for minimizing the face milling time
under the desired surface roughness values of aluminum work-piece based on the model
that depicts the relationship among the cutting velocity, feed rate, cutting depth and surface
roughness [10]. The multiobjective optimization approach was proposed to obtain the
optimal combination of milling parameters for achieving minimum cutting power, surface
roughness and maximum material removal rate through using the adaptive neuro fuzzy
interface system combining the vibration and communication particle swarm optimization
algorithm [11]. Alternatively, the genetic algorithm was also applied for optimizing the
cutting parameters to reduce the energy consumption as well as the processing time [12].
Their study demonstrated that 32.07% of the consumed energy can be decreased and 34.11%
of the processing time can be reduced. Ma et al. [13] conducted an experimental study for
the optimization of the machining parameters in high-speed milling process of Inconel 718
based on chip variation. In order to maximize the material removal rate and to minimize
the machining time as well as the surface roughness, the grey relational analysis was used
for optimizing the output parameters on the turning of oil-hardened nonshrinking die
steel [14].

By reviewing the previous literature of machining parameter optimization, the search
of optimal cutting parameters was mainly achieved based on the assumed connection be-
tween the work-piece surface quality and the tooling parameters. However, the work-piece
surface quality, such as the surface roughness, is partially influenced by the combinations
of machining parameters and the tool machine vibration behaviors. Furthermore, due
to the nature of cutting Inconel 718 work-piece, the factors, such as build-up-edge (BUE)
phenomenon and rapid tool wearing, may also affect the surface quality during the cut-
ting steps, and hence it makes the prediction of surface roughness more difficult in the
manufacturing process.

To advance the state-of-art of cutting parameter optimization based on surface rough-
ness prediction in this research, the characteristics of BUE phenomenon in cutting Inconel
718 were assumed to reflect on the vibration behaviors. The vibration measurements of
spindle and fixture are investigated during the milling process of Inconel 718. On the other
hand, the factor of tool wearing was simplified by computing the accumulated volume
removal as well as the accumulated operation time for each cutter. The correlation between
the roughness average (Ra) values of Inconel 718 work-piece and the vibration signals
was analyzed to extract the vibration features. Owing to the nature of sequential milling
process in this research, the signal features may be various in different milling stages. It is
also well known that the Elman neural network has the characteristics of general recurrent
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neural network that accommodates the time-varying features of data series and has the
outperformance of prediction [15]. Therefore, the Elman neural network was utilized to
build the surface roughness prediction model of Inconel 718 in the milling process. Based
on the prediction model, the cutting parameters were optimized through the PSO algo-
rithm. In general, the feed rate is one of the factors dominating the Ra value of work-piece
surface. The Ra value normally increases as increasing the feed rate under the condition
of fixing the other parameters. Meanwhile, the cutting time consumption is determined
by the feed rate. Based on this concept, the optimization scenario was set to maximize the
feed rate under the different constraints of Ra values. Therefore, the optimal combination
of cutting parameters can achieve acceleration of the tooling process for different surface
quality requirements of Inconel 718 work-piece. For the purpose of further usage and
reference, all the measurements, the corresponding Ra values and the cutting parameters
utilized in this research article are available at the website [16].

2. Experiment and Measurements
2.1. Experiment Setup

A milling machine (Awea Mechatronics, Hsinchu County, Taiwan, Type: A + 1020)
was utilized to demonstrate the effectiveness of work-piece surface roughness prediction
and cutting parameter optimization in this research. The Inconel 718 that has been used as
the component material of gas turbine engine or rocket engine in the aerospace engineering
field was selected as the work-piece material in the experiment. According to the material
properties of work-piece, the TiAlN-PVD-coated carbide grade cutter (Kennametal Incor-
poration, Pittsburgh PA, USA, type: KC725M) was utilized in the milling machine. The
specifications of the cutter are shown in Table 1.

Table 1. Specifications of cutter.

Diameter (mm) 16
Blade length (mm) 11
Cutter length (mm) 90
Number of blades 2

As shown in Figure 1, two tri-axial accelerometers (PCB Piezotronics, Depew, NY,
USA, type: 629A31) were stuck on the spindle and the vise, respectively to measure the
vibration acceleration synchronously during the milling process. The vibration signals
were discretized and recorded through the data acquisition module (National Instruments
Corporation, Austin, TX, USA, type: NI9234) with the sampling frequency of 25.6 kHz. The
slot milling process produced five straight routes on each block of Inconel 718 work-piece.
The surface roughness measurement system (Kosaka Laboratory Limited, Tokyo, Japan,
type: SE3500K) was utilized to detect the Ra value of each milling route on the work-piece.
The current signals of the spindle were acquired synchronously through the Servo Guide
system (Fanuc Corporation, Yamanashi Prefecture, Japan) in the spindle drive module with
the sampling frequency of 2 kHz.

According to the parameter range suggested by the cutter manufacturing company,
the cutting parameters were set in this experiment. Additionally, the accumulated volume
removal of each cutter and the accumulated operation time of each cutter were estimated
to simply represent the factor of tool wearing. All the cutting parameters as well as the
associated accumulated volume removal and the accumulated operation time per cutter
are shown in Table 2. The measured signals, the corresponding Ra values and the cutting
parameters utilized in this research article are available at the website [16].
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Figure 1. Two tri-axial accelerometers on spindle (left) and vise (right).

Table 2. Cutting parameters, accumulated volume removal and operation time.

Cutting speed (m/min) 30, 35, 40, 45
Feed per tooth (mm/tooth) 0.05, 0.12, 0.18, 0.25

Cutting depth (mm) 0.5, 0.8, 1.2, 1.5
Clamping force of vise (N) 9807, 26,479, 45,112, 62,765

Accumulated volume removal per cutter (mm3) 0–7584
Accumulated operation time per cutter (second) 0–266.4

2.2. Signal Processing

In this experiment, the vibration accelerations at spindle and vise were measured
in the three directions. The relative vibration accelerations between the spindle and the
vise were also calculated. The current values of spindle were recorded synchronously
during the cutting process. Since all the signals contain the measurements at different
stages of milling process, such as idling, initial cutting, stable cutting and tool retracting,
only the measured data of 14 s within the stable cutting were utilized for the steps of signal
processing and feature extraction thereafter to enhance the surface roughness prediction of
milling process.

In general, the vibration and current measurements may inevitably contain compli-
cated composition at different frequencies, including the uncorrelated signal components,
disturbances and noises. During the cutting process, the vibration behavior may present
the nonstationary manners, such as amplitude/frequency modulation or intermittency,
while the blades of cutter move forward and try to remove the material from work-piece.
On the other hand, the spindle currents are normally varying with time because the servo
control system of spindle tries to overcome the various cutting resistance and then keeps
the spindle running at a constant rotation speed. Since the vibration measurements and cur-
rent signals normally present the complicated nonstationary behaviors, all the time series
signals were first separated through the empirical mode decomposition (EMD) method [17],
which can be formulated as

x(t) =
m

∑
k = 1

ck(t) + rm(t) (1)
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where x(t) represents the measured complicated signal, ck(t) is the i-th intrinsic mode
function (IMF) and rm(t) represents the signal residue or trend. Figure 2 illustrates the
IMF1 to 16 of one of the vibration signals. According to the spindle speeds, the IMFs that
contain the frequency components of two to four times of the spindle rotating frequencies
were collected to synthesize the associated reconstructed signals. In such a way, the
essential features related to the milling process can be reserved and those uncorrelated
signal components, such as noise and signal trend, can be removed.
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Figure 2. Illustration of vibration signal intrinsic mode functions (IMFs) through empirical mode
decomposition (EMD).

In the cutting process, the tool blades cyclically impact the work-piece and hence the
vibration behaviors normally present periodically amplitude-modulation phenomenon
in spindle and work-piece. Meanwhile, the spindle current signal may also reveal the
amplitude modulation behavior since the cutter encounters the periodic resistance from
the work-piece and hence the servo control system tries to make the spindle at a constant
rotation speed through varying the current. Therefore, the envelope analysis is capable of
demodulating the measurements and is one of the useful techniques to extract the signal
features that are correlated to the amplitude modulation characteristics. The envelope of
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measurement can be determined by means of the analytical signal method. The complex
analytical signal z(t) of measurement x(t) is computed through the Hilbert transform [17],

z(t) = x(t) + jH[x(t)] = A(t)ejφ(t) (2)

where x(t) is the measured signal, H[•] represents the Hilbert transform operator and A(t)
is the envelope of signal x(t).

The reconstructed signals and their envelopes were then analyzed to extract the
interior features. The FFT spectrum analysis was employed to extract the frequency-
domain features of the reconstructed signals as well as their corresponding envelope
signals. As indicated [18,19], the frequency-domain features include the spindle rotating
speed-related ones and the spindle rotating speed-unrelated ones. The spindle rotating
speed-unrelated features can be attributed to the machine structural vibrations as well as
the external noises. As illustrated in Figure 3, the spectra of the vibration signals reveal
that the vibration energy is concentrated at the same certain frequencies even though the
spindle rotating frequencies are different. Therefore, the vibration energy levels at specific
frequencies (such as 469–470 Hz) can be classified to the spindle rotating speed-unrelated
features in frequency-domain.
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Figure 3. Illustration of spindle rotating speed-unrelated frequency-domain features: Spectrum of
vibration signal under different spindle rotating speeds.

On the other hand, the frequencies at which the signal energy is concentrated vary
along with the spindle rotating speed, as shown in Figure 4a that illustrates the spectrum
of a vibration signal set under different spindle rotating speed. The frequencies were
then normalized by the spindle rotating frequency to obtain the order spectra as shown in
Figure 4b. It is apparently observed that the spectral peak can be found at order-2 since
there are two blades in one cutter, and thus the vibration energy concentration is noted
at the frequency of two times the spindle rotating frequency, which is the tool passing
frequency. Therefore, the vibration amplitude levels at the indicated orders represent the
spindle rotating speed-related features in frequency-domain.
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Besides the features in frequency-domain, the statistical quantities of the measured
time series were computed to extract the features in time-domain. In this study, the
time-domain features that were extracted from the measurements include the follow-
ing quantities.

(1) Multiscale entropy (MSE): the MSE was extensively applied to quantify the complex-
ity or disorderliness of a time series [20]. Therefore, the sample entropy [21] was
calculated to estimate the complexity of the measurement in different scales, which
represent the dynamic features of the system [22].

(2) Root-mean-square value (RMS): the RMS value is broadly employed to indicate the
statistical mean amplitude of a time series.
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(3) Standard deviation (STD): the STD is generally to measure the amount of variation or
dispersion of a time series.

(4) Skewness: the skewness value is the measure of the extent to which a probability
distribution of the time series leans to one side of mean.

(5) Kurtosis: the kurtosis value describes the measure of tailedness of the distribution
relative to the normal distribution (kurtosis value is 3).

(6) Peak-to-peak value: the peak-to-peak value of a time series describes the change be-
tween the peak and valley in the data set, which indicates the range of oscillating data.

(7) Crest factor (CF): the CF value is a parameter of waveform indicating the peak
measurement that is normalized by the mean amplitude of the data set.

(8) Coefficient of variation (CV): the CV value is a measure of the extent variability
relative to the mean of the data set.

2.3. Correlation Analysis

The Ra values of all cutting routes on the work-piece were measured after the slot
milling process was finished for each block of Inconel 718. The correlation analysis between
the Ra values and extracted features were then applied for feature selection. Tables 3–5
show the Pearson correlation coefficients between the statistical features and the Ra values.
It is noted from Table 3 that the entropy of vise vibration in X-direction has relatively high
correlation (absolute value of correlation coefficient ≥ 0.4) with the Ra values within more
scales than the other measurement points and directions. Additionally, Table 4 shows the
observation that the statistical features of vibration signals have more correlation with
respect to the Ra values in X-direction. It can be inferred that the cutting process of Inconel
718 consists of more essential vibration characteristics in X-direction due to reasons of
the cutting resistance of Inconel 718 (material property) as well as the feeding direction.
The result of correlation analysis for the spindle current (Table 5) depicts that the RMS,
STD, peak-to-peak and CV values have more correlation coefficients with respect to the
Ra values.

The correlation analysis in frequency-domain was also employed to the vibration
signals and their corresponding envelope signals in three directions. As the aforementioned,
the frequency-domain features include the rotation speed-related and unrelated features.
In order to extract the rotation speed-unrelated features, the correlation coefficients were
calculated to quantify the correlation between the power spectrum densities of vibration
signals and the Ra values within 8 kHz. The correlation coefficients were also computed
to assess the correlation between the corresponding envelope of vibration signals and
the Ra values. To obtain the rotation speed-related features of vibration signals and their
corresponding envelope signals, on the other hand, the correlation coefficients of their
order spectra (normalized frequency by rotation speed) with respect to the Ra values were
also computed from 0 to 100× orders. Additionally, the correlation coefficients among the
Ra values and the power spectrum densities of spindle currents were calculated within the
frequency range of 1 kHz as well.

Table 3. Pearson correlation coefficients (absolute value ≥ 0.4) between multiscale entropy and the Ra values.

Spindle vibration
X-axis

Scale 6 7 11 12 13
Correlation coefficient 0.42 0.41 0.44 0.44 0.42

Vise vibration X-axis
Scale 7 8 9 10 11 12 13 14 15 16 17 18 19

Correlation coefficient 0.44 0.46 0.51 0.52 0.53 0.55 0.54 0.53 0.48 0.46 0.45 0.42 0.42

Relative vibration
X-axis

Scale 6 7
Correlation coefficient 0.40 0.41
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Table 4. Pearson correlation coefficients (absolute value ≥ 0.2) between the vibration statistical features and the Ra values.

Correlation Coefficient X-Axis Y-Axis Z-Axis

Spindle

Vibration

0.45 (RMS)
0.45(STD)

0.27(Skewness)
0.37(Peak-to-peak)

0.33(RMS)
0.33(STD)

−0.27(Kurtosis)
0.23(Peak-to-peak)

−0.23(CF)

0.28(RMS)
0.28(STD)

Envelope
0.48(RMS)
0.44(STD)

0.27(Peak-to-peak)

0.36(RMS)
0.33(STD)

0.33(RMS)
0.30(STD)

Vise
Vibration

0.20(RMS)
0.20(STD)

−0.24(Kurtosis)
−0.22(CF)

0.31(RMS)
0.31(STD)

−0.26(Kurtosis)
0.27(Peak-to-peak)

0.20(RMS)
0.20(STD)

−0.20(Kurtosis)
−0.21(CF)

Envelope 0.21(RMS) −0.22(CF)

Relative vibration

Vibration
0.39(RMS)
0.39(STD)

0.35(Peak-to-peak)

0.35(RMS)
0.35(STD)

−0.28(Kurtosis)
0.25(Peak-to-peak)

−0.21(CF)

0.27(RMS)
0.27(STD)

0.22(Peak-to-peak)

Envelope
0.43(RMS)
0.39(STD)

0.22(Peak-to-peak)

0.36(RMS)
0.31(STD) 0.23(RMS)

Table 5. Pearson correlation coefficients between the statistical features of spindle current and the Ra
values.

Spindle Current Features Correlation Coefficient

RMS 0.55
STD 0.64

Skewness −0.1
Kurtosis 0.38

Peak-to-peak 0.6
CF 0.48
CV 0.6

The correlation analysis results in frequency-domain are illustrated in Figures 5 and 6.
Figure 5 shows the correlation coefficients among the Ra values and the power spectrum
densities of the spindle vibration signals as well as their corresponding envelopes in three
directions. The correlation coefficients of the order spectra of spindle vibration signals and
their corresponding envelopes with respect to the Ra values are shown in Figure 6. It can be
noted that the correlation coefficients of high value (absolute value ≥ 0.4) were computed
at more frequencies/orders in vibration signals than in their corresponding envelopes. The
results are reasonable since the frequency-domain characteristics reveal the information
inside the vibration signal while the envelope signal represents the amplitude modulation
behavior in time-domain.
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3. Results and Discussion
3.1. Surface Roughness Prediction Result

As the correlation analysis is processed, the features (including time-domain and
frequency-domain) that have correlation coefficient of values higher than 0.4 (as shown
in Tables 3–5 and Figures 5 and 6) are selected as the input layer of the prediction model.
In this research, the Elman neural network [15,23] was employed to form the prediction
model of surface roughness during the milling process. Among the total of 116 measured
data sets, 100 data sets were randomly collected to train the prediction model, and the
remaining 16 data sets were utilized for testing. The training and testing steps were
repeated for five rounds to execute the cross-validation. The prediction results of Elman
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neural network are presented in Figure 7. With the selected features of measured signals, it
can be observed that the Ra values of Inconel 718 work-piece during the milling process can
be predicted accurately. The predictive error was assessed to be 18.85% in terms of the mean
absolute percentage error (MAPE) value in this case. On the other hand, the coefficient of
determination (R2) of the predictive model is 0.671. Furthermore, the prediction accuracy
can be enhanced to the MAPE value of 13.48% by combining the signal features and the
cutting parameters (as shown in Table 2) as the input layer of Elman neural network, and
the prediction result is shown in Figure 8. The R2 value is 0.862 in this case.
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3.2. Cutting Parameter Optimization

Once the surface roughness prediction model was built and validated as stated in
Section 3.1, the inverse model was utilized for the optimization of cutting parameters.
The PSO algorithm [24] was applied to search for the optimal combinations of cutting
parameters for different schemes. In this research, the cutting parameter optimization was
based on the scenario that the feed rate is maximized to accelerate the milling process
subjected to different Ra requirements. Therefore, the fitness function of the optimization
process J(x) is formulated as

J(x) = f (x)− α
∣∣R(x)− Rexp

∣∣ (3)

where f (x) represents the feed rate, R(x) represents the Ra prediction value, Rexp is the
expected Ra value, and α represents the adjusting parameter for weighting the difference
between the predicted and expected Ra values.

The cutting parameters’ range (values of lower and upper bounds) was set according
to the tool manufacturer’s specifications as shown in Table 6 to constrain the searching
boundary in the optimization process. As the aforementioned in [1], the surface rough-
ness of work-piece is affected mainly by the cutting speed, feed rate and cutting depth.
Furthermore, the clamping force amount of fixture changes the boundary conditions be-
tween the vise and work-piece and thus influences the vibration behaviors as well as
hereafter the surface roughness of work-piece. In this research, the Ra values of Inconel
718 work-piece were classified to four levels (0.4, 0.6, 0.8 and 1.0 µm) to represent the
different milling quality requirements. With the constraints of Ra values, the feed rate
is maximized to decrease the consuming cutting time. Three sets of cutting parameter
combinations were obtained as the optimization results of PSO algorithm as shown in
Table 7. The selected optimal combinations of cutting parameters were then utilized for the
experiment validation. Table 8 shows the experiment results through using the selected
optimal combinations of cutting parameters. A reasonable result can be observed that the
maximized feed rate has to be decreased apparently for achieving the requirements of fine
surface conditions (Ra = 0.6 and 0.4 µm), as compared with the milling requirements of
rough surface conditions (Ra = 1 and 0.8 µm). For the imprecise requirement of rougher
surface quality (Ra = 1.0 and 0.8 µm), the factor of cutting depth does not affect the Ra
value of Inconel 718 work-piece, and thus the optimal values of cutting speed and feed
per tooth are set to the values of upper bound since the feed rate needs to be maximized.
However, the cutting depth becomes one of the crucial factors for the strict requirement
of finer surface quality (Ra = 0.4 and 0.6 µm), and therefore optimization process tried to
search the parameters combination for achieving the maximal feed rate as well as the fine
Ra restriction. Through the cutting parameter optimization, it is noted that the predicted Ra
values of the Elman neural network are closed to the measured Ra values of actual milling
process with the overall accurate MAPE value of 10.38%. Furthermore, the examination
was carried out to verify that the feed rate is maximized by using the computed optimal
combinations of cutting parameters. The verification result is shown in Table 9. The result
indicates that the feed rates can be maximized by using the optimized cutting parameters
for the required Ra values of 1, 0.8 and 0.6 µm since the feed rate errors are less than 1%,
while the feed rate could be further accelerated by 24% for the required Ra value of 0.4 µm.

Table 6. Cutting parameters range.

Cutting Parameter Lower Bound Upper Bound

Cutting speed (m/min) 30 45
Feed per tooth (mm/tooth) 0.05 0.25

Cutting depth (mm) 0.5 1.5
Clamping force of vise (N) 9807 62,765
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Table 7. Optimal cutting parameter combinations from particle swarm optimization (PSO) algorithm.

Expected Ra
(µm)

Cutting Speed
(m/min)

Feed Per Tooth
(mm/tooth)

Cutting Depth
(mm)

Clamping Force of
Vise (N)

Feed Rate
(mm/min)

Predicted Ra
(µm)

1.0
45.00 0.25 1.32 9807 447.62 1.00
45.00 0.25 0.87 9807 447.62 1.00
45.00 0.25 0.75 9807 447.62 1.00

0.8
45.00 0.25 0.50 26,479 447.62 0.75
45.00 0.25 1.29 62,765 447.62 0.75
45.00 0.25 1.50 45,112 447.62 0.74

0.6
44.76 0.22 1.47 62,765 384.68 0.58
45.00 0.22 1.33 45,112 393.91 0.60
45.00 0.23 1.50 45,112 409.04 0.60

0.4
30.00 0.05 0.50 9807 59.68 0.39
33.83 0.07 1.10 62,765 93.72 0.31
30.00 0.09 0.50 62,765 108.71 0.28

Table 8. Experiment results by using the selected optimal combinations of cutting parameters.

Expected Ra (µm) Feed Rate (mm/min) Predicted Ra (µm) Measured Ra (µm) Error (%)

1
447.62 1.00 0.93 −7.00
447.62 1.00 1.19 19.00
447.62 1.00 1.05 5.00

0.8
447.62 0.75 0.78 3.45
447.62 0.75 0.73 −2.67
447.62 0.74 0.73 −1.35

0.6
384.68 0.58 0.55 −5.17
393.91 0.60 0.63 5.00
409.04 0.60 0.64 6.67

0.4
59.68 0.39 0.34 −13.49
93.72 0.31 0.39 25.00

108.71 0.28 0.37 30.74

MAPE: 10.38%

Table 9. Verification of experimental result for feed rate maximization.

Expected Ra (µm) Maximum Feed Rate in Experiment (mm/min)

1 447.62
0.8 447.62
0.6 387.89
0.4 143.24

4. Conclusions

The surface roughness of Inconel 718 work-piece was accurately predicted in the
milling process through the signal feature extraction techniques as well as the Elman neural
network in this research. The well-trained surface roughness prediction model was utilized
to optimize the cutting parameters through the PSO algorithm based on the scenario that
the feed rate is maximized in case of different constraints of surface roughness requirements.
The experiment results show that the surface roughness of Inconel 718 work-piece can be
accurately predicted in the milling process by using the selected signal features as well as
the cutting parameters. The Ra prediction was achieved through the Elman neural network
model with the MAPE value of 13.48%. Meanwhile, the optimized cutting parameters were
validated experimentally to demonstrate that the proposed method is feasible to accelerate
the milling process under the different requirements of surface quality. With the optimal
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cutting parameter combinations, the measured Ra values are closed to the required Ra
values with the overall accurate MAPE value of 10.38%. The required Ra values of 1, 0.8
and 0.6 µm can be achieved by the maximized feed rates that have the errors of less than
1%. The required Ra values of 0.4 µm can be achieved by the feed rate of 24% more speed.
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