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Abstract: Ischemic stroke is one of the typical chronic diseases caused by the degeneration of the
neural system, which usually leads to great damages to human beings and reduces life quality
significantly. Thereby, it is crucial to extract useful predictors from physiological signals, and further
diagnose or predict ischemic stroke when there are no apparent symptoms. Specifically, in this study,
we put forward a novel prediction method by exploring sleep related features. First, to characterize
the pattern of ischemic stroke accurately, we extract a set of effective features from several aspects,
including clinical features, fine-grained sleep structure-related features and electroencephalogram-
related features. Second, a two-step prediction model is designed, which combines commonly
used classifiers and a data filter model together to optimize the prediction result. We evaluate the
framework using a real polysomnogram dataset that contains 20 stroke patients and 159 healthy
individuals. Experimental results demonstrate that the proposed model can predict stroke events
effectively, and the Precision, Recall,Precision Recall Curve and Area Under the Curve are 63%, 85%,
0.773 and 0.919, respectively.

Keywords: ischemic stroke; sleep EEG; sleep cycle; sleep stage

1. Introduction

Ischemic stroke is a medical condition, which occurs once the arteries to the brain
become blocked, resulting in cell death. [1]. Each year, in the United States, approximately
795,000 people suffer from a stroke, and about 600,000 of these are first attacks, 185,000
are recurrent attacks [2]. In medicine, stroke has two subspecies: ischemic stroke and
hemorrhagic stroke. Compared with hemorrhage, ischemic stroke accounts for about 87%
of all strokes [3]. It occurs when a blood vessel is blocked by a blood clot which means
the blood cannot reach the brain. Therefore, the cerebral blood flow (CBF) of patients
suffering from the ischemic stroke is lower than those of health [4]. Obviously, ischemic
stroke damages brain cells and hence leads to the degeneration of the motor function
accompanied with depression and anxiety [5]. If ischemic stroke can be predicted in
a timely fashion, the quality of life and the health level of the public can be improved
significantly.

To predict stroke accurately, two key problems should be solved. First, when there are
no apparent symptoms, can we extract effective ischemic stroke predictors to diagnose or
predict stroke? Second, for ease of use, can we extract efficient stroke predictors from data
that can be obtained during people’s daily lives in a non-intrusive manner?

By now, researchers have conducted numerous studies to extract useful ischemic
stroke predictors, which can be roughly grouped into three categories. The first category of
studies focuses on extracting features manually based on expert medical knowledge. For
example, Sedghi et al. [6] and Lumley et al. [7] constructed a stroke prediction model by
manually selecting 16 features. Although the effectiveness of some clinical features [8–10]
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had been verified by existing studies, how to extract efficient features from continuous
physiological signals is still an open issue. The second category of studies aims to extract
features from Electrocardiograph (ECG), Computerized Tomography Scanner (CT-Scan), or
Magnetic Resonance Imaging (MRI) investigation. Particularly, based on ECG, CT-Scan and
MRI, the detailed structures of soft tissues, such as brain and heart, can be observed more
clearly. For example, Sajjadi et al. [11] and other authors [12–14] verified the usefulness of
the CT-Scan and MRI data of the brain in early detection of acute ischemic stroke. While
existing approaches have achieved a satisfactory stoke detection performance, they can
only detect stroke that will occur soon or has already occurred. To enable early prediction of
stroke occurrence, we need more efficient approaches. The third category of studies extracts
features utilizing machine learning techniques, which were widely used to investigate the
relationship between the symptoms and stroke incidents. For instance, Khosla et al. [15,16]
and Kasabov et al. [17] proposed an integrated machine learning method to predict stroke
based on different environmental factors. All these studies mainly focused on detecting
stroke incidents by mining features from discrete data, rather than leveraging continuous
data that contain much more useful information.

In summary, existing stroke prediction methods have not fully solved the problem
of early stroke prediction, and the main shortcoming is that they did not fully exploit
unobtrusive sensing techniques to collect long-term health-related time series data during
daily life (such as continuous health data that can be collected during sleep), which may
leave out useful hidden information when predicting stroke. Specifically, in this paper,
we aim to address the early prediction problem of ischemic stroke by exploring sleep-
related time series data. On one hand, ischemic stroke occurs most often shortly after
awakening in the morning hours [18], and a number of studies have reported a sleep
circadian variation in the occurrence of stroke [19,20]. For example, patients’ sleep was
found to be markedly altered compared with a normal group, specific performance in a
higher amount of slow wave sleep was recorded, whereas fast wave sleep was found to be
deeply suppressed (such as stage 0 being increased, however stage 4 being reduced) [21,22],
coupled to present electroencephalograph (EEG) abnormalities such as an increase in delta
frequency, sometimes an increase and at other times a decrease in theta activity and/or a
decrease in alpha and beta frequencies [23]. Ma et al. [24] had found that participants with
rapid eye movement (REM) sleep behavior disorder were approximately 1.5 times more
likely to develop stroke, including the ischemic type. In another similar study, it was also
proven that sleep disorders were highly prevalent in patients at risk for stroke and may
be modifiable risk factors for stroke [22]. Finnigan et al. [25] certified that the delta/alpha
power ratio (DAR) and the (delta + theta)/(alpha + beta) ratio (DTABR) exhibited optimal
classifier accuracy between ischemic stroke patients and control groups. On the other hand,
EEG offers a continuous, real-time, non-invasive measure of brain function [26] and it is the
most sensitive neuro-diagnostic tool for detecting cerebral ischemia and can show changes
of ischemic stroke within minutes of onset [27]. EEG abnormalities are closely tied to
CBF [27]. When normal CBF of 50 mL/100 g/min declines to 25 mL/100 g/min, EEG will
first lose faster frequencies (≥8 Hz), and then if CBF continues to drop to 18 mL/100 g/min,
which is a crucial ischemic threshold, the slower frequencies (4 Hz to 7 Hz) of EEG will
increase. Figure 1 shows the relationship of EEG and ischemic stroke.

Therefore, by extracting sleep-related features (including sleep structure and sleep
EEG) to predict ischemia, the first key problem can be solved. In particular, these sleep
features do not compete with elegant clinical trials, but the sleep information it adds is
complementary to other information. In addition, wearable devices (like smart waist-belts),
can be utilized to collect daily sleep-related data, which are as accurate as clinical equipment.
Furthermore, EEG is a well-known, user-friendly examination and is less complex than
the imaging modality [28]. It is usually recorded by using 2 to 19 electrodes, the numbers
of which are set according to the needs of the patient, placed upon the scalp according to
the International 10–20 System. Since the recruitment of stroke participants is extremely
expensive and time-consuming, this study will not collect experimental datasets by using
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portable data acquisition devices. Nevertheless, it is notable that we can collect datasets
which are similar to the one utilized in this study through portable data acquisition devices,
and the proposed method can be directly used for data analysis and stroke prediction. As
for the second problem, we will solve it in the the rest of the paper.

Figure 1. The relationship of electroencephalograph (EEG) change and Ischemic stroke [26].

There has been little work that has explored sleep-related features and further com-
bined them with other clinical features (e.g., high blood pressure, cholesterol [7]) to predict
the occurrence of stroke. In our work, we present a novel ischemic stroke prediction
approach, which integrates clinical features with fine-grained sleep-related features for
stroke risk prediction. Specifically, to fully characterize the sleep pattern of a high-risk
population of ischemic stroke, we extracted both sleep structure related and sleep EEG
related features. To sum up, the contributions of this study are three-fold:

First, compared with most of the previous studies, which merely used sleep data from
a few minutes to tens of minutes, we had leveraged all night’s sleep data to make this
prospective study. Specifically, we extracted both sleep structure related and sleep EEG
related features to characterize the ischemic stroke pattern more comprehensively.

Second, since the consequences of stroke incidents are quite severe, we should try our
best to correctly identify people who will have a stroke in the short run. In other words, we
should keep the false negative rate of the proposed model as low as possible. Meanwhile,
compared with the false negative rate, a slightly higher false positive rate will not result in
severe loss. Therefore, we developed a novel stroke risk prediction model, which consists
of two steps. The first one is a machine learning model to obtain basic prediction results,
and the second one is a pre-selection model to further optimize the false negative rate of
stroke prediction.

Third, the proposed stroke prediction model is evaluated by a using 10-fold cross-
validation technique based on a real polysomnogram (PSG) dataset. Experimental results
demonstrate that the proposed model (i.e., Support Vector Machine (SVM)+pre-selection)
outperforms the baseline method (i.e., the model based on basic SVM) by 15% in terms of
the true positive rate (TPR).

The rest of the paper is organized as follows. Section 2 reviews the related work,
followed by problem formulation and approach overview in Section 3. In Section 4, we
describe the process of feature extraction. Section 5 details the elaboration of the proposed
prediction model. We analyze the experimental results in Section 6, followed by conclusion
and possible future works in Section 7.
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2. Related Work

2.1. Ischemic Stroke Predictor

Clinical predictors may be useful in clinical practice to support ischemic stroke treat-
ment. For example, Singer et al. [29] used the original Anticoagulation and Risk Factors
in an Atrial Fibrillation cohort to predict ischemic stroke and showed improvement in
predicting severe events. In another similar article [30], authors found that CHADS2
could quantify the risk of ischemic stroke for patients who had Atrial Fibrillation. On
the other hand, through studying 11 hemostatic markers, Ann Smith et al. [31] discov-
ered that plasminogen activator inhibitor-1, Factor VII coagulant activity, D dimer and
Fibrinogen had potential to increase the prediction of ischemic stroke in middle-aged men.
In addition, the stroke risk score-based approach has also been proposed. For instance,
the best-known stroke risk score is the Framingham Stroke Risk, which was developed
as a part of the Framingham Heart Study and used to estimate 10-year cardiovascular
risk [32]. Besides these clinical characteristics, researchers also assessed the predictivity
of ischemic stroke in a community study. For example, based on four US communities’
participants, Chambles et al. [33] found that several nontraditional factors (e.g., waist:hip
ratio, high density lipoprotein cholesterol, alcohol consumption and so on) can significantly
improve the performance of ischemic stroke prediction over a risk score that only included
traditional factors (e.g., current smoking status, diabetes mellitus, systolic blood pressure
and so on). However, these approaches, which rely on manually selected features, are
not suitable for obtaining patterns from huge datasets and would result in poor identifica-
tion performance. A better choice is to adopt machine learning-based approaches, which
can discover hidden stroke patterns from enormous datasets in a relatively cost-effective
manner.

2.2. Prediction Models

With the rise of new techniques and the ever-increasing medical data available, the
problem of stroke risk prediction has been studied from different aspects. For example,
Chien et al. [34] and Jee et al. [35] used a regression model (i.e., the Cox proportional
hazards model) to predict the risk of stroke and identify individuals at high risk of stroke.
Similarly, Khosla et al. [15] used SVM to predict the risk of stroke within 5 years using the
CHS dataset, and obtained a better result compared with the Cox model. For predicting
ischemic stroke, Arslan et al. [36] assessed different medical data mining approaches and
found that SVM produced the best predictive performance compared with the two other
models. More recently, deep neural networks had been investigated for creating predictions
from electronic health records. For instance, Goyal et al. [37] employed a Recurrent Neural
Network architecture with Long Short-Term Memory hidden units for the prediction of
stroke. While existing machine learning models can achieve effective prediction, most
of the used clinical features that cannot be obtained conveniently and continuously. In
addition, none of them had tried to control the false negative rate of stroke prediction. To
tackle these problems, we first extracted a set of features from sleep data which can be
collected conveniently during people’s daily lives. Afterwards, we adopted a two-step
prediction model to make the false negative rate as low as possible. Compared with our
previous work [38], which exploited sleep structure data to extract fine-grained sleep cycles
and stages features; in this paper, in addition to sleep structure, we also utilized a sleep EEG
stream to extract sleep EEG related features (included relative power and three nonlinear
features according to different sleep cycles and stages) and produced good results.

2.3. EEG and Ischemic Stroke

Due to the physiologic coupling of EEG with cerebral blood flow [39], ischemic
stroke may result in EEG rhythm changes, such as polymorphic delta, attenuation of fast
activity, sleep spindles, and so on [40]. Therefore, EEG adds value to early diagnosis,
outcome prediction, patient selection for treatment, clinical management, and seizure
detection in acute ischemic stroke [27]. Compared with EEG, serial neurological exams and
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imaging (such as computed tomography (CT) scans, which do not reveal early ischemic
stroke [41], and Magnetic Resonance Image (MRI), which is expensive and often has a
lag time of hours before detecting ischemic stroke [42]) are only capable of detecting
irreversible cellular damage [40,43]. By contrast, EEG is widely available, inexpensive, and
can show changes of acute ischemic stroke within minutes of onset [27]. In addition to early
detection of ischemic stroke, EEG can also be helpful during the diagnosis and evaluation.
Molnár et al. [44] found that with increasing absolute delta, theta, and Omega-complexity
in these frequency bands, higher theta/beta ratios and decreased relative beta activity were
found in the side of the infarct. Daroff et al. [45] pointed out that although there were a
few theta waves among healthy persons, theta and delta waves were mostly found in the
pathological state of the brain, and persistent pleomorphic slow activity is closely related
to local cerebral lesions (e.g., infarction, hemorrhage, and tumor). Therefore, continuous
monitoring of ischemia-related changes in EEG would be of great value to neurologists
in guiding therapy [46,47]. Therefore, on one hand, we used whole night sleep EEG to
determine the sleep morphology and its clinical predictive value. On the other hand, we
divided each sleep EEG into different phases (according to different sleep cycles and sleep
stages) to characterize ischemic stroke pattern from another perspective.

3. Problem Statement and Approach Overview

3.1. Problem Statement

PSG provides a data-rich source for understanding and measuring sleep brain ac-
tivities [48]. For instance, based on the well-known Rechtschaffen and Kales scoring
criteria [49], people can leverage these neurophysiological signals for standard sleep stag-
ing. The main stages are wakefulness, rapid eye movement (REM) sleep and non-rapid
eye movement (NREM) sleep, where NREM is further divided into four stages from the
lightest sleep stages 1 and 2 to the deepest sleep stages 3 and 4. Specifically, sleep stage 1 is
characterized by theta waves (the amplitude is 50 to 100 micro volts); the characteristics of
stage 2 sleep are termed sleep spindles (the amplitude is 50 to 150 micro volts); stage 3 is
considered spindle waves and slow waves sleep (the amplitude is 100 to 150 micro volts);
stage 4 has the same attributes as stage 3, but more than 50% of the waves are slow waves
and delta waves (the amplitude is 100 to 200 micro volts).

In this paper, we leverage features extracted from psychological sleep data for ischemic
stroke prediction. The formulation below represents the time series of sleep data:

SS = {sc1, sc2, . . . , scn}, (1)

where n is the number of sleep cycles. Specifically, each sleep cycle sci (i ∈ [1, n]) can be
denoted as:

sci = (s0i, s1i, s2i, s3i, s4i, s5i), (2)

where s0i is the awake stage of the sleep cycle sci, s1i and s2i represent the shallow sleeping
stages, s3i and s4i denote the stage 3 and 4 of deep sleeping, and REM is represented by s5i.

The average time span of a sleep cycle lasts about 90 min [50], and most people have
four or five sleep cycles overnight with each starting with NREM sleep (i.e., s1, s2, s3,
s4) and then followed by a short REM sleep (i.e., s5). As the sleeping process goes on,
the duration of stage 3 and stage 4 decreases while the duration of REM increases. As a
result, stage 3 to 4 takes up a larger proportion in the earlier part of the night, and REM
sleep occupies a greater part of the later part of the night [51]. Figure 2 shows the typical
structure of a whole night’s sleep stages and cycles.
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Figure 2. A representative of sleep cycles and concomitant EEG signal.

A number of studies have proven that more than one fourth of stroke occurs during
sleep accompanied with a circadian variation [52]. In addition, the frequency pattern of
EEG was very sensitive to changes in neuronal function resulting from ischemia [53]. As
a result, it is reasonable to assume that the fusion of sleep stage and EEG change related
features can help to characterize ischemic stroke from certain aspects, and even predict
the occurrence of stroke events. In order to enable early detection of stroke, we propose
to extract effective features from the sleep data series (including sleep cycles, sleep stages,
and sleep EEG) to distinguish patients with stroke in early phases from healthy individuals.
The problem is defined as follows.

Problem Formalization- Given a time series of sleep data stream of either a healthy indi-
vidual or a patient TSS = {TSC1, TSC2, . . . , TSCn}, and TSCi = (TS0i, TS1i, TS2i, TS3i, TS4i, TS5i),
our aim is to extract features from different dimensions and then build a model to predict
ischemia.

3.2. Approach Overview

As shown in Figure 3, we first use raw data from two different sources, namely physi-
ological data obtained by special medical equipment and sleep data gathered from portable
sensing devices (e.g., a standard EEG according to the international 10 to 20 system). Then,
we extract stroke predictors, including clinical statistical features, sleep structure related
features, and sleep EEG related features. Afterwards, we propose a two-step stroke pre-
diction method, in which we combined the regular machine learning algorithm with the
pre-selection model. More specifically, during the stroke pattern analysis process, we obtain
primary results using the machine learning algorithm at the beginning, and then apply the
pre-selection model to optimize them, aiming at minimizing the false negative rate without
severely affecting the false positive rate.

In the following sections, the extracted features will be first introduced and then the
prediction model will be described in more detail.
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Figure 3. A general view of the prediction model.

4. Feature Extraction

In this section, we present the details of the extracted features: clinical features
and polysomnogram features (including sleep structure related features and EEG sleep
related features).

4.1. Clinical Features

The selection of relevant features plays a crucial role in constructing an efficient
prediction model. There are numerous attributes in the Sleep Heart Health Study (SHHS)
dataset, including clinical history, demographic information, physical and biomedical
measurements [15]. However, only a few of them are relevant to ischemia. Existing
methods usually utilize several risk factors identified by clinical studies to predict stroke.
In this study, we also utilize such risk factors as clinical features, such as sex, diastolic
pressure, systolic pressure, hypertension, diabetes mellitus, atrial fibrillation, race, smoking,
peripheral vascular, left ventricular hypertrophy, total cholesterol, aspirin and high-density
cholesterol.

4.2. Sleep Structure Related Features

As for a healthy subject, the sleep cycle usually starts with the NREM stage, and
followed by the REM stage. These stages will alternate throughout the whole night
periodically. Particularly, most of the slow-wave NREM stages occur in the first half of the
night. For example, s3 and s4 sleep stages occupy much less time in the second cycle than
in the first cycle and even disappear in later cycles. Moreover, the REM sleep stage (i.e., s5)
may only last about 1 to 5 min in the first cycle and will gradually become longer through
the night.

Sleep-related problems are very clinical among stroke patients, and even more than
50% of stroke survivors suffer from at least one certain type of sleep problem [54–56].
Specifically, sleep disorder is a typical sleep problem among stroke patients, which includes
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hypersomnia, insomnia, sleep-disordered breathing, etc. All of these symptoms may lead to
dyssomnias, parasomnias, circadian rhythm sleep disorders etc. [1]. While these symptoms
are observed among stroke patients, we have reason to assume that these features also exist
among subjects who will suffer from ischemia in a near future. Therefore, in this study, we
will attempt to build a stroke prediction model by extracting and leveraging sleep related
features.

To investigate the effects of sleep disorders on stroke prediction, we extract sleep struc-
ture related features from two aspects. In particular, the first aspect is sleep quality-related
features, as more than one third stroke patients have reduced sleep time, insomnia [57],
increased awake times [58], low sleep efficiency [21,59], shorter rapid eye movement-sleep
latency and higher sleep latency [60]. The second aspect is sleep trend-related features,
as it has been proven that the deep sleep stage of stroke patients will decrease, while
the shallow sleep stage of stroke subjects will increase [21,59]. Therefore, similar to our
previous work [38], we extract a number of sleep structure related features, including
features total sleep time (TST), sleep efficiency (SE), wake after sleep onset (WASO), awake
times (AT), sleep latency (SL), rapid eye movement-sleep latency, FF Trend 1, TF Trend 1
and SF Trend1.

4.3. EEG Sleep Related Features

EEG, a record of the oscillations of brain electric potential [61], is useful for the analysis
of functional changes due to the regional brain pathology of ischemic stroke [28]. The EEG
patterns of wakefulness and sleep usually differ from each other markedly, as well as the
patterns of different levels of sleep [62]. In general, EEG, the frequencies of which range
from 0.5 to 100 Hz, is decomposed into five rhythms: delta (1 to 4 Hz), theta (4 to 7 Hz),
alpha (7 to 12 Hz), beta (12 to 25 Hz) and gamma (above 25 Hz) [63]. In this paper, we
are only interested in the components of EEG signals below 25 Hz; therefore, the EEG
signals were band-limited to the desired 1 to 25 Hz range by using wavelet transform-
based methods. In the rest of this section, we present features from two aspects: frequency
domain features (including relative power, brain symmetry index) and nonlinear features
(including sample entropy, detrended fluctuation analysis and Lempel–Ziv complexity).

Power spectral density, which is performed using wavelet packet decomposition to
calculate relative power (RP), power ratio, etc., is the most clinical feature for analyzing
EEG data to characterize the changes of EEG patterns [64]. In this work, we quantify
the relative power of each selected frequency band, i.e., delta, theta, alpha and beta, to
distinguish the EEG of ischemic stroke patients from that of the healthy subjects. The
relative power can be formally defined as follows [65].

RP(Fi ,Cx) =
∑ selected f requency band energy

∑ Total EEG range energy
. (3)

where Fi represents the four different frequency bands of the EEG, i.e., i ∈ {D, T, A, B}; Cx
is the channel of the EEG, and in this study we used two different channels ( C3 and C4),
i.e., x ∈ {3, 4}.

Furthermore, in order to obtain more fine-grained features, we divided all these
frequency bands according to different sleep cycles and sleep stages and calculate the
relative power as follows.

RP(Fi ,sj ,Cx) =
E(Fi ,sj ,Cx)

E(Fi ,Cx)
. (4)

RP(Fi ,sj ,cyck ,Cx) =
E(Fi ,sj ,cyck ,Cx)

E(Fi ,cyck ,Cx)
. (5)

where sj is the j-th sleep stage and j ∈ {0, 1, 2, 3, 5}; cyck is the k-th sleep cycle and
k ∈ {1, 2, 3, 4, 5}. E(Fi ,sj ,Cx) is the energy of frequency band Fi on the EEG channel Cx during
the j-th sleep stage; E(Fi ,Cx) is the total energy of frequency band Fi on the EEG channel Cx;
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E(Fi ,sj ,cyck ,Cx) is the energy of frequency band Fi on the EEG channel Cx during the j-th sleep
stage of the k-th sleep cycle; E(Fi ,cyck ,Cx) is the total energy of frequency band Fi on the EEG
channel Cx during the k-th sleep cycle.

Subsequently, the power ratio of delta/alpha (DAR), theta/beta (TBR), the (delta +
theta)/(alpha + beta) power ratio (DTABR), and the (theta − delta)/(alpha − beta) power
ratio (TDABR) were also calculated, as the usefulness of these features had been proven by
existing studies. For example, Claassen et al. [40] proved that the DAR demonstrated the
strongest association with cerebral ischemia. Finnigan et al. [44] pointed out that DTABR
was obviously linked to DAR, which may sometimes be informative to ischemia monitoring.
In addition, higher TBR was found in the side of the infarct [44], and power ratios such
as TDABR may be useful for detecting early and subtle ischemic EEG changes [27]. All
these features are also divided according to different sleep cycles and sleep stages in order
to detect the changes consequent to the stroke. These features include: DAR(Fi ,sj ,cyck ,Cx),
TBR(Fi ,sj ,cyck ,Cx), DTABR(Fi ,sj ,cyck ,Cx) and TDABR(Fi ,sj ,cyck ,Cx).

The Brain Symmetry Index (BSI): BSI, which calculates the brain symmetry, is one of
the popular EEG-derived parameters used in the research field for the purposes of stroke
prognostication [66]. It is defined as the mean of the absolute value of the difference in
mean hemispheric power in the frequency range from 1 to 25 Hz [67].

BSI =
1

NM

M

∑
j=1

∣∣∣∣∣ N

∑
i=1

Rij − Lij

Rij + Lij

∣∣∣∣∣. (6)

where Rij and Lij are the power spectral density obtained using Welch’s method of the
right and the left hemisphere, respectively. While M and N are the total number of Fourier
coefficients j = 1, 2,. . . , M and total number of electrode pairs i = 1,2,. . . , N [64]. Specifically,
BSI is also divided according to different sleep stages and sleep cycles, i.e., we obtain a set
of features as BSI(sj ,cyck ,Cx).

In addition to the existing researches concentrated on power spectral density, which
has been revealed to be an efficient indicator, it is well accepted that the brain is a complex
system and nonlinear measures should be taken into account for modeling and analysis [68].
Therefore, we also extracted three nonlinear features, including Sample Entropy, Detrended
fluctuation analysis and Lempel–Ziv complexity.

Sample Entropy (SampEn): SampEn is an effective metric to improve the approximate
entropy method [69], and it characterizes the complexity and regularity of short-time series
and has been widely used in bioinformatics [70]. Moreover, SampEn is not sensitive to the
noise, making it appropriate for analyzing the EEG data [71]. Specifically, there are two
important parameters when calculating SampEn, which are m (the embedding dimension)
and r (the tolerance threshold). In this work, we set m = 2 and r = 0.2 * standard deviation,
according to the empirical results.

Detrended fluctuation analysis (DFA): DFA, which eliminates the trends in time series,
is a method for analyzing variability of biomedical signals [72], and its result indicates the
EEG fluctuation by scaling exponent [73]. In this work, we use DFA to reveal the long-term
inner correlations of the EEG data by setting the window size as 16 to 512.

Lempel–Ziv complexity (LZC): LZC is calculated based on the method introduced by
Lempel and Ziv [74]. It characterizes the disorder of a time series by testing the emergence
rate of a new model of the biological signals [75], especially the EEG data [76]. In this
paper, EEG data are segmented into consecutive sequences of 5 seconds and a binarization
process is conducted according to the mean-value of the EEG time series.

The same as the power spectral density, we calculate all these nonlinear features accord-
ing to different sleep cycles and sleep stages, including SampEn(sj ,cyck ,Cx), SampEn(Fi ,sj ,cyck ,Cx),
DFA(sj ,cyck ,Cx), LZC(sj ,cyck ,Cx), and LZC(Fi ,sj ,cyck ,Cx).

Table 1 lists all the main notations we use in this paper.
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Table 1. A list of main notations defined in this paper.

Notation Description

SS The time series of sleep data
sci The sleep cycle, i ∈ {1, n}
Fi The four different frequency bands of EEG, i ∈ {Delat(D), Theta(T), Alpha(A), Beta(B)}
Cx The channel of EEG, x ∈ {3, 4}
sj The j-th sleep stage, j ∈ {0, 1, 2, 3, 5}
cyck The k-th sleep cycle, k ∈ {1, 2, 3, 4, 5}
E The energy of frequency band
RP The relative power
BSI The brain symmetry index
SampEn The sample entropy
DFA The detrended fluctuation analysis
LZC The Lempel–Ziv complexity
TST Total Sleep Time, the interval between sleep onset and the end of sleep
SE Sleep Efficiency, computed as the ratio between the hours of actual sleep and total time in bed
WASO Wake After Sleep Onset, the proportion of awake stages during the whole sleep time
AT Awake Times, the number of awakenings during the whole sleep time
SL Sleep Latency, the time interval between going to bed and falling asleep

FF Trend 1 The sleep time of the last cycle is u minutes longer than that of the first cycle, we defined it as
an upward trend, it is otherwise defined as a downward trend

TF Trend 1 The third cycle’s deep sleep time (i.e., s3 and s4 stages) is v minutes longer than that of the first
cycle, we defined it as an upward trend, it is otherwise defined as a downward trend

SF Trend 1 The second cycle’s deep sleep time is w minutes longer than that of the first cycle, we defined it
as an upward trend, it is otherwise defined as a downward trend

5. Stroke Prediction Model

In this section, the details of the proposed stroke prediction model are described, and
the overview of the model is shown in Figure 4.

Figure 4. A general overview of the proposed two-step stroke prediction model.

5.1. Stroke Prediction Modelling

Based on the clinical features and the sleep-related features, four different classifiers
are employed to construct the stroke prediction model, including a Support Vector Machine
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(SVM), Random Forests (RF), a Back Propagation Neural Network (BPNN), Naive Bayesian
(NB) and Logistic Regression (LR). Particularly, we utilize the 10-fold cross-validation
technique to obtain more robust classification results [77].

SVM is one of the most popular classification algorithms and has been widely adopted
to solve problems like regression and classification [78]. In this study, predicting stroke
is a typical binary classification problem. SVM projects the input instances into a high-
dimensional feature space, and then discriminates patients and healthy subjects by creating
a hyperplane.

RF is a typical ensemble learning model for classification and regression tasks. It first
constructs a set of decision trees at the training stage and then outputs a classification result
that is either the mode of the classes or the mean prediction results of each individual
tree [79].

BPNN is a common method for clustering or classifying, which is especially suit-
able for nonlinear systems. A typical BPNN consists of several layers of neurons and is
characterized by network interconnection geometry, node characteristics, and the transfer
functions [80].

NB is a Bayes’ theorem-based probability classifier, which considers that each feature
contributes independently to the probability for any possible correlations [1].

LR is a statistical analysis technique used to predict a binary outcome by evaluating
the relationship between a set of independent predictor variables [81].

5.2. Model Optimization

For a classifier, the discrimination threshold is usually set to 0.5. If the outputted
probability is larger than 0.5, the subject should be classified as a positive case, otherwise it
should be labeled as a negative case. Undoubtedly, misclassification would lead to certain
loss to the subjects. As for ischemia prediction, it will incur severe consequences if we
classify a subject who is about to suffer from stroke as a healthy person. Thus, we should
keep the false negative rate of the classification model as low as possible. At the same
time, slight increase in the false positive rate of the classification model will not result
in serious consequences. Therefore, we propose a pre-selection model to optimize the
proposed stroke prediction model, in order to keep the false negative rate relatively low
with the false positive rate not significantly increased.

In this paper, two different training datasets are utilized to optimize the model. Con-
cretely, the first dataset is comprised of stroke patients (denoted as PartS) who suffered
from stroke before and after the time of the SHHS-1 study. The second dataset consists
of healthy subjects (denoted as PartH) who had no stroke throughout the whole data
acquisition process. Next, based on the aforementioned two datasets, we construct a
pre-selection model to determine which kind of threshold, i.e., a normal threshold or an
adaptive threshold, should be employed when classifying each instance. In particular, we
choose to use the k-NN classification algorithm to build the pre-selection model which
classifies instances based on their k-closest neighbors’ labels. Specifically, for each data
instance, we first compute the distance between itself and all the instances in PartH and
PartS, and then select the top-k nearest neighbors accordingly; if the ratio of instances from
PartS is larger than a given threshold, we do have reason to believe that the instance is
likely to suffer from stroke soon. Therefore, to make the classification model more sensitive
to this kind of instance, an adaptive threshold smaller than 0.5 should be used. For other
instances, we still use a normal threshold, i.e., 0.5. For example, if subject i’s probability
generated by the first phase model is smaller than 0.5, they would be classified to health
person. However, in the pre-selection model, the ith instance is much closer to PartS, so we
should reduce the threshold in order to classify it into potential stroke patients. Figure 5
shows the core idea of our KNN-based pre-selection model, where the k is set to 7, 11 and
15, respectively.

The details of the proposed model are described in Algorithm 1. Particularly, if a
person is closer to PartS, we will reduce the threshold to a new threshold t that is smaller
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than 0.5 accordingly. If the output of the model is greater than the new threshold t, we
will classify the subjects into the Stroke class, instead of the Healthy class. Specifically, the
cosine distance is used in the KNN model, which is in line with the general experience.

Figure 5. A pre-selection model based on kNN.

Algorithm 1 Pre-selection Model based on KNN.

Input:

pi: subject i’s probability distribution

n_test: a number of subjects in the testing dataset

t: the prediction threshold

subjecti: the i-th subject in the testing dataset

Output:

prediction result of the instance: 0 or 1

1: select a portion of data from each PartS and PartH;

2: for i = 0; i < n_test; i ++ do

3: calculate the distance between i and samples in PartS and PartH;

4: arrange results in ascending order;

5: dataset_k← the top k closest samples;

6: if sizeof(dataset_k ∩ PartS) > k/2 and pi ≥ t then

7: label subject i as 1 (denotes ischemia);

8: else

9: if pi ≥ 0.5 then

10: label subject i as 1 (denotes ischemia);

11: else

12: label subject i as 0 (denotes health);

13: end if

14: end if

15: end for
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6. Experiment Evaluation

In this section, we will present the evaluation results of the proposed prediction model.

6.1. Experimental Setup

A dataset published by the Sleep Heart Health Study (SHHS) is used in this study. As
a prospective multicenter cohort study, SHHS aims to study the subtle relationship between
cardiovascular diseases and sleep-disordered breathing in the US. The participants were
recruited from 9 epidemiological studies [82] enrolling more than 6600 adults aged 40 and
over, who were asked to wear a home PSG device to record the occurrences of obstructive
sleep apneas and detected risk factors for typical cardiovascular events (such as stroke and
myocardial infarction) [82,83].

In the SHHS study, polysomnograms were collected in the participants’ homes by
trained technicians in unattended sittings [50]. The obtained data contain C4/A1and
C3/A2 EEGs sampled at 125 Hz, right and left electrooculograms (EOGs) sampled at
50 Hz, a bipolar sub-mental electromyogram (EMG) sampled at 125 Hz, ambient light,
body position, etc. In this study, two EEG channels (C3 and C4 channels) as well as the
sleep stages (labeled every 30-s epoch) are used to construct the proposed ischemic stroke
prediction model.

In this study, our analytical samples only included SHHS participants who completed
PSG both in SHHS-1 and SHHS-2. The subjects are further categorized into four types
according to the appearance of ischemic stroke. Specifically, the time when the SHHS-1
study was conducted is referred to as a separating timestamp. Type I subjects have stroke
before the timestamp but have no stroke afterwards. Type II subjects have no stroke before
the timestamp but have stroke afterwards. Type III subjects have stroke both before and
after the timestamp. Type IV subjects have no stroke.

Specifically, to build the basic prediction model, we chose 179 subjects, which included
20 Type II instances (the time between their first ischemic stroke and the baseline ranging
from 4 days to 377 days, with a mean value of 196 days) and 159 Type IV instances.
In particular, the 20 positive samples were chosen based on the onset time of ischemic
stroke, i.e., within one year, as the symptoms of a stroke are difficult to detect if the time
exceeds one year. Moreover, considering that the classification performance would be less
than ideal [84,85] if the ratio of positive to negative samples is too unbalanced, we chose
159 normal controls without medical history of cerebral vascular disease. Meanwhile, to
build the pre-selection model, we chose another 57 subjects, which consisted of 27 Type III
instances (formed the PartS in Algorithm 1) and 30 Type IV instances (formed the PartH in
Algorithm 1).

We extracted the features described in [7] and used them as the feature set for the
baseline method and compared it with the prediction model constructed using both these
clinical features and the features that we extracted in Section 4. In the experiment, based
on the empirical results, we set u = 42 min, v = 30 min, w = 4 min.

Statistical-based feature selection is the process of reducing the number of input
variables when developing a predictive model. It works by calculating a test statistic to
evaluate the relationship between each input variable and the target variable in order
to improve the performance of the model. It calculates a probability value (p-value) to
determine the significance of a feature based on the predefined significance level, which is
typically set to 0.05. Specifically, in our experiment we used the Student t-test for calculating
significant difference to select features.

The evaluation metrics we used include a Precision Recall Curve (PRC) [86], precision,
and recall. A good prediction model should have both high Precision and Recall.
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6.2. Evaluation Results
6.2.1. Sleep Structure Related Features

A summary of the sleep structure features extracted in this study is shown in Table 2.
In addition to the mean value and standard deviation, the p-value of each feature is also
calculated. Specifically, we can obtain the following observations according to Table 2.

Table 2. A summary of the sleep structure related features.

Feature Type II Type IV p-Value

TST 668.7 ± 183.48 738.51 ± 125.59 0.0282
SE 68.31 ± 16.36 74.55 ± 11.8 0.0351
AT 32.65 ± 20.99 26.88 ± 11.52 0.0768
SL 88.8 ± 72.3 105.04 ± 80.05 0.389

REM-SL 354.55 ± 285.32 317.15 ± 173.14 0.419
WASO 23.35 ± 19 14.92 ± 13.87 0.0153

FF Trend 1 −17.1 ± 30.03 −37.93 ± 44.28 0.0425
TF Trend 1 −12.3 ± 26.21 −38.07 ± 44.71 0.0126
SF Trend 1 −3.15 ± 26.6 14.4 ± 45.72 0.2819

These features are shown as: mean ± std.

The analysis for the means and standard deviations of results (i.e., TST and SE: the
total sleep time and sleep efficiency of Type II are less than those for Type IV) indicates
that the sleep quality of potential patients is obviously worse than that of the ordinary
people, meanwhile the fact that WASO of Type II is bigger than Type IV also confirms
this point. Moreover, two of the remaining features (i.e., FF trend 1 and TF trend 1) have
relatively small p-values (p < 0.05), indicating that between these potential ischemia and
healthy people there is significant difference. According to Table 1, there are significant
differences between some of the sleep structure related features, which indicates that the
sleep quality of Type II subjects is worse than that of healthy people, e.g., the former ones
have shorter sleep time and lower sleep efficiency. However, another four features’ p-value
(such as SL and REM-SL) are larger than 0.05, indicating that these features cannot help us
to solve the problem.

6.2.2. EEG Sleep Relate Features

A summary of the sleep EEG related features extracted in this study, which include
relative power, DAR, TBR, DTABR, TDABR, BSI, SampEn, LZC and DFA, is shown in this
section. Significantly, we used two different EEG channels (C3 and C4), which were the
interhemispheric electrode pairs. Therefore, each feature has a pair of values.

All the relative power features of four different frequency bands (delta, theta, alpha,
beta) are summarized in Table 3.

From Table 3, we can see that there is no significant difference, which means that we
cannot differentiate Type II and Type IV. However, as aforementioned, people usually pass
through five sleep stages: 0, 1, 2, 3 (includes 4) and 5. In order to study the power ratio
changes during different sleep stages, we calculated the relative power features of different
frequency bands during different sleep stages, as shown in Tables 4–7.

Table 4 shows the comparison of the relative power of frequency band FD on EEG
channel Cx during the j-th sleep stage for ischemic stroke patients and control subjects,
where x ∈ {3, 4}, and j ∈ {0, 1, 2, 3, 5}.
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Table 3. A summary of different frequency bands’ power ratio features.

Feature Type II Type IV p-Value

RP(FD ,C3)
0.761 ± 0.188 0.795 ± 0.087 0.156

RP(FT ,C3)
0.089 ± 0.040 0.094 ± 0.039 0.569

RP(FA ,C3)
0.073 ± 0.173 0.044 ± 0.033 0.051

RP(FB ,C3)
0.076 ± 0.048 0.068 ± 0.043 0.341

RP(FD ,C4)
0.793 ± 0.083 0.784 ± 0.109 0.748

RP(FT ,C4)
0.096 ± 0.044 0.093 ± 0.035 0.653

RP(FA ,C4)
0.045 ± 0.057 0.05 ± 0.057 0.762

RP(FB ,C4)
0.065 ± 0.025 0.073 ± 0.055 0.528

These features are shown as: mean ± std.

Table 4. A summary of delta power ratio features during different sleep stages.

Feature Type II Type IV p-Value

RP(FD ,s0 ,C3)
0.233 ± 0.145 0.178 ± 0.109 0.043

RP(FD ,s1 ,C3)
0.020 ± 0.027 0.014 ± 0.014 0.085

RP(FD ,s2 ,C3)
0.296 ± 0.097 0.304 ± 0.111 0.754

RP(FD ,s3 ,C3)
0.120 ± 0.127 0.188 ± 0.131 0.030

RP(FD ,s5 ,C3)
0.042 ± 0.033 0.058 ± 0.034 0.053

RP(FD ,s0 ,C4)
0.203 ± 0.144 0.164 ± 0.104 0.137

RP(FD ,s1 ,C4)
0.019 ± 0.023 0.014 ± 0.014 0.155

RP(FD ,s2 ,C4)
0.359 ± 0.130 0.314 ± 0.111 0.098

RP(FD ,s3 ,C4)
0.130 ± 0.146 0.200 ± 0.134 0.032

RP(FD ,s5 ,C4)
0.048 ± 0.037 0.055 ± 0.032 0.344

These features are shown as: mean ± std.

Table 5 shows the comparison of the relative power of the frequency band FT on the
EEG channel Cx during the j-th sleep stage for ischemic stroke patients and control subjects,
where x ∈ {3, 4}, and j ∈ {0, 1, 2, 3, 5}.

Table 5. A summary of theta power ratio features during different sleep stages.

Feature Type II Type IV p-Value

RP(FT ,s0 ,C3)
0.017 ± 0.011 0.009 ± 0.007 2.48 × 10−4

RP(FT ,s1 ,C3)
0.002 ± 0.002 0.002 ± 0.002 0.988

RP(FT ,s2 ,C3)
0.047 ± 0.025 0.048± 0.024 0.954

RP(FT ,s3 ,C3)
0.009 ± 0.01 0.018 ± 0.015 0.020

RP(FT ,s5 ,C3)
0.006 ± 0.004 0.008 ± 0.005 0.052

RP(FT ,s0 ,C4)
0.014 ± 0.008 0.009 ± 0.003 0.007

RP(FT ,s1 ,C4)
0.002 ± 0.002 0.002 ± 0.001 0.419

RP(FT ,s2 ,C4)
0.055 ± 0.031 0.048 ± 0.024 0.263

RP(FT ,s3 ,C4)
0.011 ± 0.012 0.018 ± 0.014 0.047

RP(FT ,s5 ,C4)
0.007 ± 0.005 0.008 ± 0.004 0.396

These features are shown as: mean ± std.

Table 6 shows the comparison of the relative power of frequency band FA on EEG
channel Cx during the j-th sleep stage for ischemic stroke patients and control subjects,
where x ∈ {3, 4}, and j ∈ {0, 1, 2, 3, 5}.

Table 7 shows the comparison of the relative power of frequency band FB on the EEG
channel Cx during the j-th sleep stage for ischemic stroke patients and control subjects,
where x ∈ {3, 4}, and j ∈ {0, 1, 2, 3, 5}.

Different from the short-term EEG test in clinical settings, this study used overnight
EEG data which may contain more abundant information. As we mentioned in Figure 1,
changes in EEG morphology and frequency correlate with reductions in CBF [28]. Particu-
larly, as indicated by the ischemic threshold in Figure 1, the slower frequencies (4~7 Hz)
of ischemic patients should gradually increase, which is in accordance with the results
in Table 4. For example, the mean value and standard deviation of features (includ-
ing RP(FT ,s0,C3)

, RP(FT ,s0,C4)
, RP(FT ,s0,cyc3,C3)

, RP(FT ,s0,cyc3,C4)
) measuring the sleep quality
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of stroke patients (i.e., Type II) are obviously larger than that of healthy individuals (i.e.,
Type IV).

Table 6. A summary of alpha power ratio features during different sleep stages.

Feature Type II Type IV p-Value

RP(FA ,s0 ,C3)
0.009 ± 0.010 0.007 ± 0.010 0.326

RP(FA ,s1 ,C3)
0.0007 ± 0.0006 0.0009 ± 0.001 0.350

RP(FA ,s2 ,C3)
0.039 ± 0.129 0.016 ± 0.010 0.022

RP(FA ,s3 ,C3)
0.001 ± 0.001 0.003 ± 0.003 0.011

RP(FA ,s5 ,C3)
0.001 ± 0.001 0.002 ± 0.002 0.104

RP(FA ,s0 ,C4)
0.008 ± 0.004 0.007 ± 0.010 0.740

RP(FA ,s1 ,C4)
0.001 ± 0.002 0.001 ± 0.001 0.532

RP(FA ,s2 ,C4)
0.017 ± 0.024 0.019 ± 0.021 0.669

RP(FA ,s3 ,C4)
0.001 ± 0.001 0.004 ± 0.007 0.109

RP(FA ,s5 ,C4)
0.005 ± 0.014 0.003 ± 0.010 0.648

These features are shown as: mean ± std.

Table 7. A summary of beta power ratio features during different sleep stages.

Feature Type II Type IV p-Value

RP(FB ,s0 ,C3)
0.015 ± 0.016 0.009 ± 0.011 0.070

RP(FB ,s1 ,C3)
0.0004 ± 0.0004 0.0004 ± 0.0006 0.786

RP(FB ,s2 ,C3)
0.007 ± 0.016 0.004 ± 0.004 0.017

RP(FB ,s3 ,C3)
0.0005 ± 0.0009 0.0006 ± 0.001 0.612

RP(FB ,s5 ,C3)
0.0007 ± 0.0005 0.001 ± 0.001 0.042

RP(FB ,s0 ,C4)
0.009 ± 0.007 0.009 ± 0.009 0.681

RP(FB ,s1 ,C4)
0.0004 ± 0.0005 0.0005 ± 0.0005 0.603

RP(FB ,s2 ,C4)
0.004 ± 0.003 0.005 ± 0.009 0.643

RP(FB ,s3 ,C4)
0.0005 ± 0.0008 0.001 ± 0.005 0.594

RP(FB ,s5 ,C4)
0.0008 ± 0.0006 0.001 ± 0.003 0.178

These features are shown as: mean ± std.

Moreover, to further characterize the differences between Type II and Type IV, we also
calculated the relative power of different frequency bands during different sleep stages
and different sleep cycles (from sleep cycle 1 to sleep cycle 5). However, as each frequency
band has more than 50 features, we only list features of frequency band theta, due to the
limited space available.

Table 8 shows the comparison of the relative power of frequency band FT on the EEG
channel Cx during the j-th sleep stage of the k-th sleep cycle for ischemic stroke patients
and control subjects, where x ∈ {3, 4}, j ∈ {0, 1, 2, 3, 5}, and k ∈ {1, 2, 3, 4, 5}. Meanwhile
we also calculated the corresponding features of the other three frequency bands (i.e., delta,
alpha, beta); they are far too numerous to list each of them individually.

Table 8. A summary of theta power ratio features during different sleep stages.

Feature Type II Type IV p-Value

RP(FT ,s3 ,cyc1 ,C3)
0.016 ± 0.016 0.029 ± 0.022 0.015

RP(FT ,s5 ,cyc1 ,C3)
0.012 ± 0.012 0.008 ± 0.008 0.038

RP(FT ,s0 ,cyc2 ,C3)
0.016 ± 0.016 0.008 ± 0.009 0.003

RP(FT ,s0 ,cyc3 ,C3)
0.020 ± 0.014 0.008 ± 0.008 3.062 ×10−5

RP(FT ,s1 ,cyc3 ,C3)
0.007 ± 0.011 0.002 ± 0.002 1.68 ×10−4

RP(FT ,s3 ,cyc1 ,C4)
0.018 ± 0.018 0.029 ± 0.022 0.033

RP(FT ,s5 ,cyc1 ,C4)
0.013 ± 0.014 0.007 ± 0.006 0.003

RP(FT ,s0 ,cyc2 ,C4)
0.014 ± 0.013 0.008 ± 0.009 0.016

RP(FT ,s0 ,cyc3 ,C4)
0.021 ± 0.015 0.009 ± 0.009 1.71 ×10−5

RP(FT ,s1 ,cyc3 ,C4)
0.006 ± 0.01 0.002 ± 0.002 2.19 ×10−4

These features are shown as: mean ± std.

As shown in Table 8, we found that during sleep stage 0 of the 3rd sleep cycle there is
a significant difference between the two categories. Although there are similar phenomena



Appl. Sci. 2021, 11, 2083 17 of 25

in other waveforms (including delta, alpha, beta), it is more obvious in the theta band.
According to data analysis, we found that the third sleep cycles are usually between
1: 00 a.m. and 3: 00 a.m. Therefore, we preliminary concluded that the theta waveform
in sleep stage 0 of the third sleep cycle was a potential risk factor that might have been
previously unexplored .

As aforementioned, we also extracted several other frequency domain features, in-
cluding BSI, DAR, TBR, DTABR, TDABR, BSI(sj ,cyck ,Cx), DAR(Fi ,sj ,cyck ,Cx), TBR(Fi ,sj ,cyck ,Cx),
DTABR(Fi ,sj ,cyck ,Cx) and TDABR(Fi ,sj ,cyck ,Cx). However, none of them had significant differ-
ence between subjects of Type II and Type IV. For example, the p-value of BSI is 0.902,
indicating that subjects of Type II and Type IV have almost equal CBF between the left and
right hemispheres.

Table 9 shows the comparison of the Sample Entropy of the EEG on channel Cx during
the j-th sleep stage of the k-th sleep cycle for ischemic stroke patients and control subjects,
where x ∈ {3, 4}, j∈ {0, 1, 2, 3, 5}, and k ∈ {1, 2, 3, 4, 5}.

Table 9. A summary of the Sample Entropy features during different sleep stages of different sleep
cycles.

Feature Type II Type IV p-Value

SampEn (s1 ,cyc1 ,C3)
0.855 ± 0.619 1.079 ± 0.381 0.023

SampEn(s3 ,cyc1 ,C3)
0.479 ± 0.348 0.617 ± 0.211 0.012

SampEn(s0 ,cyc3 ,C3)
1.198 ± 0.167 0.884 ± 0.327 0.0001

SampEn(s1 ,cyc1 ,C4)
0.737 ± 0.588 1.018 ± 0.353 0.002

SampEn(s3 ,cyc1 ,C4)
0.418 ± 0.293 0.585 ± 0.201 0.001

SampEn(s5 ,cyc1 ,C4)
0.832 ± 0.410 0.995 ± 0.241 0.010

SampEn(s3 ,cyc2 ,C4)
0.366 ± 0.322 0.527 ± 0.262 0.019

SampEn(s5 ,cyc2 ,C4)
0.794 ± 0.354 0.980 ± 0.275 0.011

SampEn(s0 ,cyc3 ,C4)
1.052 ± 0.292 0.792 ± 0.270 0.0008

These features are shown as: mean ± std.

Similarly, we also calculated the sample entropy of frequency bands delta, theta, alpha
and beta on channel Cx during the j-th sleep stage of the k-th sleep cycle for ischemic stroke
patients and control subjects, as well as the LZC and DFA. For the same reason described
above, we did not list them one by one. According to the results of nonlinear features, we
found that the most significant differences between types II and IV are concentrated on
sleep cycles 1 and 2. The reason might be that subjects of Type II might have difficulty in
falling into a stable state during the first sleep cycle.

In order to acquire a better performance of classification and reduce the computing
cost and the time delay in successive steps, we preserved the feature that made a significant
contribution to the prediction. Specifically, we leverage information gain to measure the
effectiveness of candidate features, i.e., a feature will be discarded if its information gain is
smaller than 0.05. The input of the classifier is a vector consisting of the remaining features.

To sum up, we mainly used RP(FT ,s0,cyc3,C4)
, RP(FD ,s0,cyc3,C3)

, RP(FA ,s0,cyc3,C4)
,

SampEn(s0,cyc3,C3)
, SampEn(s0,cyc3,C4)

, SampEn(FD ,s3,cyc1,C3)
, SampEn(FD ,s3,cyc1,C4)

,
LZC(FD ,s2,cyc1,C3)

, LZC(FD ,s3,cyc1,C3)
, LZC(FD ,s3,cyc1,C4)

, LZC(FT ,s3,cyc1,C4)
, LZC(FA ,s1,cyc1,C4)

,
DFA(s2,cyc1,C4)

, WASO and TF trend 1 to distinguish Type II and Type IV subjects.
Tables 10 and 11 shows the clinical features and main polysomnogram features we

used in experiments, respectively.
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Table 10. List of the clinical features.

Feature Description

SYST Systolic blood pressure
DIAS Diastolic blood pressure
HTNDerv Hypertension
ParRpDiab History of diabetes
AFIB Atrial fibrillation or flutter
Lvh Left ventricular hypertrophy
Chol Cholesterol

Table 11. List of the polysomnogram features.

Feature Description

SampEn(s0 ,cyc3 ,C3)
The sample entropy on EEG channel C3 during the 0-th sleep stage of the 3-th
sleep cycle

SampEn(s0 ,cyc3 ,C4)
The sample entropy on EEG channel C4 during the 0-th sleep stage of the 3-th
sleep cycle

SampEn(FD ,s3 ,cyc1 ,C3)
The sample entropy of frequency band FD on EEG channel C3 during the 3-th
sleep stage of the 1-th sleep cycle

SampEn(FD ,s3 ,cyc1 ,C4)
The sample entropy of frequency band FD on EEG channel C4 during the 3-th
sleep stage of the 1-th sleep cycle

LZC(FD ,s2 ,cyc1 ,C3)
The Lempel–Ziv complexity of frequency band FD on EEG channel C3 during the
2-th sleep stage of the 1-th sleep cycle

LZC(FD ,s3 ,cyc1 ,C3)
The Lempel–Ziv complexity of frequency band FD on EEG channel C3 during the
3-th sleep stage of the 1-th sleep cycle

LZC(FD ,s3 ,cyc1 ,C4)
The Lempel–Ziv complexity of frequency band FD on EEG channel C4 during the
3-th sleep stage of the 1-th sleep cycle

DFA(s2 ,cyc1 ,C4)
The detrended fluctuation analysis on EEG channel C4 during the 2-th sleep stage
of the 1-th sleep cycle

TF trend 1
The third cycle’s deep sleep time (i.e., s3 and s4 stages) is v minutes longer than
that of the first cycle, we defined it as an upward trend, it is otherwise defined as a
downward trend.

Figure 6 shows a visualization in terms of several extracted features. With these views,
we can find that the features of two types follow quite a different distribution. However,
due to the overlap of feature distributions, we cannot distinguish a potential ischemic
patient and a healthy person by using any single-feature. Therefore, we arrange all the
useful attributes as a vector and then feed them into the prediction model.

Figure 6. The box-plots of all features. The whiskers represent the smallest and largest observations, the edges of the
box correspond to the lower and upper quartiles, the horizontal line indicates the median and the plus sign marks
probable outliers.

6.2.3. Stroke Prediction Results

We use BPNN, SVM, NB, RF and LR as the classification algorithm, and adopted
10-fold cross validation to verify the correctness of the experimental results. The original
positive and negative samples were randomly partitioned into 10 equal-sized subsamples,
respectively. Then we fitted our model to a data set consisting of 9 of the original 10 parts
(including 18 positive and 144 negative samples), and the remaining one subsample was
used as the testing dataset. The cross-validation process is repeated 10 times, with each of
the 10 subsamples used exactly once as the testing dataset. The 10 results were assembled
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to produce a single estimation. As shown in Figure 7, the Precision-Recall (PR) curves
indicate that the proposed model can keep a relatively high TPR and obtain a low FPR at
the same time.

Figure 7. Precision Recall (PR) curves of the proposed features and the baseline features. (a) Back Propagation (BP) neural
network models PR curve, (b) Support Vector Machine (SVM) models PR curve, (c) Random Forest models PR curve, (d)
Naïve Bayesian models PR curve, (e) Logistic Regressio (LR) models PR curve.

Figure 7 shows that the combination of the baseline features and the proposed features
is superior to the baseline features. Obviously, a good classification method should have
both a high detection rate and low false alarm rate; therefore, the pair (Precision, Recall) is
widely used to evaluate the performance of classification method. They are defined as:

precision =
TP

TP + FP
. (7)

recall =
TP

TP + FN
. (8)

The models are further evaluated regarding four metrics, namely, the mean precision,
recall, and F-Measure. As shown in Figure 8, the models perform better when using feature
combinations than using baseline features. Taking the SVM-based model as an example,
the precision, recall and PRC of the SVM-based model were improved by 27%, 55% and
46%, respectively.

Specifically, in Figure 8, comparison between the TPR and the FPR for both the selected
algorithms allows the observation that SVM (parameters: k = Polynomial and c = 0.8) and
LR achieved better performance (higher TPR and lower FPR) than the other three models.
Therefore, we built our basic models using SVM and LR, and then further optimized them
using the pre-selection model (parameter: K = 7 in the pre-selection model). In particular,
through testing different adaptive thresholds in algorithm 1, we found that the results of
SVM were superior to LR, with an acceptance threshold equal to 0.2, depending on the
empirical results. In terms of true positive rate and false positive rate, the performance of
the optimized prediction model is shown in Figure 9.

Accordingly, compared to the basic SVM, the SVM+pre-selection model achieves better
performance, where the true positive rate was increased by 21%. Specifically, as shown
in Figure 10, the optimized prediction model can predict 17 of the 20 Type II participants
successfully, and only 10 of the 159 Type IV participants are labeled wrongly, while the
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two values of the basic model are 14 and 8. Accordingly, we can find that the optimized
model will help an additional three Type II subjects to receive timely medical treatment,
although it will also trouble the other two type IV subjects unnecessarily. Nevertheless, we
can conclude that the optimized model has better performance than the basic model.

Figure 8. Performance of the proposed model. (a) BP neural network, (b) SVM, (c) Random Forests, and (d) Naive Bayesian,
(e) Logistic Regression.

Figure 9. Performance of the proposed method.

Figure 10. Comparison of the two models in TP, FN, FP, TN.
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6.3. Limitations

The main strength of our study is that we put forward a novel prediction method
by exploring sleep related features. However, some limitations of this study should be
pointed out.

Firstly, we evaluate the framework using a real polysomnogram dataset that contains
20 stroke patients and 159 healthy individuals. Compared to the percentage of ischemic stroke
in the real world, the number of health samples examined in experiments is very small. For
example, the prevalence of stroke in China in 2013 was 1114.8 per 100,000 people [87]. We could
not obtain enough information of normal controls to further estimate our prediction model and
polysomnogram features. Therefore, our experimental setup cannot be indicative of the real
situation of ischemia and might have influenced the performance of our model. Nevertheless,
by adopting reasonable indicators (i.e., precision, recall and area under the precision–recall
curve), we validated the predictive effects of our model and features in imbalanced data and
proved the rationality and effectiveness to some extent.

Secondly, the participants in SHHS were asked to wear a home PSG device to record
the occurrences of obstructive sleep apneas (OSA). OSA elicit increases in sympathetic
nerve activity with higher ischemic stroke incidents, meanwhile patients with OSA manifest
marked increases in blood pressure during sleep [88]. Thus, EEG features might have
shown hyperactivity and sympathetic function resulting hypertension or other clinical
factors and might not have been totally caused by cerebral ischemia. The correlation
between clinical features and EEG features was analyzed by the correlation coefficient and
it was found that EEG features were moderately or weakly associated with clinical features.
However, the limited number of samples may not be able to fully explore the correlation
among them. Further comprehensive association analyses and functional experiments are
required in the future.

Thirdly, CBF is the major cause of ischemic stroke. Although EEG abnormalities are
closely tied to CBF, it directly affects the reliability and accuracy of the result because data
on CBF levels are not available in our study. Based on a suitable public and real data set,
developing a more robust prediction system to study the relationship between stroke and
CBF will be one of our future works.

7. Conclusions and Future Work

A predictive model relies on the association relationship among multi-dimension
features, and thus feature extraction plays an important role in improving the ischemic
stroke identification performance. In this paper, we not only extract clinical features
from clinical history, demographic information, physical and biomedical measurements
but also extract features from a polysomnogram to reflect the change pattern of sleep.
Experimental results show that the extracted features can characterize sleep patterns more
comprehensively, and hence generates more information for classification. However, it does
not imply that all the extracted features are useful, as some of them might be redundant
and even irrelevant to the classification problem. Therefore, we used a statistical test
and information gain to select the extracted features, which include clinical features, sleep
structure related features and EEG sleep related features. Finally, we developed an ischemic
stroke prediction model that consists of two steps: the first one uses a machine learning
model to make the basic prediction, and the second one further optimizes the prediction
result by controlling the false negative rate.

Experimental results proved that the combined characteristics are better than using
clinical features alone. At the sleep structured level, the analysis on the result indicates that
would-be patients have shorter sleep time and lower sleep efficiency, as well as increasing
in wake after sleep onset. In sleep trends, a prolonged lighter sleep stages were found in
most experiment groups, and the control group gained more stable sleep-wake stages. It
indicates that the patients have significantly reduced sleep efficiency. From the point of
view of the electroencephalogram, changes in EEG morphology and frequency correlate
with reductions in CBF and stroke symptoms can result from inadequate CBF.
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In addition, more and more data from evidence-based medicine demonstrate a higher
risk of stroke in the early morning hours (03:00 a.m. to 06:00 a.m.) [89]. As shown in
Table 7, we found that during light sleep of the third sleep cycle (according to data analysis
the third sleep cycle is usually between 2:00 a.m. and 4:00 a.m.), there is a significant
difference between the controls and the patients. Although there are similar phenomena
in other waveforms (including delta, alpha, beta), it is more obvious in the theta band.
Experimental results also show that potential ischemic patients tend to have more slow
waves in most frequency domain features and nonlinear features, which is just the opposite
of the control subjects.

As future work, we plan to extend this work in two directions. First, feature extraction
plays an important role in machine learning; thus, by considering other features (i.e.,
fractal dimension [90] and Lyapunov exponent [91]) we will try to obtain better prediction
performance. Second, deep learning is achieving amazing results in various research areas;
therefore, we will explore deep learning models for the construction of more effective
stroke prediction models.
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