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Abstract: Blood vessel segmentation (BVS) of 3D medical imaging such as computed tomography
and magnetic resonance angiography (MRA) is an essential task in the clinical field. Automation of
3D BVS using deep supervised learning is being researched, and U-Net-based approaches, which
are considered as standard for medical image segmentation, are proposed a lot. However, the
inherent characteristics of blood vessels, e.g., they are complex and narrow, as well as the resolution
and sensitivity of the imaging modalities increases the difficulty of 3D BVS. We propose a novel
U-Net-based model named Spider U-Net for 3D BVS that considers the connectivity of the blood
vessels between the axial slices. To achieve this, long short-term memory (LSTM), which can capture
the context of the consecutive data, is inserted into the baseline model. We also propose a data
feeding strategy that augments data and makes Spider U-Net stable. Spider U-Net outperformed
2D U-Net, 3D U-Net, and the fully convolutional network-recurrent neural network (FCN-RNN)
in dice coefficient score (DSC) by 0.048, 0.077, and 0.041, respectively, for our in-house brain MRA
dataset and also achieved the highest DSC for two public datasets. The results imply that considering
inter-slice connectivity with LSTM improves model performance in the 3D BVS task.

Keywords: 3D blood vessel segmentation; deep supervised learning; inter-slice connectivity; long
short-term memory; medical imaging; semantic segmentation; U-Net

1. Introduction

Blood vessel segmentation (BVS) is a prerequisite step that aids in a wide range of
clinical procedures such as surgery planning and disease diagnosis. In the radiology field,
it is done on images from various imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and magnetic resonance angiography (MRA). For
example, there is a study in which coronary arteries are segmented with CT angiography
to assess and diagnose coronary heart diseases [1]. Intracranial artery segmentation with
MRA images can help radiologists diagnose serious cerebrovascular diseases such as
ischemic stroke by displaying areas with stenosis or occlusion [2].

The automation of BVS is an important subject because the manual segmentation of
blood vessels is challenging and laborious. The anatomical complexity of the blood vessel
structure is generally higher than other organs of the human body, thus it is time consuming
for trained technicians to perform. There are various traditional methods for automatic
BVS, such as the vessel enhancing model, the deformable model, and the tracking model.
The tracking model [3,4] increases vessel contrast compared with the non-vessel area by
applying adequate filters to the image. Binarization with a pre-defined threshold value
is done to produce the final segmentation mask. The deformable model [5,6] decides
the boundary of the vessel contour by considering internal and external forces using
mathematical formulae such as B-snake. The tracking model [7,8] repeatably finds the
nearby vessel area from the initial seed point with pre-defined rules and constraints.
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However, such traditional methods require manual input features or parameters, the
optimal value of which is different according to the target dataset. They also have difficulty
when dealing with exceptional cases, other than machine learning methods [9].

Recently, with the advent of convolutional neural networks (CNN), segmentation
models using deep supervised learning are being actively proposed in the medical imaging
field. In particular, U-Net [10] has been recognized as the de facto segmentation model for
medical imaging as it enables deliberate prediction due to skip connections that bridge
the encoder and decoder of the same level. Furthermore, in 3D BVS, there are many kinds
of research using U-Net as the baseline. First, there are approaches using the 2D U-Net
family which processes a single plane image at a time [11,12]. Although it is generally
applied to 2D BVS regarding optical imaging modalities (e.g., color fundus photography,
fluorescein angiography), there is a report that 2D U-Net outperforms the graph cut
method—a representative traditional image segmentation method—when segmenting
intracranial artery [11]. The limitation of 2D U-Net is that it ignores the z-axis of 3D
data. It understands 3D volume as a stack of 2D axial slices and does not consider the
relationships with the other slices. Therefore, the information in the z-axis, which can
have a positive effect in model training, is not utilized. Next, the 3D U-Net family, which
extracts volumetric features instantly using a 3D convolutional operation, is commonly
adopted [13–16]. However, 3D U-Net consumes a considerable amount of memory because
it requires sufficient 3D data as input. Although volumetric cropping can be processed to
bypass the memory issue, it narrows the sight of the model destroying global anatomical
information which can be an important clue when dealing with a medical image. Moreover,
3D U-Net has a difficulty when trained with 3D data such that each volume is comprised
of various numbers of axial slices caused by the diversity of the thicknesses and spacings
of the images [17,18]. This characteristic is common in medical image datasets, especially
for CT, and to bypass this problem, the additional pre-processing stage which reconstructs
the whole dataset with the same voxel size is necessary.

There are attempts to incorporate a recurrent neural network (RNN) into the U-
Net baseline to make the model learn additional information through the z-axis [19,20].
Generally, for 3D medical imaging, the region-of-interest, such as the tumor, lesion, and
organ, is spread through several image slices and the nearby images are visually similar
to each other. When the 3D volume is interpreted as the image sequence, they form
connectivity through the z-axis and it can be extracted by adding an RNN, which is
designed to learn features of the consecutive data [21]. A fully convolutional network
(FCN)-RNN [20] is a representative architecture for 3D medical image segmentation that
arranges arbitrary RNN components after the arbitrary fully convolutional network (FCN)
baseline, which is a type of CNN for semantic segmentation with a encoder–decoder
structure [22]. FCN-RNN is implemented by adopting convolutional long short-term
memory (LSTM) after the customized U-Net. Using an RNN has been demonstrated to be
suitable when dealing with 3D medical images achieving a better performance than 2D
U-Net and 3D CNN.

For 3D BVS, we believe that emphasizing inter-slice connectivity with the RNN could
be more effective for the following two reasons. First, the blood vessel in the 3D modality is
represented with small cross-sectional areas of less than 1% of an image. This severe lack of
information about the blood vessel causes a class imbalance and causes the training stage
to be dominated by the non-vessel area, resulting in a tendency to produce false negative
pixels [23]. Augmenting information about the blood vessel with adjacent slices would be
helpful to alleviate this problem. Second, the blood vessel has the intrinsic characteristic of
strong inter-slice connectivity because the prime role of the blood vessel is to convey fluid
to the whole body without leakage. An RNN can be effectively trained when dealing with
datasets with this characteristic.

In this context, we propose Spider U-Net—a novel 2D-based deep learning framework
for 3D BVS. It segments blood vessels by emphasizing the inter-slice connectivity using
an RNN. Spider U-Net is composed of two paths: the warp path and the weft path. The
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warp path is formed by stacking several 2D U-Net baselines in parallel to be able to process
consecutive axial image slices simultaneously. It extracts spatial features of 2D images
one by one. The weft path is implemented by incorporating convolutional LSTM between
the encoder and the decoder of the warp path. It additionally learns the connectivity of
extracted spatial features through the z-axis. In consequence, the prediction masks are
inferred not only by spatial features but also the inter-slice connectivity of adjacent slices.
We also suggest a training strategy named striding stencil (SS) to augment data and to train
the stable model. Finally, we evaluate Spider U-Net on three 3D BVS datasets that vary in
terms of modality and target vessel. Previous representative models re-implemented with
an equal baseline are compared with our framework to assess the effectiveness of Spider
U-Net.

2. Methods
2.1. Network Architecture

Spider U-Net aims to secure rich information regarding a blood vessel by combining
spatial features and inter-slice connectivity with each warp path and weft path, in a similar
way to weaving fabric. It does so by following three steps. First, the encoder part of the
warp path prepares a set of spatial features from the image sequence of a certain length.
Second, the weft path is spread through the warp path creating information flow that
crosses over the consecutive images. It then extracts the inter-slice connectivity of the
blood vessel using LSTM. Third, the decoder part of the warp path predicts the accurate
segmentation mask using rich information augmented by the inter-slice connectivity. Here,
we introduce the network architecture of Spider U-Net.

2.1.1. Common Baseline

We start from the plain 2D U-Net, which is composed of an encoder, a decoder, and
skip connections. The encoder extracts image features by using convolution layers. Max-
pooling layers are located at the end of each level and shrink the input resolution in half.
They enable the convolutional operations to extract abundant image features under the
various input resolutions. The decoder predicts the blood vessel area and restores the
image resolution to the original input size. For prediction accuracy, the up-sampling paths,
which double the input size, are composed of deconvolution layers. As the deconvolution
layers are trainable, they are dynamically optimized to predict a better segmentation mask
during training. Skip connections are designed to improve the performance of the decoder
by passing additional image features from each level of the encoder. The softmax function
located at the end of the baseline model produces the probability map which indicates
whether each pixel is a blood vessel or not. To make the final segmentation mask, pixels
with a probability larger than 0.5 are marked as blood vessels.

The overall architecture of the baseline U-Net is shown in Figure 1. The total network
depth is set to 5, and each level of the encoder and decoder is linked with skip connections.
When the serial arrangement of a convolutional layer, a rectified linear unit, and a batch
normalization is denoted as a basic layer set (BLS), each level of the encoder is implemented
with two BLS and a max-pooling layer, and the decoder is composed of two BLS and a
deconvolutional layer per level. A single BLS is placed in the middle of the encoder and
decoder, and the last convolutional layer is activated by the softmax function. This whole
architecture is denoted as B and is adopted for the common baseline of Spider U-Net and
the other comparative models.
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Figure 1. Structure of the U-Net baseline B. The downstream path is an encoder part which extracts
convolutional features and the upstream path is a decoder part which restores segmentation masks.
The network depth is fixed to 5 and skip connections connect the encoder and decoder on each
level. Each level of the encoder is implemented by two basic layer sets (BLS) composed of a 3 × 3
convolutional layer, a rectified linear unit, and a batch normalization layer, and a single 2 × 2 max-
pooling layer follows. The decoder has two BLS and a deconvolutional layer per level. The last layer,
which is activated by the softmax function, produces probabilities regarding whether each pixel is a
blood vessel or not.

2.1.2. Warp Path

The warp path is formed by stacking the baseline B several times in parallel, while
maintaining parameter sharing, as shown in Figure 2. This structure enables the model
to receive and process each slice of the image sequence simultaneously. The encoder part
extracts a set of spatial features and serves them side by side like warp threads. The decoder
part restores binary vessel segmentation masks from connectivity-aware spatial features
augmented by the weft path. These are explained in the next section.

Figure 2. Structure of Spider U-Net. The warp path, which is formed by stacking the 2D U-Net
baseline (B) T times in parallel, extracts spatial features of each 2D image and infers each segmentation
mask. The weft path is placed between the encoder and decoder of the warp path and bridges
information path between consecutive images (red arrows inside the weft path). Therefore, the
model can learn additional inter-slice connectivity from the weft path and produces deliberate 2D
segmentation masks from the spatial features augmented by the weft path. The final 3D modeling is
constructed by simple trilinear interpolation.
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The number of baselines B composing the warp path is denoted as T. This determines
the input capacity, i.e., the size of the image sequence the model can process at one time.
T can be defined freely by the network designer. However, setting T too high can be
inefficient, because the context of two slices becomes weaker as the distance between two
slices increases. We conducted pilot studies under various settings and found that a T
larger than five did not give a notable improvement in the model performance.

2.1.3. Weft Path

The weft path is built by replacing the bottommost convolutional layers between the
encoder and decoder of the warp path with a single convolutional LSTM layer [21] in a
bidirectional way to capture the inter-slice connectivity through the z-axis, as depicted in
Figure 2. We selected convolutional LSTM because the LSTM family is a specialized type of
neural network for extracting rules and features of sequential data and can stably maintain
contextual information due to the inner memory components. In addition, convolutional
LSTM can process features from a CNN without losing spatial information, which is
essential to semantic segmentation in which the inner operations are replaced by the
convolutional operations.

We placed the weft path between the encoder and decoder of the warp path. As far as
we know, previous approaches using RNN to exploit inter-slice connectivity placed the
RNN component after the baseline model. We conducted experiments on these two model
types and the results show that our RNN location achieves a better performances than the
others. More related discussions can be found in Section 5.1.

2.2. Data Feeding Strategy

We propose a customized data feeding strategy for Spider U-Net named striding
stencil (SS) to achieve memory-efficient and stable training, as shown in Figure 3. Rather
than training the given image sequence at once, SS causes Spider U-Net to process data
in several steps. First, Spider U-Net updates the model parameters with a portion of the
volume as an image sequence with length T, i.e., the pre-defined input capacity of the warp
path. Next, the model moves through the inter-slice level with the given natural number S.
These two steps are repeatedly continued until the model reaches the end of the volume.

Figure 3. The striding stencil strategy of the training and inference phases. The spider-like figure
represents Spider U-Net. When processing a 3D image, Spider U-Net holds the image sequence
of length T at a time and updates the model weights with backpropagation. Thereafter, it strides
through the z-axis with a hyperparameter S. These two steps are performed iteratively until the
model reaches the end of the 3D image. For the training phase, S is set to less than T to ensure that
the image sequences are partially overlapped. This has the effect of data augmentation and ensures
that the model is robust to the composition of the image sequence. For the inference phase, S is set to
be equal to T to reduce the time cost.
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For the training phase, S is set to less than T to ensure the current image sequence is
partially overlapped with the previous one. This dense training both augments the data
to prevent overfitting and ensures the model is robust to the composition of the image
sequence.

For the inference phase, S is set to be equal to T so that each image sequence is not
overlapped. This sparse inference saves time because it is the fastest way to process the
whole volume. At the same time, as a result of dense training, the model can predict
consistent segmentation masks regardless of the composition of the image sequence.

3. Experiments
3.1. Dataset and Image Processing

We selected three different 3D BVS datasets that have varieties in the target organ,
vessel size, and modality. Detailed information is described in Table 1.

Table 1. Details of 3D blood vessel segmentation datasets used in experiments.

Dataset Target Vessel Organizer #Volumes #Slices Per Volume
Train Validation Test

Brain MRA Intracranial Artery SNUBH 18 4 4 140–148
Abdomen CT Hepatic Vessel Decathlon [24] 253 25 25 24–181
Cardiac MRI Left Ventricle Wall York Univ. [25] 27 3 3 8–15

The first dataset is a brain time-of-flight (TOF) MRA for intracranial artery segmenta-
tion provided by Seoul National University Bundang Hospital (SNUBH). Twenty-six TOF
MRA studies of normal cases were randomly selected, and only axial slices were down-
loaded from the picture archiving and communication system of SNUBH. The dataset was
split into 18, 4, and 4 cases for the training, validation, and test set, respectively. Each
case varied in the machine vendor, slice number per volume, and image size. The target
vessel to segment was defined to all visible intracranial arteries except for the peripheral
middle cerebral arteries after the M1 branch. The annotation of the groundtruth mask was
done by two invited radiologists using the medical imaging interaction toolkit (version
2018.04.2). Because annotation from scratch takes a lot of time and human resources, we
worked on the initial segmentation masks produced by a simple thresholding method that
marks bright pixels with the intensity of the top 30% as blood vessel and the others as
background. All images were normalized from 0 to 1, cropped centrally leaving 75% of the
original image, and resized to 256 × 256 pixels.

The second dataset is an abdomen CT for hepatic vessel segmentation. We used a part
of the publicly available Decathlon Challenge datasets [24] that contain 303 abdomen CT
cases with annotation masks of liver tumor and hepatic vessel per axial slice. We split the
dataset into 253, 25, and 25 cases for the training, validation, and test set, respectively. The
image size was 512 × 512 pixels, and the slice number was diverse. The tumor masks were
ignored because our region-of-interest was only the hepatic vessel. For pre-processing, we
clipped the Hounsfield Unit (HU) between 0 to 300 to eliminate a vast range of unnecessary
HU. All images were normalized from 0 to 1, and 256 × 256 pixels, centered on the liver
area, were cropped and used.

The last dataset was the public cardiac MRI dataset for left ventricle (LV) segmentation
provided by York university [25]. Although LV is technically a type of organ rather than
vessel, it conveys blood, which forms the definite inter-slice connectivity. The experiment
on this dataset was used to validate the applicability of Spider U-Net to general organ
segmentation with the inter-slice connectivity. For the given 33 MRI cases, each case had
a single heartbeat composed of 3D cardiac volume with 20 frames. We split the dataset
into 27, 3, and 3 cases for the training, validation, and test set, respectively. The given
labels were initially two oval contours representing the endocardium and epicardium of
the LV with 32 coordinates per slice. Slices not containing both contours were eliminated
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because we extracted the donut-shaped LV wall area between two labels and used it as a
groundtruth mask. All images were normalized from 0 to 1.

3.2. Comparative Models

We selected three models to compare: 2D U-Net, 3D U-Net, and FCN-RNN. The first
two models are representative approaches using 2D and 3D convolutional operation, each
in the medical image segmentation field. FCN-RNN is an abstract architecture that adds
any RNN component after any FCN baseline. It has a similar philosophy to Spider U-Net,
which utilizes the inter-slice connectivity of the image sequence.

3.3. Implementation Details

The implementation and execution of all experiments were performed on the Keras
platform (version 2.2.4-tf) on the Tensorflow backend (version 2.1.0) using Python program-
ming language (version 3.7.4). The open-source Python package Pydicom (version 1.4.2)
and NiBabel (version 3.0.2) were used for loading and processing medical images. To use
graphics processing unit acceleration, a single TITAN RTX was exploited by the CUDA
toolkit (version 10.1) and cuDNN library (version 7.6).

For the common baseline B, The model depth was set to 5, and the filter number of
convolutional layers per level was 64, 128, 196, 256, and 512. All convolutional operations
used a filter size of 3, and max-pooling operations halve each axis. This setting was applied
equally to Spider U-Net and the other comparative models for a fair comparison. For
Spider U-Net, T, i.e., the number of B replicas forming the warp path, was set to 5. The
weft path was implemented with a bidirectional convolutional LSTM with 512 convolution
filters and replaced the deepest convolution layers of the warp path. S, i.e., the stride
parameter of SS, was set to 3 and 5, respectively, for the training and inference phase. The
SS strategy was also applied to 3D U-Net and FCN-RNN.

The implementation details of comparative models are as follows. 2D U-Net was
implemented with a single B using 2D operations for all layers (e.g., convolution, decon-
volution, and max-pooling), and the input was 2D images. 3D U-Net was also based on
a single B, and the differences with 2D U-Net was that 3D operations were applied and
the input was volumes with a stack of 16 images. As B has four downsampling paths, at
least 16 images were required simultaneously for 3D U-Net. For the cardiac MRI dataset
in particular, the image stack size was set to 8 because the length of the available image
sequence was usually less than 16. In this case, the last downsampling step of 3D U-Net
was changed into the 2D operation which halved the x- and y-axis only. For FCN-RNN,
the warp and weft paths of the Spider U-Net implementation were applied to FCN and
RNN component individually. In other words, the only difference between our customized
FCN-RNN and Spider U-Net was the placement of the weft path.

The focal dice loss [26] with Laplace smooth factor 1 was used as a loss function to
deal with the harsh class imbalance of the 3D BVS dataset. Adam optimizer was adopted
with an initial learning rate of 0.001. The training was performed in an end-to-end manner
without pre-training. The early stopping strategy was adapted when the validation loss
was not improved within 10 epochs. The best model with the lowest validation loss was
selected as the final model for evaluation.

4. Results

We report the performances of the Spider U-Net and the other comparative models on
test set of three datasets. Average dice coefficient score (DSC) and Intersection-over-union
(IoU) were the evaluation metrics for all experiments.

4.1. Main Experiment

Spider U-Net and three comparative models were trained with three datasets sep-
arately, creating 12 trained models. We evaluated every model with the corresponding
test sets and report each performance with an average of dice coefficient score (DSC) and
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intersection-over-union (IoU). Detailed results are shown in Table 2. Spider U-Net achieved
the best performance among all models except for IoU on the brain MRA dataset. Qual-
itative results are shown in Figure 4. Yellow, red, and blue colors denote true-positive,
false-positive, and false-negative each.

Table 2. Average of the dice score (DSC) and intersection-over-union (IoU) of Spider U-Net and the
other comparative models on three datasets.

Metric Dataset 2D U-Net 3D U-Net FCN-RNN Spider U-Net

DSC
Brain MRA 0.745 0.716 0.752 0.793

Abdomen CT 0.327 0.145 0.351 0.456
Cardiac MRI 0.772 0.726 0.812 0.833

IoU
Brain MRA 0.673 0.617 0.758 0.743

Abdomen CT 0.277 0.152 0.271 0.375
Cardiac MRI 0.681 0.624 0.707 0.728

Figure 4. Qualitative results of Spider U-Net and the other comparative models on three datasets.
The first row shows the brain MRA, the second row shows the abdomen CT, and the last row shows
the cardiac MRI. The last row shows a single pulse of the left ventricle wall over 20 frames. As the
cardiac MRI is 4D data, i.e., volume with the time axis, we visualized the cross-section of the left
ventricle wall through central coronal plane. Each average value of dice coefficient score (DSC) and
intersection-over-union (IoU) according to an example case is reported with DSC|IoU. True-positive,
false-positive, and false-negative are denoted as yellow, red, and blue, respectively.

For the brain MRA dataset, 2D U-Net, 3D U-Net, FCN-RNN, and Spider U-Net scored
0.745, 0.716, 0.752, and 0.793 for DSC and 0.673, 0.617, 0.758, and 0.743 for IoU, respectively.
As an example, in the first row in Figure 4, entire models failed to successfully predict
the posterior cerebral arteries located on the bottom side but could predict relatively thick
vessels such as the internal carotid artery and basilar artery. Only Spider U-Net predicted
all four visible anterior cerebral arteries which are the thinnest vessel type.

For the abdomen CT dataset, 2D U-Net, 3D U-Net, FCN-RNN, and Spider U-Net
achieved 0.327, 0.145, 0.351, and 0.456 for DSC and 0.277, 0.152, 0.271, and 0.375 for IoU, re-
spectively. An example of hepatic vessel segmentation in the second row in Figure 4 shows
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clear qualitative differences between Spider U-Net and the others. Spider U-Net produces
less false-negative pixels, thus maintaining overall performance. On the other hand, Spider
U-Net predicted a part of the vertebra as a blood vessel, producing a lot of false-positive
pixels at the left side of the figure. To be utilized in real clinical scenarios, additional image
processing techniques such as removing bone areas in the pre-processing stage and deleting
the out-of-context blobs in the post-processing stage would be required. The performances
of 3D U-Net are very poor, and we believe this is because of the anisotropy of the abdomen
CT dataset discussed in Section 5.2.

For the cardiac MRI dataset, 2D U-Net, 3D U-Net, FCN-RNN, and Spider U-Net scored
0.882, 0.822, 0.877, and 0.891 for DSC, and 0.790, 0.704, 0.782, and 0.804 for IoU, respectively.
The third row in Figure 4 represents qualitative examples of cardiac MRI predictions. As
this dataset is given in 4D, i.e., 20 frames of 3D cardiac volume representing a single cardiac
cycle, we consecutively arranged a cross-section view of 20 frames of volumes through the
central coronal plane.

4.2. Ablation Experiment
4.2.1. The Impact of the Weft Path

We implemented Spider U-Net without the weft path to verify the influence of the
inter-slice connectivity on performance. In this model, the weft path was changed to a set
of convolutional layers with 512 filters, disconnecting the bridges between image slices.
When the original Spider U-Net scored 0.796 and 0.743 for DSC and IoU, respectively, the
adaptation scored 0.700 for DSC and 0.633 for IoU, as shown in Table 3. This implies that
the weft path extracting inter-slice connectivity plays a vital role in the performance of
Spider U-Net.

Table 3. Dice coefficient score (DSC) and intersection-over-union (IoU) of Spider U-Net adaptations
on the brain MRA dataset.

Metric Spider U-Net Spider U-Net Spider U-Net
(w/o. Weft Path) (w. Attention Module)

DSC 0.700 0.807 0.796
IoU 0.633 0.740 0.743

4.2.2. The Expandability of Warp Path

The warp path of Spider U-Net can be augmented with various 2D-based modules
because it is composed of several B baselines which are basically a 2D U-Net. We imple-
mented the expanded Spider U-Net by attaching an attention module [27] to the warp
path for assessment. As shown in Table 3, it scored 0.807 for DSC and 0.740 for IoU,
which is not significantly different from the original Spider U-Net. We will explore the
performances under various options by adopting other modules, such as a residual block
and squeeze-and-excitation block, to improve the model performance of Spider U-Net.

5. Discussion

Spider U-Net was designed to improve the performance of the 3D BVS task by rein-
forcing the insufficient blood vessel features with inter-slice connectivity. The experimental
results show the effectiveness of Spider U-Net on the 3D BVS dataset, for which it achieved
the highest score among all the tested models. Spider U-Net can also be adopted to seg-
ment vessel-like organs such as the lung airway and lymphatic vessels which have strong
inter-slice connectivity. In the following subsections, we discuss factors that affect model
performance.

5.1. Network Composition

In this study, the position in which the weft path was built affected the segmentation
performance. The only difference between our FCN-RNN re-implementation and Spider
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U-Net is that the weft path−was placed after the warp path for FCN-RNN, whereas it was
placed in the middle of the warp path for Spider U-Net. Considering that Spider U-Net
outperformed FCN-RNN in most cases, incorporating the weft path inside the warp path
is the experimentally better placement.

For FCN-RNN, the weft path receives a segmentation mask with a single channel
and post-processes it by extracting the spatial feature again. This workflow would not be
optimal because there are two separate feature extractors in the architecture. In Spider
U-Net, on the other hand, the weft path directly augments global features without re-
extracting because it is considered as a part of the encoder. We believe this architecture
makes the training process stable and has a positive effect on performance.

5.2. Anisotropy of the Dataset

3D medical images vary in slice thickness and inter-slice spacing according to the
manufacturer, machine, and reconstruction method. In the volumetric view, this character-
istic means that each 3D volume has a diverse voxel size along the z-axis and means the
entire dataset is anisotropic. There is some evidence to suggest that 3D U-Net performance
tends to deteriorate when trained with an anisotropic dataset [17,18]. We also conducted
an ablation study with our in-house isotropic dataset by collecting MRA volumes with
the same manufacturer and image acquisition settings. The average DSC of 2D U-Net, 3D
U-Net, FCN-RNN, and Spider U-Net was 0.696, 0.697, 0.725, and 0.737, respectively. In this
experiment, the performance of 3D U-Net was not inferior to 2D U-Net. This shows that 3D
U-Net has difficulty when trained with an anisotropic dataset. On the other hand, Spider
U-Net, which relies on LSTM when extracting z-axis information, demonstrates robustness
in terms of anisotropy by showing consistent results on every dataset. As a result of this
characteristic, an additional reconstruction stage to match up voxel size was not required.

6. Conclusions

We propose a novel deep learning framework, Spider U-Net, for 3D BVS that incorpo-
rates an RNN component into the 2D U-Net baseline. The core element is the weft path that
unites the broken context between consecutive images by applying convolutional LSTM in
a bidirectional way. This helps the entire model infer accurate segmentation masks while
taking into consideration adjacent image features. Moreover, a training strategy named
striding stencil is proposed to train Spider U-Net. Our proposed model was evaluated on
three different datasets and outperformed all comparative models on DSC. This shows
that utilizing the inter-slice connectivity with LSTM improves the performance for 3D BVS
tasks. In addition, we experimentally validated that our network component placement is
more effective than previous models.

A future study to validate Spider U-Net in a real clinical scenario is planned. In order
to segment the intracranial artery and diagnose stenosis and occlusion simultaneously, we
will implement a multi-task model by attaching an auxiliary classifier to Spider U-Net. We
will then compare the diagnostic results with invited radiologists.
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BVS Blood Vessel Segmentation
CNN Convolutional Neural Network
CT Computed Tomography
DSC Dice Coefficient Score
FCN Fully convolutional Network
HU Hounsfield Unit
IoU Intersection-over-Union
LSTM Long Short-Term Memory
LV Left Ventricle
MRA Magnetic Resonance Angiography
MRI Magnetic Resonance Imaging
RNN Recurrent Neural Network
SNUBH Seoul National University Bundang Hospital
SS Striding Stencil
TOF Time-of-flight
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