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Abstract: The number of smart cities is increasing rapidly around the world with the continuous
increase of governments’ interest in exploiting Information and Communication Technologies (ICT)
to solve issues arising from rapid urbanization. Most smart city services rely fundamentally on
ubiquitous sensing, enabled by Wireless Sensor Network (WSN) technologies. However, WSNs
in smart cities are naturally vulnerable to unavoidable external challenges like storms, fires, and
other natural disasters. Such challenges pose a great threat to smart city infrastructure, including
WSNs, as they might affect network connectivity or result in complete blockages of network services.
However, some particular smart city services are critical, to the point where they must remain
available in all situations, especially during disasters; to monitor the disaster and obtain sensory
information needed for controlling it, limiting its danger, or for decision-making during rescue
operations. Thus, it is crucial to design a smart-city network to maintain connectivity against such
challenges. In this paper, we introduce MPResiSDN, a MultiPath Resilient routing system based
on Software Defined Networking (SDN). The system introduced exploits SDN’s capabilities and
aided-multipath routing to reactively provide connectivity in smart city networks in the presence
of challenges. We evaluated our proposed system under simulations of different natural disasters.
The results demonstrate that the system improved data delivery under the challenges by as much as
100% compared to the Spanning Tree Protocol when a suitable value for k diverse paths was selected.

Keywords: resilienc; routing protocols; smart city; Software Defined Networking (SDN); Wireless
Sensor Networks (WSN)

1. Introduction and Motivations

In the last few decades, the number of people who live in cities has increased dramati-
cally. In 2018, 55% of the world’s population lived in cities, and that percentage is expected
to reach 68% by 2050 [1]. Rapid urban growth poses tangible challenges for the implemen-
tation of government development plans to deliver safe, resilient, and sustainable services
to an increasing number of citizens [2]. In response, many governments have launched
smart city projects to address urbanization issues and challenges [3]. According to the
Cities In Motion Index, globally, more than 180 cities in more than 80 countries have been
evaluated as smart cities [4]. These numbers increase each year as the number of people
who live in urban areas increases. Keeping pace with this development, governments’
interest and investments in smart city projects also increases.

Smart cities are considered one of the most important applications of the vision of
the Internet of Things (IoT) [5] The IoT connects physical items with embedded sensors
and/or software to send or receive information over the Internet. Access to the Internet
enables “smart” things, i.e., IoT objects, to make decisions and determine actions based
on real-time information. The IoT vision may sound aspirational in view of the fact that
connecting everything directly to the Internet is not technically feasible due to problems
related to current Internet protocols and inadequate infrastructure. However, this is not
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the complete story, because other existing technologies, such as Wireless Sensor Networks
(WSN) could play a major role in achieving the vision.

WSNs are considered suitable technology to enable the IoT [6,7]. Ubiquitous sensing
enabled by WSNs could help achieve the “everything connected to the Internet” vision [8]
in smart cities. WSNs are preferable and play an important role in many smart city appli-
cations [9], because they are relatively inexpensive, scalable, and easy to implement [10].
Important smart city applications that utilize WSNs include disaster monitoring and man-
agement, surveillance applications, smart transportation systems, traffic management, and
smart healthcare systems, as well as atmospheric monitoring, pollution reduction, and
energy-saving applications [11,12].

WSNs function effectively in ordinary stable environmental conditions; however, they
have difficulty handling challenging environments [13]. In fact, WSNs are vulnerable
to various challenges when implemented in real time in smart city environments. Here,
a challenge is defined as any event that impacts the normal operation of the network [14].
Challenges trigger faults that may permanently or temporarily block the transmission of
sensor information. Therefore, failure management is a significant aspect to be considered
when developing any smart city project [5].

Challenges in a smart city environment include various natural disasters, such as se-
vere storms, fires, floods, tornadoes, earthquakes, and volcanic eruptions. Such challenges
can affect network connectivity due to fluctuations of wireless channel attenuation [15].
Some challenges, e.g., fires, can disrupt network services completely. However, some
smart city services are critical and should remain available, particularly during disasters,
to obtain the sensory information required to control them, limit their impact, and provide
critical information for decision-making during rescue operations. Thus, improving the
resilience of these underlying networks in smart cities is crucial [16].

Resilience refers to the ability of the network to adapt and retain basic functionality
when errors, failures, and environmental changes occur [17]. Challenges to WSNs can
cause link or node failures [18]. Under challenging conditions, the ability to respond
quickly to changes in network topology can significantly improve data delivery. WSNs
use a multi-hop routing mechanism; thus, alternative routes may be available. However,
the nature of the distributed routing implemented in WSNs makes it difficult to update
routing tables quickly and effectively. This problem can be solved by utilizing Software-
defined Networking (SDN). Integrating SDN into WSNs in smart cities contributes to the
programmability and central management requirements that must be satisfied to provide
efficient routing in case of failures.

This paper introduces an SDN-based multipath routing scheme, which we refer to as
MPResiSDN, that aims to improve the resilience of WSNs in smart cities. The proposed
scheme implements a multipath-aided strategy to achieve better routing in case of natural
challenges. Implementing this scheme would help rescue efforts, save people’s lives, and
limit property damage in case of natural disasters, because it enhances the availability of
current and correct sensory information that is used by survivability applications in smart
cities to make decisions.

The primary contributions of this paper are as follows. We introduce the MPResiSDN
scheme and its components, implement the scheme using an RYU controller, emulate a
sensor network, and apply different challenges to the emulated network under operational
conditions. In addition, we evaluate network performance under each challenge in terms
of network throughput, actual data delivery, end-to-end delay, and overhead. We compare
and analyze the results obtained with and without the proposed scheme.

The remainder of this paper is organized as follows. Background information is
provided in Section 2. Related work is discussed in Section 3. The proposed system model
is described in Section 4. The evaluation method is explained in Section 5, and evaluations
of the results are discussed in Section 6. Conclusions and suggestions for future work are
presented in Section 7.
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2. Background

This section provides definitions and background information related to smart cities,
WSNs, SDN, and network resilience.

2.1. Smart Cities

Smart cities is a general term that can be considered from various perspectives. Ex-
ploring the key layers of a smart city will clarify where this research is positioned. Figure 1
shows a general overview of smart city architecture [19].
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Figure 1. Smart city architecture.

As can be seen, smart city architecture comprises four different layers. The first is
the Information and Communication Technologies (ICT) infrastructure layer. This layer
includes all essential network infrastructure, such as data centers, network devices, sensors,
and actuators. This layer is considered the key driver of smart cities. The second layer is
the E-governance layer. E-governance establishes policies related to the deployment of
existing ICT infrastructure to provide services to citizens. The third layer is the Services
layer that includes the various public services offered to citizens and other stakeholders.
Finally, the Stakeholders’ layer represents all beneficiaries of smart cities services, including
citizens, government officials, and commercial operators. This research focuses on the ICT
infrastructure layer.

2.2. Wireless Sensor Networks

In smart cities, WSNs are a major source of sensory information [12]. A general
example of the infrastructure and technologies used in a smart city crowd monitoring
system is shown in Figure 2 [9]. The WSN is used along with crowd sensing devices,
such as smartphones and smart wearables. Then, different communication technologies,
such as ZigBee, Wi-Fi, VANET, LTE, and 5G, are used to transmit the sensed data to a
data center/cloud server for analysis. In the computing layer, data from different sources
are merged and analyzed to extract meaningful information to be used later for decision-
making by smart city services.

A single WSN generally consists of multiple sensor nodes and a sink node. Sensor
nodes are deployed over a specified sensing area to sense information about the surround-
ings and communicate to the sink node through a multi-hop mechanism [20,21]. The sink
node is responsible for collecting the sensed information from the sensor nodes, aggre-
gating the information, and sending the aggregated information to higher-level network
devices for further processing and information extraction.
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Figure 2. An example of smart city monitoring.

It is worth noting that, for smart city sensing applications, wired sensor nodes can be
incorporated into the WSN. These wired sensor nodes could have better communications,
computation, and storage capabilities than normal wireless sensor nodes. Although the
network may include some wired sensors, it is still called a WSN because most of the
sensor nodes are wireless [9].

2.3. Software Defined Networking

Software-Defined Networking (SDN) is an emerging technology that employs network
architecture that differs from the architecture used in traditional networks. SDN-enabled
networks decouple the control plane from the data plane by separating the routing deci-
sions and the forwarding decisions. This separation is the key factor that enables all SDN
capabilities. Figure 3 represents a logical view of SDN architecture [22]. The application
layer deals with end-user applications that utilize SDN services. The control layer is the
main layer in the architecture and comprises a set of software-enabled SDN controllers that
centralize the network intelligence and maintain a global view of the network. Network
administrators use the controllers to apply custom policies to the devices of the infras-
tructure layer; the infrastructure layer consists of physical devices, such as switches and
routers. In SDN architecture, routers are no longer responsible for routing. Instead, they
only forward packets based on flow tables that are obtained from SDN controllers. SDN
controllers connect to routers through southbound APIs, and applications connect to SDN
controllers through northbound APIs [23].

End-user Applications

SDN 
Control

Software

Network Device

Network Services

Northbound API

Southbound API

Network Device Network Device

Applications Layer

Control Layer

Infrastructure Layer

Figure 3. SDN architecture.

Implementing SDN has numerous advantages [24,25]. First, SDN provides centralized
network management because an SDN controller has a centralized view of the entire net-
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work status, which makes network management much easier. In addition, SDN enhances
the efficiency of network administration, as it permits network characteristics to be changed
remotely. Moreover, SDN offers programmability features such that policies and protocols
can be deployed to any network device. SDN also facilitates configuration and reconfig-
uration processes. Furthermore, implementing SDN is cost-efficient because most SDN
products are open source. In addition, SDN supports up to layer-3; therefore, enterprises
do not need to purchase expensive hardware [26]. SDN also provides fine-grained security
to end-devices [27].

2.4. Network Resilience

Network resilience refers to a network’s ability to defend against and maintain an
acceptable level of service in the presence of various faults and challenges to normal
operation [28]. Resilience is a general term that applies to several areas, such as cybersecu-
rity, fault tolerance, software dependability, and network survivability [29]. The different
network resilience disciplines [30] are mapped in Figure 4. In this study, network re-
silience falls under Challenge Tolerance, specifically, under Disruption Tolerance, which is
highlighted in blue in the figure.
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Figure 4. Resilience disciplines.

A challenge is defined as an event that impacts normal network operations [14].
In general, a challenge can be caused by malicious or non-malicious sources. A major
non-malicious challenge in a communication network is a disruption [30]. Disruptions
come from challenges in the communication environment that make it difficult for the
network to maintain stable end-to-end connections between nodes. Disruption tolerance is
the ability of a network to tolerate disruptions in connectivity among its nodes. Examples of
disruptions are weak signal connectivity, unpredictably long delays, and power or battery
issues [30]. This study addresses two types of disruption, which, in this context, are called
challenges. The first is a relatively trivial challenge that causes weak signal connectivity,
i.e., the storm challenge. The second is a severe challenge that disconnects some nodes
completely, i.e., the fire challenge.

3. Related Work

SDN is a revolutionary technology that provides advanced features to infrastructure
networks. Opportunities to exploit SDN to improve smart city networks are endless.
Researchers have investigated exploiting SDN to improve different aspects of smart city
networks, such as network security, network performance, big data processing, load
balancing, traffic management, and surveillance applications.

For example, various studies [31–34] have discussed how SDN can be utilized to
improve network security in smart cities, in particular, to improve resilience to DDoS
attacks. Bawany et al. [31] introduced an SDN-based attack defense framework to detect
and mitigate application level DDoS attacks on smart city application servers. Then, to
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achieve the same goal more effectively, they improved their work and introduced a secure
and agile adaptive framework [32]. This framework protects smart city applications against
DDoS attacks by leveraging the advantages of SDN, such as central management and global
visuality. In addition, Chen et al. [33] presented a lightweight approach to trace back DDoS
attacks on SDN-based smart cities, based on an anomaly tree. This approach benefits from
SDN’s hierarchical control structure. Xu et al. [34] proposed a defense strategy against
DDoS attacks based on SDN and Network Function Virtualization (NFV).

SDN has been also utilized to achieve different targets in smart city networks, such as
to improve performance. In this regard, Han et al. [35] studied integrating SDN into smart
city networks to improve 5G performance. They introduced a cell-less communications
model and architecture to improve 5G network convergence. In addition, Usman et al. [36],
introduced a software-defined device-to-device communication architecture for public
safety applications in 5G networks in smart cities.

Furthermore, SDN has been utilized to develop mechanisms to transfer and process big
data in smart cities. Bi et al. [37] proposed a strategy to overcome time-constrained big data
transfer scheduling (TBTS) problems based on SDN. The strategy uses an SDN controller
to achieve dynamic flow control and implements fast multipath transfer scheduling to
overcome the TBTS problem. The results show that the strategy reduces big data transfer
delay and improves bandwidth utilization. SDN has also been used to investigate new
ways to improve big data processing in smart cities. Khan et al. [38] introduced three-tier
architecture to implement IoT in smart cities. The architecture comprises data collection,
data management, and application levels with two intermediate levels that work on SDN
principles. The architecture was evaluated, and the evaluation results demonstrated that
efficient transfer of big data for real-time applications had been achieved.

Other studies also attempted to integrate SDN in WSNs in smart cities. Those studies
exploited SDN capabilities to balance the load on the sensors. Cui et al. [39] introduced a
load balancing algorithm that was specifically designed to improve average bandwidth
utilization and reduce network link load jitter; thus, the performance of the entire network
was improved.

Utilizing SDN has also been proposed for surveillance applications in smart cities.
Rametta et al. [40] presented a smart video surveillance platform for smart cities based
on SDN and NFV. Kunst et al. [41] attempted to improve network resource allocation in
a heterogeneous video surveillance network in smart cities by exploiting the advantages
of SDN.

SDN has also been exploited to improve traffic management in smart cities. Raja
et al. [42] introduced an SDN-enabled traffic alert system for the Internet of Vehicles (IoV)
in smart cities. The system uses SDN controllers to update vehicles about non-line-of-sight
information by broadcasting alarms that are produced automatically, either by another ve-
hicle or by roadside units. The system also detects accidents, based on vehicle information,
and broadcasts necessary alarms to all vehicles.

SDN technology has also been utilized to improve routing in IoV environments.
Abbas et al. [43] introduced road-aware routing based on SDN for IoV networks in smart
cities. The introduced routing mechanism improved network performance in terms of
end-to-end delay, packet delivery ratio, and routing overhead. Bhatia et al. [44] introduced
an innovative approach to real-time traffic analysis in Vehicular Ad-Hoc Network (VANET)
environments based on SDN. The proposed approach relies on the programmability of
SDN to implement a combination of different machine learning algorithms to model traffic
flow in SDN-enabled smart cities.

SDN has been proposed to manage traffic in smart cities in emergency situations, such
as natural disasters, traffic accidents, and terrorist attacks. Rego et al. [45] proposed an
SDN-based architecture for smart cities that aims to manage traffic efficiency under disaster
conditions. In that study, SDN controllers were utilized by the proposed architecture to
collect information from different sensory networks in smart cities, such as traffic lights and
surveillance cameras. The information collected is combined to obtain the best and fastest
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evacuation routes and access roads for emergency services units. The authors further
tested their proposed architecture in a follow-up study [46]. The results showed that the
architecture reduced network delay by 33%. In addition, energy consumption by the nodes
in the sensory networks was modeled and evaluated. The results proved the scalability of
the architecture, as they demonstrate that energy consumption increases linearly with the
number of nodes.

Other techniques have been proposed to handle emergency situations in smart cites.
García et al. [47] proposed a system based on citizens’ smartphones to detect emergency
situations in smart city environments. The proposed system utilizes data from accelerom-
eters in smartphones to detect changes in user behavior. Different tests were performed
using real devices to show the possibility of identifying different behaviors, including
walking, running, falling, and remaining on the floor. Also, Fragkos, G., et al. [48] proposed
a multi-agency disaster management framework for unmanned aerial vehicles (UAV)-
assisted public safety systems that can be used for smart cities. The framework they
introduce exploits the principles of game theory and reinforcement learning to support
connectivity during disasters and under challenging communication situations. Further-
more, Huang et al. [49] investigated the use of a machine learning approach to improve
network connectivity. The approach addresses the connectivity holes that may exist within
a network to achieve undisturbed connectivity.

Applications that deal with emergency situations and surveillance applications are
critical in smart cities. The availability of these applications relies fundamentally on
network resilience. Note that our research targets improving network resilience in the face
of natural challenges in order to maintain the availability of these important applications.
To that end, related studies that address improving network resilience are reviewed.

SDN is also utilized to achieve network resilience in smart cities. Ahmed and
Adel A. [50] presented a lightweight SDN architecture for resilient real-time IoT that can be
used in smart cities. The architecture achieves resilience by optimizing the regular control
plane and data plane to introduce lightweight versions. The control plane was optimized
by stopping the two least important control functions based on an application-specific
requirement and by reducing the duty cycle of the control plane based on the demand of the
data plane. The data plane is optimized by implementing real-time routing protocols, load
disruption, and adaptive traffic shaping. The lightweight SDN architecture was evaluated
using Mininet-IoT. The results showed that the lightweight SDN architecture outperformed
traditional architecture in terms of delivery ratio, latency, and packet overhead. Here, the
researchers attempted to improve resilience by improving network performance, which
leads to improved availability of network services. However, they only considered normal
network operation when no external challenges were presented.

Our work differs in that it aims to improve the resilience of smart city networks
against external challenges, such as natural disasters. We utilize SDN’s programmability
feature to implement multipath routing to increase the availability of network services
in smart cities, even under difficult circumstances, such as natural disasters. Multipath
mechanisms, such as path diversification, are considered effective solutions to obtain high
communication reliability between disconnected pairs [51]. The multipath concept has
been used by researchers to improve various aspects of smart city networks at different
network layers.

Singh et al. [52] introduced the potential of integrating Multipath TCP (MPTCP)
with SDN in smart cities to improve Vehicle-to-Infrastructure (V2I) communication. They
evaluated the performance of MPTCP for V2I connectivity in SDN-controlled small cells of
DSRC and Wi-Fi. The results showed that MPTCP improved network resilience to internal
failures caused by delays in flow setup or handovers.

Other researchers studied utilizing SDN along with multipath mechanisms to achieve
resilience outside of the context of smart cities. Ai et al. [53] attempted to improve the
resilience of SDNs against security attacks by implementing an algorithm that utilized a
network-coding technique together with multipath routing. The results showed that the
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proposed algorithm improved network resilience to passive security attacks by approxi-
mately 20%.

In addition, Cheng et al. [54] introduced a cross-layer resilient routing protocol stack
for survivable network communication during regional challenges. The protocol, which
they call GoeDivRP, operates based on SDN, collects network statistics, and calculates
multipath communications. The protocol was implemented in the NS-3 network simulator
and compared to Multipath TCP. The results showed that the protocol stack provided
higher throughput and resilience against regional challenges compared to Multipath TCP.

Multipath routing has also been used with SDN to enhance QoS. Rezende et al. [55]
proposed a general SDN-based framework to route multi-stream transport traffic over
multipath networks. The system provides an interface for applications to specify multi-
stream rules. Then, it utilizes SDN to ensure that the multiple streams follow the multiple
paths based on the specified rules. The framework improved QoS in terms of delay and
throughput.

To summarize, SDN technology has been used as a foundation to improve differ-
ent aspects of smart city networks. It has been used to improve smart city network
security [31–34], 5G network performance [35,36], transferring and processing of big
data [37,38], and to balance sensor loads [39]. In addition, SDN technology has been
used to improve surveillance systems in smart cities [40,41,56]. It has also been utilized to
manage traffic effectively [42–46].

However, none of these studies addressed utilizing SDN to improve network resilience
under challenging external conditions. We note that Ahmed and Adel A. [50] addressed us-
ing SDN to improve network resilience; however, they only considered internal challenges,
and they only evaluated their system under normal operating conditions with no external
challenges present. Moreover, they investigated using a lightweight SDN architecture to
achieve network resilience, whereas our study uses multipath routing.

Multipath routing has been used to improve resilience with SDN by Singh et al. [52];
however, they did not consider evaluating network performance under external natural
challenges. Similarly, Ai et al. [53] used multipath routing to improve resilience against
security attacks.

Cheng et al. [54] considered regional challenges and implemented their work on a
different type of network, Sprint. Rezende et al. [55] implemented a system that works in a
somewhat similar way to ours; however, they did not test it under external challenges.

To the best of our knowledge, our proposed MPResiSDN system is the first to ad-
dress utilizing SDN and multipath routing to improve network resilience against external
challenges. We implemented our scheme on a modeled smart city environment and ap-
plied external challenges dynamically while the SDN controller was running. Then, we
compared the scheme performance under the applied challenges in terms of throughput,
goodput, overhead, and delay to its performance under normal operating conditions.

4. MPResiSDN System

In this section, the proposed MPResiSDN routing scheme is described. First, the
system architecture and system components are described. Then, the proposed algorithm
is presented.

4.1. System Components

In this section, the MPResiSDN system components are described. As shown in
Figure 5, the proposed system comprises six main components: Topology Discovery,
Challenge Detector, Link Status, Nodes Manager, k-diverse Paths, and Rules Generator.
The description of each component is outlined as follows:
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Figure 5. MPResiSDN system architecture.

• Topology Discovery: This component is responsible for identifying the network
topology and providing information about the available sensor nodes and links.
It initiates as soon as the network connects to the SDN controller. It provides an ID
list of all connected nodes and links. In addition, it determines the interfaces to which
each link and node are connected. The component achieves these tasks by exploiting
the built-in topology discovery algorithm provided in the RYU controller.

• Challenge Detector: This component detects challenges inside the sensing area. It also
specifies the type of challenge. It uses sensors, such as temperature sensors, to detect
the possibility of fire challenges. It also uses weather sensors, such as lightning and
humidity sensors, to detect storms. Furthermore, this component is responsible for
setting the k parameter, which represents the number of paths to be used by the system.
The k parameter value depends on the results of the challenge detecting process. The k
value increases relative to the severity of the challenge. The severity level is proposed
to be determined based on the obtained sensory information. The implementation of
this component is outside the scope of this research.

• Link Status: This component stores link parameters, such as link bandwidth and bit
error ratio. It tracks link availability and reports disconnected links.

• Nodes Manager: The Nodes Manager stores node attributes and configurations.
It maintains node types, such as a sensor or sink. It also gathers information about its
power source, i.e., whether it is battery- or solar-powered. In addition, it keeps track
of the status of nodes and reports node failures.

• k-diverse-Paths: This is the key component of the system. It takes the output param-
eter k from the Challenge Detector component and then applies the Floyd-Warshall
algorithm [57] to compute k diverse paths between nodes and available sinks. The
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computed paths are then used by the Rules Generator component to set the SDN rules
for the system. Note, this component receives the reports about link and node failures
sent by the Link Status and Nodes Manager components. It acts on the failure reports
by eliminating any failed node or link, and then updates the network topology to
avoid utilizing failed nodes and links when computing k diverse paths.

• Rules Generator: This component takes the list of computed k paths and generates
the SDN rules associated with each path. Then, it uses the rules to fill the routing
tables of all nodes in the used paths. Note, any SDN protocol can be used here. In our
MPResiSDN system, we utilized the OpenFlow protocol. The rule is defined as an
OpenFlow flow entry. Its abstract format is shown in Figure 6.

Rule (match fields) Action (Instructions) Stats (Counters)

Check Switch port Forward packets to port(s) Packet + byte counters

Figure 6. SDN OpenFlow flow entry format.

4.2. System Algorithm

In this section, the MPResiSDN algorithm is described. the algorithm has seven functions:
TopologyDiscovery(), ChallengeDetector(), DiversePaths(k, src, dst, G), FindSwitches(path),
DetermineInOutPorts(sw, path), ReversePath(path), and GenerateRule(sw, in, out). The
pseudocode of the MPResiSDN algorithm is illustrated in Algorithm 1.

Initially, TopologyDiscovery() determines the network topology. The function results
in a set of nodes N, links L, and a graph G = (N, L). The ChallengeDetector() function
reads the sensory information from the lightning, humidity, and temperature sensors.
It analyses the results to detect the existence of natural challenges and specifies the type
of challenge. Most importantly, this function specifies a suitable value for the number of
alternative paths to be used, (k).

The DiversePaths(k, src, dst, G) function takes the specified value k and the deter-
mined topology graph G to compute k diverse paths between a source node src and a
destination sink dst. The FindSwitches(path) function takes a path as input and determines
all connected switches. The DetermineInOutPorts(sw, path) function takes a switch ID and
the path it belongs to as inputs. Then, it determines the connected input and output ports
for each switch in the path.

The ReversePath(path) function takes a path as input and determines the reverse path
associated with it. Finally, the GenerateRule(sw, in, out) function generates the SDN rules
to be pushed to the OpenFlow switches. It takes a switch ID along with its associated
input and output ports as inputs. Then it produces an SDN rule to be used later to fill the
switch’s routing table.

The code flow for the MPResiSDN algorithm is described here. At the initialization
level, the network topology G is obtained by the TopologyDiscovery() function and passed
to the DiversePaths(k, src, dst, G) function. The parameter k is determined by the Chal-
lengeDetector() function and passed to the DiversePaths(k, src, dst, G) function. Then, the
DiversePaths(k, src, dst, G) function immediately generates the k diverse paths to be used.
Subsequently, the SDN rules list is initialized, and the process begins of generating the SDN
rules to enable the system to utilize the determined k paths. At first, the algorithm takes
each path in turn and applies several processing steps. For each path, the algorithm deter-
mines all switches on the path using the FindSwitches(path) function. Then, for each found
switch, the input and output ports are determined using the DetermineInOutPorts(sw,
path) function and the associated SDN rule is generated using the GenerateRule(sw, in,
out) function. Eventually, the SDN rule is appended to the SDN rules list.

SDN rules are created to handle the acknowledgment packets. The ReversePath(path)
function is used to generate the reversed path of the original forward path. Then, the same
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processing steps that were applied to the forward path are applied to the reversed path.
The generated rules list is utilized to fill the routing tables of all switches belonging to
the path. Note that all switches use the resulting routing tables until an event happens,
e.g., a new challenge is detected, or a link or a node is damaged. When any of these
events happens, the SDN controller reruns the algorithm and updates the routing tables
of all switches. To consider the algorithmic complexity of our algorithm, we focus on
expensive functions and loops. Hence, to compute k shortest paths, our algorithm uses
the Floyd-Warshall algorithm to find diverse paths, which incur O(n2) with a network of
size n nodes [57]. In addition, the algorithm uses two nested four loops to construct rules,
which incur a total algorithmic complexity of O(ps), where p represents the number of
paths and s represents the number of switches inside a path. Therefore, our algorithm’s
complexity is O(n2 + ps), which can be simplified to O(n2) since p and s cannot be larger
than v.

Algorithm 1: MPResiSDN algorithm.
Functions:
TopologyDiscovery(): determines the network topology as a graph G
ChallengeDetector(): decides the value of k based on environmental sensors.
DiversePaths(k, src, dst, G): determines k paths between source src and destination dst in a graph G.
FindSwitches(path): generates a list of all switches in a given path.
DetermineInOutPorts(sw, path): determines input and output ports for a switch sw in a given path.
ReversePath(Path): determines the opposite direction of a path.
GenerateRule(sw, in , out): generates an SDN rule for a switch sw, given ports in and out.
Input:
src: source node.
dst: destination node.
Output:
RulesList: SDN rules.
begin

G = TopologyDiscovery()
k = ChallengeDetector()
Paths = DiversePaths(src,dst,G,k)
SDNRules = []
for path in Paths do

for sw in FindSwitches(path) do
in , out = DetermineInOutPorts(sw, path)
SDNRule = GenerateRule(sw, in , out)
RulesList.append(sw,SDNRule)

end
reversedPath = ReversePath(path)
for sw in FindSwitches(reversedPath) do

in , out = DetermineInOutPorts(sw, path)
SDNRule = GenerateRule(sw, in , out)
RulesList.append(sw,SDNRule)

end
end
return RulesList

end

5. Evaluation Methodology

In this section, the evaluation environment is described, i.e., the network topology,
applied challenges, and experimental setup. The performance metrics used to evaluate the
system are defined.
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5.1. Network Topology

The topology of the network used to evaluate the system is shown in Figure 7. The net-
work is composed of four elements, a surveillance camera, intermediate nodes, the Inte-
grated Command and Control Center (ICCC), and wireless links.

Surveillance Camera (Source) ICCC Center (Sink)

Wireless LinksIntermediate Nodes

Figure 7. Evaluation network topology.

The surveillance camera generates information. The intermediate nodes deliver
information to the network sink, i.e., the ICCC. The ICCC is responsible for collecting
sensed information. The wireless links transmit information between nodes. All nodes
in the network topology are connected to OpenFlow switches. Each OpenFlow switch
is connected to a remote controller that is running the MPResiSDN algorithm. Figure 8
illustrates the three diverse paths that are used in the evaluation scenario.

Path 1 Path 2 Path 3

Figure 8. Paths used for evaluation.

5.2. Natural Challenges

To evaluate the system, two different types of natural challenges were modeled and
applied; a fire challenge and a storm challenge. Figures 9 and 10 illustrate the scenarios in
which each challenge was applied.

The fire challenge was modeled to create permanent damage to all nodes it affects.
The details of how it acted during the experiment are shown in Figure 9. Initially, the fire
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challenge was small; however, it expanded until it started to hit some intermediate nodes
at time t = 30. Over time, the fire continued to expand and affect additional nodes.

From t=0 to t=29 From t=30 to t=59 From t=60 to t=89

Surveillance Camera
(Source)

ICCC Center
(Sink)

Intermediate
Nodes

Wireless Links Path 2

Path 3
Fire Challenge

Path 1

Figure 9. Fire challenge scenario.

The storm challenge was modeled to create a temporary effect on the nodes; specifi-
cally, to cause noise that affects the communications to and from the nodes it covers. Once
the storm moves out, the nodes resume normal operation. Figure 10 illustrates how the
modeled storm challenge acted during the experiment. At first, the storm only affected a
single node on path 2. Then, it moved in a northeasterly direction. As it was moving, more
nodes on path 1 and path 3 were affected, and the nodes on path 2 gradually resumed their
normal operation. At t = 50, the storm was about to leave the sensing area, allowing nodes
on all three paths to resume their normal operation.

From t=10 to t=19 From t=20 to t=49 From t=50 to t=119

Surveillance Camera
(Source)

ICCC Center
(Sink)

Intermediate
Nodes

Wireless Links Path 2

Path 3
Storm Challenge

Path 1

Figure 10. Storm challenge scenario.

5.3. Performance Metrics

The system was evaluated under three main cases: normal operation, a storm chal-
lenge, and a fire challenge. For each case, four performance metrics were used, i.e., actual
throughput, goodput, overhead, and end-to-end delay. Actual throughput represents all
network traffic that is received at the destination. Goodput represents only actual meaning-
ful data, excluding any redundancy. Overhead represents the percentage of the goodput
over the actual throughput, and end-to-end delay is the time the system takes to deliver
information from the source to the sink.
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5.4. Experimental Setup

All experiments were carried out using Ubuntu MATE 18.04, with 2 GB of RAM and
a 1.90 GHz processor. The networks were emulated using Mininet 2.2.2 interfaces with
Python 2.7.17. The challenges were applied by configuring links losses. The RYU controller
was used to implement the multipath algorithm. Data traffic was generated using iPerf3
and captured using tcpdump. The results were analyzed using Wireshark and Python
Pandas. The emulation parameters are listed in Table 1.

Table 1. Emulation Parameter Values.

Parameter Value

Operating System Ubuntu 18.4
Memory 2 GB of RAM
CPU 1.90 GHZ
Emulator Mininet 2.2.2
SDN Framework RYU Controller
Programming Language Python 2.7.17
Traffic Generator iPerf3
Link Bandwidth 10 Mbps

6. Results and Discussion

In this section, the results of applying the evaluation methodology described in
Section 5 to our proposed MPResiSDN scheme are presented and discussed. The MPRe-
siSDN scheme was evaluated using different k values; (k = 1), (k = 2), and (k = 3). We refer
to the results as MPResiSDN(k = 1), MPResiSDN(k = 2), and MPResiSDN(k = 3). For
execution time, the algorithm performance is evaluated with different network sizes and
numbers of paths. Our execution time evaluation is shown in Figure 11 and the results
show that execution time is not significantly high, which is approximately 0.003 ms for
a network with 100 nodes with MPResiSDN(k = 1) and 0.008 ms for a network with
100 nodes with MPResiSDN(k = 2) and MPResiSDN(k = 3). For comparison, the same
evaluation methodology was applied to the same evaluation network topology, using the
traditional Spanning Tree scheme that is integrated in the RYU controller. For all four
schemes, the evaluation was made under three cases: normal operation, fire challenges,
and storm challenges. The results for each case are presented and discussed individually
in the following subsections.
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Figure 11. Evaluation of execution time using different k values and network sizes.
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6.1. Normal Operation

First, we look at the result of measuring the actual throughput produced by each
of the four schemes when tested under normal operation, where no challenge is pre-
sented. The results are shown in Figure 12a. As can be seen, MPResiSDN(k = 3) produces
triple the throughput produced by MPResiSDN(k = 1), while MPResiSDN(k = 2) pro-
duces twice the throughput. This is because MPResiSDN(k = 2) and MPResiSDN(k = 3)
use additional paths to deliver data to the sink, which obviously increases the actual
throughput.MPResiSDN(k = 1) and Spanning Tree produce the same amount of data;
however, Spanning Tree takes a much longer time to discover the topology before it starts
to produce throughput.
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Figure 12. Comparison of the four strategies under normal operation.

Now, we look at the results of measuring the goodput produced by the four schemes
evaluated in the case of no challenge (Figure 12b). Differing from the actual throughput,
the goodput of all schemes is approximately the same. These results are expected given that
the goodput filters out all redundant data and only keeps one copy of all required packets.

Figure 12c shows the cumulative distribution functions (CDF) of the delay of each
scheme under normal operation. For the most part, the delay values range between 5 and
6 ms, regardless of the schemes used. It is evident that increasing the number of alternative
paths used in MPResiSDN does not affect the delivery time of the information when the
environment does not contain a challenge.

The difference in the actual throughput and goodput results when tested under normal
operation leads us to look at the actual overhead caused by the four schemes (Figure 12d).
The overhead is calculated as a percentage of the actual throughput divided by the goodput,
which represents the redundancy in the data. MPResiSDN(k = 3) results in an increase
in overhead of up to 200%, while using MPResiSDN(k = 2) results in an increase of
nearly 100%.

As can be seen, using additional paths to deliver data under normal operational
conditions when no challenge is presented creates massive overhead without providing any
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benefits. Thus, it is crucial to consistently use only one path to deliver data under normal
operation. This result reinforces the importance of the Challenge Detector component.
When the detector reports no challenge, the MPResiSDN should use k = 1 to avoid
unnecessary overhead on the sensor network.

6.2. Fire Challenges

The results of evaluating the MPResiSDN scheme under the modeled fire challenge
illustrated in Figure 9, using the actual throughput performance metric, are shown in
Figure 13a. According to the fire challenge scenario, in the time interval between t = 0 and
t = 30 the fire was too small to affect any sensor node. Consequently, the actual throughput
in these time intervals was the same as the actual throughput under normal operating
conditions.
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Figure 13. Comparison of the four strategies under the fire challenge.

However, at t = 30, the fire expanded and began to affect the sensor nodes. In
particular, some of the sensor nodes on path 1 were damaged by the fire. Note that Path 1
is the only path used in the MPResiSDN(k = 1) scheme, whereas it is one of the selected
paths in MPResiSDN(k = 2)) and MPResiSDN(k = 3) schemes. Accordingly, the actual
throughput produced by MPResiSDN(k = 1) is zero at t = 30, while the throughput
produced by the MPResiSDN(k = 2) and MPResiSDN(k = 3) schemes is reduced.

At t = 60, the fire had expanded and affected both paths 1 and 2. Consequently,
the throughput produced by the MPResiSDN(k = 2) scheme under normal conditions
was completely obstructed, because all paths used by that scheme were blocked. The
MPResiSDN(k = 3) scheme continued to function because it had more alternative paths,
including path 3, which was not affected by the fire challenge at this time. In this
case, the importance of implementing an algorithm with more alternative paths, such
as MPResiSDN(k = 3) is evident.

While the actual throughput shows how each scheme behaves in the face of a certain
challenge, the goodput shows whether that behavior ultimately succeeded in delivering the
required data. Figure 13b shows the detailed results of measuring the goodput over time
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under the modeled fire challenge. As expected, all schemes worked well at the beginning
because none of the paths were affected by the fire challenge. However, when the fire
challenge started to hit path 1, which is the only path used in the MPResiSDN(k = 1) and
Spanning Tree schemes, both algorithms failed to deliver data. MPResiSDN(k = 2) and
MPResiSDN(k = 3) performed well until the fire started to hit path 2 at t = 60. At this
time, MPResiSDN(k = 2) failed because both of the paths it uses failed. MPResiSDN(k = 3)
continued to work well as it had an additional alternative path to use. The Spanning Tree
algorithm struggled after the fire started to impact any path because it takes a very long
time to figure out a new path to use.

Figure 13c shows the details of the overhead generated by the four schemes under
the fire challenge over time. Given that MPResiSDN(k = 3) uses two additional alternative
paths to deliver data, it takes approximately twice the amount of throughput compared
to MPResiSDN(k = 1) when no challenge is presented at the beginning. In other words,
MPResiSDN(k = 3), under no challenge, results in an overhead of 200% of the actual
amount of data produced by MPResiSDN(k = 1). Similarly, MPResiSDN(k = 2) generates
double the actual throughput produced by MPResiSDN(k = 1). MPResiSDN(k = 1) and
Spanning Tree deliver the data without any additional overhead. These results confirm the
finding mentioned previously when discussing the normal operation case, i.e., alternative
paths are only worthwhile under challenges.

However, when the fire starts to affect the path used by MPResiSDN(k = 1) and
Spanning Tree schemes at t = 30, they fail completely. Consequently, no traffic is gen-
erated; thus, there is no overhead. At this point, MPResiSDN(k = 2) works the same as
MPResiSDN(k = 1) under normal operation, while MPResiSDN(k = 3) works the same as
MPResiSDN(k = 2) under normal operation.

At t = 60, when the fire starts to affect path 2, the only scheme that could handle
this challenge was MPResiSDN(k = 3) because it has a third path to use to deliver data.
No overhead is generated by MPResiSDN(k = 3) at this point because it works with only
one path. MPResiSDN(k = 2) and MPResiSDN(k = 1) fail completely, and Spanning Tree
continues to fail because it takes an exceptionally long time to find the new shortest path.
Finding a new path becomes increasingly difficult for Spanning Tree due to rapid changes
in network topology. In this case, obviously no overhead is generated as no data is being
delivered.

Figure 13d shows the CDFs of the delays incurred by each of the four schemes when
evaluated under the fire challenge. As can be seen, the delay results here are like the delay
results of the normal operation case. The delay values that are produced by all schemes
during the entire time interval are almost constant. They primarily vary between 5 and
6 ms. As has been noted, regardless of the type of scheme or the challenge status, the delay
values are not affected.

In conclusion, using alternative paths definitely helped handle the fire challenge.
Moreover, it is evident that increasing the number of alternative paths played a major role
in increasing the resilience of routing schemes against the fire challenge. Differing from the
case under no challenge, the generated overhead is not worthless.

6.3. Storm Challenges

Here, we look at the results of evaluating the four schemes under the storm challenge
model, using the four performance metrics. Figure 14a shows the actual throughput
produced by the schemes under the storm challenge, which is modeled in Figure 10.
The throughputs for all four schemes are at their highest values in the first 10 s because the
storm has not yet started.

From t = 10 to t = 20, the storm began to affect path 2, which is used by
MPResiSDN(k = 2) and MPResiSDN(k = 3). The storm challenge increases noise, which
affects the sensor nodes impacted by the storm. This is reflected in a slight effect on the
throughput of both MPResiSDN(k = 2) and MPResiSDN(k = 3). At this time, the Spanning
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Tree and MPResiSDN(k = 1) are not affected because they use path 1, which is not yet
covered by the storm challenge.

The worst damage caused by the storm challenge occurs from t = 20 to t = 49.
Although path 2 is freed as the storm moves away, it begins to affect both paths 1 and 3.
As path 1 is the only path used by MPResiSDN(k = 1) and Spanning Tree, the throughput
dramatically decreases at that time. However, MPResiSDN(k = 2) and MPResiSDN(k = 3)
can successfully handle the challenge because they can use an alternative path. As shown
in Figure 14a, the throughput produced by the MPResiSDN(k = 2) and MPResiSDN(k = 3)
schemes is reduced; however, they still maintain an acceptable level of performance.

At t = 50, the storm begins to leave the affected area. As the storm leaves, no paths
are affected. This is immediately reflected by an increase in the actual throughput of the
MPResiSDN(k = 2) and MPResiSDN(k = 3) schemes. MPResiSDN(k = 1) takes longer to
recover and the Spanning Tree scheme takes even more time.
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Figure 14. Comparison of the four strategies under the storm challenge.

The evaluation results for the four schemes under the storm challenge using the
goodput performance metric are shown in Figure 14b. Initially, goodput is not affected
by the storm challenge as the challenge has not affected a wide area. When the challenge
affects a larger area and covers more paths, the goodput of the MPResiSDN(k = 1) and
Spanning Tree schemes drops dramatically because these schemes do not use alternative
paths. MPResiSDN(k = 2) and MPResiSDN(k = 3) schemes can handle the challenge and
maintain approximately the same level of goodput. They are not affected by the storm
challenge because they always have alternative paths to use. When the storm starts to
leave the area, the single path used by MPResiSDN(k = 1) and Spanning Tree becomes
available. Thus, these schemes start to work again. Note that the Spanning Tree scheme
requires more time to recover from the challenge.

The results of evaluating the four schemes under the storm challenge using the
overhead metric are shown in Figure 14c. In the first 10 s, the overhead results under the
storm challenge are similar to those under normal operation because the storm has not
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started yet. From t = 10 to t = 19, the storm starts to cover path 2, resulting in noise
that affects communication from and to the sensor nodes on the path. The noise slightly
reduces the overhead of MPResiSDN(k = 2) and MPResiSDN(k = 3) schemes because it
causes dropped packets on path 2. However, packets on path 2 are all duplicates; therefore,
dropping some of them reduces overhead rather than goodput. The goodput is not affected
for paths 1 and 3 because they are both completely out of the challenge. Spanning Tree and
MPResiSDN(k = 1) schemes are not affected at this time because path 1 is free.

From t = 20 to t = 49, the storm challenge moves away. Path 2 is no longer affected
by the storm. However, path 1 and path 3 are affected. This is reflected in a decrease in
the overhead of MPResiSDN(k = 2) and MPResiSDN(k = 3) in the same manner that has
been described previously. At the same time, the Spanning Tree and MPResiSDN(k = 1)
schemes only use path 1, which is currently under the storm challenge. The sensor nodes
on path 1 are affected by random noise caused by the storm challenge. The noise flips
some of the bits in the packets, causing them to be dropped by the link layer. This causes a
severe problem for the Spanning Tree and MPResiSDN(k = 1) schemes because they do
not have alternative paths to use. As a result, the overhead sometimes goes to zero because
no throughput or goodput are generated. At other times, overhead increases because
duplicates are generated due to re-transmissions.

The results of the delay under the storm challenge are similar to the previous results
for delays under the fire challenge and normal operation. Figure 14d shows the CDFs of the
delays for each of the four schemes under the storm challenge. The delay varies between 5
and 6 ms. This indicates that there is no relationship between using alternative paths and
the delay in delivering the data. In other words, using alternative paths does not affect the
delay.

6.4. Evaluation Summary

In this section, we summarize our findings after studying the performance results
under normal operating conditions and under the challenges. We found that, under the
challenges, the proposed MPResiSDN scheme improved data delivery in terms of the
obtained goodput by up to 100% compared to Spanning Tree when a suitable value for k
diverse paths was selected. However, to maintain this enhancement, the value of k should
be increased as the severity of the challenge increases in terms of the number of nodes it
affects and whether the affected nodes belong to the used paths. However, selecting a value
larger than the required value of k results in massive unnecessary overhead, i.e., overhead
can increase by up to 200% or more. Thus, under normal operation without any challenge,
selecting a value that is greater than 1 for k diverse paths is completely inefficient because
overhead increases without providing any observable benefit.

Considering the effect of the proposed MPResiSDN scheme on end-to-end delay, it
is evident that the end-to-end delay in the running phase is not affected. However, the
proposed system outperformed Spanning Tree in terms of response time initially when
the topology was identified; topology identification is faster with the proposed scheme.
Moreover, the proposed system outperforms Spanning Tree when it comes to response
time to changes in network topology.

7. Conclusions

In smart cities, maintaining a resilient network is crucial. The proposed MPResiSDN
system improved network resilience by exploiting SDN capabilities to implement multipath
routing in case of challenges. The system was evaluated under normal operation and
under two different types of natural challenges. The evaluation results demonstrate that
MPResiSDN routing improved data delivery under challenges by up to 100% compared
to Spanning Tree when a suitable value for k diverse paths was selected. In addition, the
results show that fewer paths are required to confront a relatively trivial challenge, such
as a storm challenge, while more paths are needed to confront a more severe challenge,
such as a fire challenge. However, increasing the number of paths increases overhead;



Appl. Sci. 2021, 11, 1900 20 of 22

thus, to avoid unnecessary overhead, the number of paths needed to achieve the required
resilience should be decided thoughtfully when implementing the system. To clarify, the
value of k should be determined based on the required level of resilience and the severity
level of the challenge. The more severe the challenge, the more alternative paths should
be used, so larger k values are recommended. This emphasizes the importance of the
challenge detecting phase. In future, further studies could be conducted to investigate
the best ways to determine the optimal value of k based on the type of natural challenge.
In addition, other types of natural challenge, such as floods, earthquakes, and volcanoes,
could be considered.
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