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Abstract: The goal of the human interface is to recognize the user’s emotional state precisely. In
the speech emotion recognition study, the most important issue is the effective parallel use of the
extraction of proper speech features and an appropriate classification engine. Well defined speech
databases are also needed to accurately recognize and analyze emotions from speech signals. In this
work, we constructed a Korean emotional speech database for speech emotion analysis and proposed
a feature combination that can improve emotion recognition performance using a recurrent neural
network model. To investigate the acoustic features, which can reflect distinct momentary changes
in emotional expression, we extracted F0, Mel-frequency cepstrum coefficients, spectral features,
harmonic features, and others. Statistical analysis was performed to select an optimal combination of
acoustic features that affect the emotion from speech. We used a recurrent neural network model to
classify emotions from speech. The results show the proposed system has more accurate performance
than previous studies.

Keywords: speech emotion recognition; recurrent neural network; speech analysis

1. Introduction

Recently, with the technological development in the information society, high perfor-
mance personal computers are becoming rapidly popularized. Consequently, the inter-
actions between computers and humans have been actively altering into a bidirectional
interface. Therefore, there is a need to better understand human emotions. It could improve
the interaction systems between humans and machines [1,2]. In signal processing, for these
reasons above, emotion recognition has become an attractive research topic [3]. The goal
of the human interface is to recognize the user’s emotional state precisely and to give
personalized media according to user’s emotions.

Emotion refers to a conscious mental reaction that one experiences subjectively, which,
in other words, is strong feeling generally accompanied by physiological and behavioral
changes in the body [4]. To recognize a user’s emotional state, many studies have applied
diverse forms of input, such as facial expression, speech, text, video, and others [5–11].
Among emotion recognition studies, a speech signal is one of the most natural ways of
human communication. It contains linguistic content and implicit paralinguistic informa-
tion, including the speaker’s emotions. Several studies have reported that acoustic features,
speech-quality features, and prosodic features imply abundant emotional significance [12].
In the speech emotion recognition study, the most important issue is the effective parallel
use of the extraction of proper speech features and an appropriate classification engine.
These features include formant, energy and pitch features [13–15]. Moreover, many studies
for speech-emotion recognition utilize the Mel-frequency cepstrum coefficients (MFCC)
feature representatively [16,17]. However, because there doesn’t exist an overt and deter-
ministic mapping between features and emotional state [18], speech emotion recognition
still has a lower recognition rate than other emotion-recognition methods, such as facial
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emotion recognition (FER). Therefore, it is critical to combine appropriate audio features in
speech-emotion recognition.

To accurately recognize and analyze emotions from speech, it is also important to
construct a superior speech database. The key to these studies is to guarantee verified,
reliable expressions of emotion. Therefore, statistical evaluation of whether speech data
involves emotions is needed. To meet these needs, many studies have tried to construct
speech databases, and a growing number of speech emotion databases have therefore
become available [19–21]. However, there are no public Korean speech emotion databases.
Since there are differences in the expression of emotions in speech which depend on the
culture and language of the country, a Korean-based emotional speech database is essential
to the analysis of emotions based on Korean speech. In this work, we constructed a
Korean emotional speech database (K-EmoDB) for speech emotion analysis and proposed a
feature combination that can improve emotion recognition performance, using a Recurrent
Neural Network (RNN) model [22]. To do this, the database was recorded using two
different methods. The emotion categories involved were (“Neutrality”, “Happiness”,
“Anger”, “Sadness”, “Excitement”, and “Fear”). All data were recorded in a professional
studio, to maximize the sound quality by eliminating any background noise. To ensure
the emotional quality and naturalness of the data, an evaluation test was carried out with
seven subjects. The subjects listened to each sample and had to decide on an emotion score
from 5 to 1. Based on the evaluation results, 150 emotion data points in each category
were chosen to construct the final Korean emotional speech database. To investigate the
acoustic features, which can reflect distinct momentary changes in emotional expression, we
extracted fundamental frequency (F0), MFCC, chroma, spectral features, harmonic features,
and others. Statistical analysis was performed to select an optimal combination of acoustic
features that affect the emotion from speech. We used a long short-term memory model
(LSTM) based model to classify emotions from speech. To compare the proposed method
performance, two experiments using K-EmoDB and various international databases were
conducted. The results demonstrated that the proposed method shows better performance
than previous studies.

This paper is organized as follows. Section 2 introduces research into existing speech
analysis technology. Section 3 introduces the database used in this research. Section 4
explains the proposed emotion recognition method. Section 5 presents the experiment
description and results, and then concludes with Section 6.

2. Related Works
2.1. Emotional Speech Database

The Berlin Emotional Speech database (EmoDB) is a database of emotional speech
recorded with German utterances [19]. The database was constructed using everyday
sentences, so that priority was given to the naturalness of speech. Ten actors, five female
and five male, recorded speech data according to specified emotions, producing 10 different
sentences for seven kinds of emotion: anger, boredom, disgust, fear, happiness, sadness,
and neutral. The special feature of EmoDB is that all the utterances in it are composed with
emotionless words, which means that EmoDB is helpful for finding out the proper features
of emotion due to its exclusion of the influence of the emotional information of words.

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) database consists of
about 12 h of recorded data [21]. Speech, facial, and landmark data were captured during
each recording session. Each session was a sequence of conversations involving men and
women. A total of 10 actors split into five pairs took part in the recording. All data were
recorded in a professional cinema studio, to maximize the sound quality. Actors were
seated across from each other at a “social” distance of three meters. This setup enables
realistic communication. An evaluation test was carried out with seven subjects, to label
each utterance based on both audio and video streams. The data was categorized using
10 labels: neutral, happiness, sadness, anger, surprise, fear, disgust, frustration, excited, or
other. Speech data not recognized by the subjects as exhibiting the appropriate emotion
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were not included in the database. Data were only included in the database when there
were more than half consistent answers. This process provided evidence for the credibility
of human recognition.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) is
a video database of emotional speech and songs in North American English, classified
into eight emotions, including neutral, calm, happy, sad, angry, fearful, disgusted, and
surprised [20]. The database comprises information from 24 professional actors, and each
actor has 60 audio-visual (AV) items and 44 song items, for a total of 104 data points. Each
recorded production of an actor was available in three modality formats: AV, video only,
and audio only.

2.2. Speech Emotion Recognition

Speech signals are some of the most natural media of human communication, and
they have the merit of real-time simple measurement. They contain implicit paralinguistic
information and linguistic content, including the speaker’s emotions. In the designing
of a speech emotion recognition system, it is a challenging task to identify and extract
different emotion related speech features. Since proper selection of the features affects the
classification performance, it is critical to combine appropriate audio features in speech
emotion recognition. There were many approaches to recognizing emotion from speech,
and each study used different speech features. Linear Prediction Cepstrum Coefficients,
MFCCs, and F0 have been widely used for the recognition of speech emotion. However,
the question of whether these features are effective for classifying emotions is still under
discussion in many studies [23]. A few studies extracted features from speech and rec-
ognized emotions utilizing Gaussian Mixture Models (GMMs) [24] and Hidden Markov
Models (HMMs) [25]. Recently, with the rapid development of deep-learning algorithms,
RNN have been applied to various fields of speech analysis [26–28]. The main focus of
the approach [26] is to classify the emotions in an utterance, rather than classifying the
emotions using the frames of the utterance. To extract global features, the authors fed
32-dimensional frame features directly into an RNN. Then, the global features were fed into
an extreme learning machine to classify the emotions. This approach recognizes emotions
from an utterance, rather than using the frames of the utterance, and therefore requires a
lot of computational power to train the network. In another approach, Wieman et al. [29]
found that binary decision trees can determine the features most relevant to emotions.
However, their experiment was performed using a small dataset. A study [30] assumed
that the characteristics of speech vary in each person, and that emotions are affected by the
age, gender, and acoustic features of the speaker. The authors focused on speech emotion
recognition by grouping speech data by age and gender. They proposed a hierarchical
gender- and age-based model and utilized different feature vectors of OpenSmile [31] and
eGeMAPS [32]. The results indicated that building a separate classifier for each gender and
age group produces better performance than having one model for all genders and ages.
Chernykh and Prikhodko extracted acoustic features by classifying the features into three
categories [33]:

• 3 Time domain: zero crossing rate, energy, and entropy of energy
• 5 Spectral domain: spectral centroid, spectral spread, spectral entropy, spectral flux,

and spectral roll-off
• 13 MFCCs
• 13 Chroma: 12-dimensional chroma vector, standard deviation of chroma vector

The total set of acoustic features is a sequence of 34-dimensional vectors for each
utterance.

An RNN with a Connectionist Temporal Classification approach [34] was used to
classify emotions from speech. Zhao et al. proposed two CNN LSTM networks created
by stacking local feature learning blocks and other layers, to extract emotional features [9].
The 1D CNN LSTM network was intended to recognize speech emotion and extract deep
features from a raw signal. The 2D CNN LSTM network focused mainly on learning global
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contextual information from a log-mel spectrogram. The CNN LSTM networks could
recognize speech emotion effectively, without using hand-crafted features.

Many studies have demonstrated the correlation between emotional voices and acous-
tic features [35–40]. However, because there does not exist overt and deterministic mapping
between features and emotional state, speech emotion recognition still has lower recogni-
tion rate than other emotion-recognition methods, such as FER. For this reason, finding the
appropriate feature combination is a critical task in speech-based emotion recognition.

3. Korean Emotional Speech Database

The study of emotion recognition has rapidly developed over the last decade with
broad interest from researchers in neuroscience, computer science, psychiatry, psychology,
audiology, and computer science. The key of these studies is to secure the availability of
validated and reliable expressions of emotion. Most emotion data sets include either facial
expressions or speech recordings. Among data sets, few contain audio-visual recordings of
speakers in Korean. This study constructs a K-EmoDB and reports validity and reliability
of the data based on ratings from participants. The database was recorded with Korean
utterances from professional actors. All recorded data was recorded in a professional
studio, considering the sound quality of the data by eliminating any background noise.
The database was recorded using two different methods: (1) A method of recording the
emotions using 120 emotion-inducing scenarios (20 of each emotion) according to each
emotion. (2) A method of recording 20 emotionless sentences that did not affect the
emotions in the 6-emotion version.

The database was recorded with Korean utterances from 20 professional actors
(M = 28.1, SD = 3.41, age range = 23–35, 11 males and 9 females). To be eligible, ac-
tors needed to have Korean as their first language, to speak with a neutral Seoul accent,
and to not possess any distinctive features. Participants were also required to identify text
presented at a distance of 1.5 m. Figure 1a shows an actual actor during recording.
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Figure 1. (a) One of the actors during recording (b) Recording equipment.

We chose six emotions for the experiment: neutral, anger, happiness, sadness, fear,
and excitement. Here, “Excitement” refers to a more delighted with excitement emotion
than “happiness”. Neutrality was selected as the baseline emotion, and the remaining
states consisted of the set of five basic or fundamental emotions that are thought to be
culturally universal. The concept of primary emotions has a long history in science and
philosophy. While the discrete model of emotion has been criticized [41–43], it is a practical
choice for the creation and labelling of emotion sets [21]. Therefore, the six emotions can be
found in most existing sets [44–54].

K-EmoDB was created using the following procedure. Actors were recruited through
online casting, and 20 actors were selected by audition. All data were recorded in a
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professional studio, in order to optimize the sound quality of the data by eliminating any
background noise. The Neumann TLM 103, Neumann U87 Ai, Oktava MK-319 microphone,
and Universal Audio LA-610 MK1, WARM AUDIO WA76, MPAC-01 mixers were used for
recording, as shown in Figure 1b. Each person recorded 120 sentences. Each speech data
point is approximately three to five seconds long. All speech emotion data were recorded
at 48 kHz, and downsampling was performed with a 16 kHz downsampling rate in a PCM
signed 16-bit format.

To ensure the emotional quality and naturalness of the data, an evaluation test was
carried out with seven subjects. The subjects listened to each sample and had to decide on
an emotion score from 5 to 1. If subjects felt that the emotion was clearly contained in the
speech data, they gave it a score of 5. However, if subjects felt that the speech data did not
include the emotion, they give it a score of 1. Using to the evaluation results, 150 emotion
data points in each category were chosen to construct the final K-Emo DB database. The
final data consists of male and female speech files in a ratio of 50 to 50.

4. Speech Emotion Recognition

Speech is not only the most natural and universal communication but also contains
paralinguistic information such as emotions and tone. Several previous studies have
used prosodic and acoustic speech features to recognize emotion, and the current study
investigated acoustic features employed in previous voice recognition studies using the
emotion model shown in Figure 2.
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Figure 2 shows the two-dimensional emotion model based on discrete emotion theory
developed in previous studies. Horizontal and vertical axes refer to valence and arousal,
respectively, where arousal represents excitement level (high or low), and valence repre-
sents the positive and negative emotions. For example, anger includes high excitement
and negative emotion, and hence has high arousal and negative valence.

Most previous speech emotion studies mainly employed anger, disgust, fear, hap-
piness, sadness, and surprise; whereas the present study added excitement to the basic
emotions: anger, happiness, neutrality, sadness, and fear, providing six emotions describ-
ing speech purpose, reasonably evenly distributed over the arousal and valence scales.
Generally, arousal is relatively easy to be distinguished whereas valence can be somewhat
difficult. For example, voice pitch differs between happiness and sadness, making them
relatively easy to distinguish; whereas voice pitch is high for both happiness and anger,
making them more difficult to distinguish. Many studies have considered methods to
difference valence from speech emotion recognition.
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4.1. Feature Selection

Since speech acoustic features are important for emotion recognition, it is essential to
select and analyze appropriate features. Lindstrom (2010) found that harmonic structures
expressed positive and peaceful emotions, such as happy, cheerful, comfortable, and
elegant, whereas dissonant intervals were closely related to negative and sad emotions,
such as agitated, tense, angry, etc. Harmonic and dissonant speech intervals are closely
related to the speech spectrum harmonic structure [56]. Table 1 shows harmonic features
used to quantitatively analyze the harmonic structure. We extract the harmonic features
using the features extraction tool Essentia which is open-source library and tools for audio
and music analysis [57].

Table 1. Examples of sentences recorded for each emotion.

No Features

1 Harmonic energy
2 Noise energy
3 Noiseness
4 F0
5 Inharmonicity
6 Tristimulus
7 Harmonic spectral deviation
8 Odd to even harmonic ratio

The harmonic energy feature presents the total sum of frequency peaks in a harmonic
structure, when frequencies and magnitudes of harmonic peaks were given. Noise refers
to the part besides harmonic structure in a spectrum, and the noise energy presents the
subtraction of harmonic energy from the entire spectrum energy. The feature of Noiseness
is that it represents the ratio of noise in a spectrum and it refers to the value of noise energy
divided by the entire sum of spectrum. F0 feature means fundamental frequency of speech.
Inharmonicity feature shows the degree of how much a spectrum does not form harmonic
structure, and it is calculated as weighted sum of spectrum values which are the closest to
multiples of fundamental frequency. Tristimulus feature is divided into 3 aspects; the first
is to calculate relative weighted value, the second aspect is to calculate second, third and
fourth harmonic’s relative weighted value, and the third and the last is to calculate all the
rest harmonics’ relative weighted value. The detailed description of the harmonic features
can be found in [57].

Table 2 shows the test result that distinguishes between Negative Valence and Positive
Valence in the same Arousal.

Table 2. Examples of sentences recorded for each emotion.

Features
Harmonic Feature Set Accuracy (%)

Positive Negative

High Arousal Happiness Anger Noise energy, Noiseness, Inharmonicity, Tristimulus 65.5%
Low Arousal Neutrality Sadness Noiseness, F0, Inharmonicity, Tristimulus 76%

We verified distinction in terms of accuracy as to the combination of features by
utilizing Medium Gaussian support vector machines. Negative and positive emotions
with high arousal were anger and happiness, respectively, and it yielded 65.5% in accuracy
when we classified the two emotions by combining features of Noise energy, Noiseness,
Inharmonicity, Tristimulus among harmonic features. Negative and positive emotions
with low arousal were sadness and neutrality, respectively, and it yielded 76% in accuracy
when we classified the two emotions by utilizing features of Noiseness, F0, Inharmonicity,
Tristimulus among harmonic features. Through this result, it is clarified that Negative
Valence and Positive Valence can be distinguished in the same Arousal when characteristics



Appl. Sci. 2021, 11, 1890 7 of 15

of Inharmonicity, Tristimuls, Harmonic energy, Noise energy, Noiseness are utilized in
combination.

Features used for speech emotion recognition were also analyzed, including MFCC,
LPC, Zero-Crossing Rate, Signal Energy, FFT Spectrum (magnitude), Mel Spectrum, Cep-
stral features, Pitch, Harmonic to Noise Ratio, Spectral features, Chroma and others, which
have been widely used in previous studies. Through each feature’s individual classification,
we carried out an experiment to investigate features specialized in emotion recognition. In
individual features, MFCC, in general, showed the highest accuracy (approximately 60%).
We performed the analysis again, and redesigned feature sets by combining each feature
according to its accuracy, starting with the highest, and after comparing the result with
individual features, we could confirm that combined feature sets yielded improved result
by 10% in average. Feature vector’s combination, so called “basic feature combination”
which shows the highest accuracy, is as shown below.

• 11 Spectral-domain: spectral centroid, spectral bandwidth, 7 spectral contrast, spectral
flatness, and spectral roll-off

• 13 MFCCs
• 12 Chroma: 12-dimensional Chroma vector

Thus, seven harmonic feature vectors (inharmonicity, tristimulus, harmonic energy,
noise energy, and noisiness) were added to the 36 individual feature vectors, making
43 feature vectors in total.

4.2. Pre-Processing
4.2.1. Speech Segment Extraction

The need for determining whether a given speech signal should be classified as a
speech section or a silence section arises in many speech analysis systems. When non-
speech sections are included in the learning or testing process, they can provide unnecessary
information and become an obstacle. Since the signal energy value of the speech signal
segment is larger than that of the non-speech signal segment, an absolute integral value
(IAV) reflecting the energy value is used. The IAV value is computed by Equation (1)

IAV = ∑N
i=1|X(i)| , (1)

where X is the recorded signal, N is the number of samples, and i is the sample index.
The process of extracting speech segments is shown in Figure 3.
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The process of selecting the IAV threshold value is as follows. First, it is necessary
to extract the IAV feature vector from the interval of the signal. Then, it is imperative
to calculate the maximum value and the minimum value and determine the threshold
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value by 10% of the difference between these two values. An example of determining the
threshold is shown in Figure 4.
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Figure 4. An example of determining threshold.

The signal threshold is computed to find the starting point of the signal in the window
as well as the IAV threshold. The threshold of the signal is divided by the frame size at the
IAV threshold value. As the IAV value is the absolute integral value of all the signal values
in the window, the average signal value of the critical section can be obtained by dividing
by the window size.

The process of extracting a speech interval includes a point at which the window is
larger than the IAV value, and it determines a point at which the window is larger than the
signal threshold value as a starting point. If an extracted IAV value is smaller than the IAV
threshold, the end point is determined.

4.2.2. Feature Scaling

If the range of each attribute value of learning data differs greatly, the learning is not
working efficiently. For example, if the range of the property A is 1 to 1000 and the range of
the property B is 1 to 10, and if the value of A is larger, A is reflected as if it has a significant
impact on the neural network, and B acts like it does not affect the network, relatively. Thus,
transforming each property value into the same range is necessary before learning, and
this process is referred as “feature scaling.” Among the various methods of feature scaling,
a min–max scaling method that sets the range between 0 and 1 based on the maximum and
minimum values within the range of each feature is most generally used. However, simply
normalizing the range between 0 and 1 is not suitable for the feature used in this study,
because the difference of each value will decrease excessively if the range changes into 0 to
1. In this study, we normalize the features using a standard-score method, which considers
the range as well as the variation of the values. The formula for this scaling method is as
follows (2)

x′ =
x− x

σ
, (2)

where x′ is the normalized feature vector, x is the input. x is the average of the input vector,
and σ is the standard deviation of the input.

4.3. Emotion Recognition Model

This study used LSTM model to recognize emotional state from speech. LSTM is a
modified RNN structure proposed by Hochreiter et al. [22], where hidden layer nodes are
replaced by blocks. The LSTM block comprises memory cells with cyclic structure; and
input, forget, and output gates. They differ from conventional RNN models in that LSTM
blocks control flow by sending or not sending information appropriately using their gates
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depending on the specific circumstances. LSTM calculates the i-th value for each node at
time t as

ci(t) = tanh(rc
i (t)), rc

i (t) = ∑j Uc
ijxj(t) + ∑j Wc

ijhj(t− 1) + bc
i , (3)

where xj(t) is the j-th input variable, ci(t) is the i-th input state, calculated by applying
weights U, W, and b to hidden layer h(t−1) at input times t and t−1. Equation (3) is
applied to input, forget, and output gates g, f, and q, respectively, and the weighted sum of
the constant term is converted into the range of 0 to 1 using a non-linear function. Gate
output = 1 means that all information is maintained, whereas gate output = 0 means that
all information is deleted.

Cell state si(t) at t is calculated from ci(t) and gates g and f,

si(t) = fi(t)si(t− 1) + qi(t)ci(t), (4)

where the i-th hidden node is
hi(t) = qitan h(si(t)), (5)

Thus, the first input value cannot influence the next value when gates f and g = 1 and
0, respectively, hence the cell state never changes, and short-term memory can be removed;
whereas long-term memory can be maintained in the opposite case.

Data from previous time(s) influence current data for most time-series models. There-
fore, RNN models predict status for current time t using data from previous times. How-
ever, current status can often be predicted more accurately using future data. For example,
prediction accuracy may improve for Korean language objects if the verb, which appears
after the object, is utilized rather than the subject. Thus, inferring in forward as well as
backward directions may produce more meaningful results.

Equation (4) shows that conventional LSTM uses data for past time t-1 time to predict
the data for current time t. Backward connection does not exist so the current time cannot
be predicted using future time data. Therefore, bi-directional LTSM models are commonly
employed to resolve this drawback, as shown in Figure 5.
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This study used the feature vectors discussed in Section 4.1 and a bi-directional
LSTM to recognize emotions from speech. Figure 6 shows the bi-directional LTSM model
employed.
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Figure 6. Proposed emotion recognition network structure.

Generally, emotion can be recognized when we hear the entire spoken sentence or
phrase. However, it is very difficult to recognize emotion when we hear the speech into
short segments (e.g., one second). Thus, emotion recognition accuracy generally improves
for longer rather than shorter intervals. However, LSTM has a problem that a gradient
is not delivered as the layer is deeper (meaning that speech is recognized at a longer
interval). This study set LSTM interval as short as possible, and then calculated emotion
probability over each section to decide the final emotion label, hence avoiding the gradient
loss problem while still using longer speech intervals to recognize emotion.

Input speech data was divided into speech sections through the pre-processing pro-
cedure that searches the speech section as mentioned in Section 4.2.1. Combined feature
vectors, discussed in Section 4.1, were extracted from the divided speech sections in chrono-
logical order, and overlapped as much as 0.3 for approximately 15 ms time units. Extracted
feature vectors were re-configured into 78 vectors, emotion for each part was calculated ap-
proximately every second chronologically, and each frame was classified using the trained
model. Using a voting mechanism on the classified frames, the final emotion label of the
speech signal is detected.

5. Experiments and Results

Two experiments were conducted to compare the proposed method performance. The
first experiment used the K-EmoDB database developed in Section 3. We chose six emotions
for the experiment: neutral, anger, happiness, sadness, fear, and excitement. Randomly
selected records (630 of 900, i.e., 70%) were used as training data, and the remaining
170 records as test data. We used 5-fold cross-validation, i.e., repeated the sample selection
five times. The second experiment compared the proposed method with previous emotion
recognition studies using various international databases. We used the various databases
employed in the previous studies and compared accuracy directly and indirectly.
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5.1. K-EmoDB

Table 3 shows emotion recognition results for K-EmoDB. Chernykh [33] achieved
approximately 67.9% accuracy using 34 acoustic features and LSTM. Shaqr [30] employed
eGeMAPS features and a multi-layer perceptron model to achieve 67.14% accuracy. The
study by Zamil [58] employed only MFCC as the acoustic feature and achieved 61.32%
using the logistic model tree. The studies by George [59] and Jianfeng [9] proposed an
emotion recognition method by end-to-end learning using a convolution layer. With the
recognition using 1D convolution layer and LSTM with the input of time-series signals
of speech data, their accuracy was 65.89%, and with the recognition using the LSTM
layer by combining 1D convolution layer and 2D convolution layer with the input of Mel-
spectrogram, their accuracy was 62.63%. When the basic feature combination proposed in
this study was used, the accuracy was 70.51%.

Table 3. Experimental results from K-EmoDB.

Paper Features Algorithm Accurary

Chernykh (2017)

• 3 Time-domain: zero crossing rate, energy, entropy of
energy

• 5 Spectral-domain: spectral centroid, spectral spread,
spectral entropy, spectral flux, spectral rolloff

• 13 MFCCs
• 13 Chroma: 12-dimensional chroma vector, standard

deviation of chroma vector

LSTM with CTC loss 67.90%

Shaqr (2019) • eGeMAPS feature set Multi-layer perceptron 67.14%

Zamil (2019) •MFCC Logistic Model Tree 61.32%

George (2016) - 1D Conv layer + LSTM 65.89%

Jianfeng (2019) Log mel-spectrogram 1D + 2D Conv layer + LSTM 62.63%

Proposed

• Spectral: Centroid, Bandwidth, Contrast, Flatness,
Rolloff

• MFCC
• 12 Chroma
• Harmonic: Inharmonicity, Tristimuls, Harmonic

energy, Noise energy, Noiseness

LSTM + Voting mechanism 83.81%

Proposed

• Spectral: Centroid, Bandwidth, Contrast, Flatness,
Rolloff

• MFCC
• 12 Chroma
• Harmonic: Inharmonicity, Tristimuls, Harmonic

energy, Noise energy, Noiseness

LSTM 75.46%

Proposed

• MFCC
• Spectral: Centroid, Bandwidth, Contrast, Flatness,

Rolloff
• 12 Chroma

LSTM 70.51%

When emotion recognition was performed by combining the basic feature combination
and harmonic features, the accuracy was 75.46%, which improved around 5% compared to
that not using the harmonic features. Moreover, when the final emotion of the speech data
was produced by determining the label of each section at a shorter interval, high accuracy
of 83.81% was obtained.
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5.2. International DB

We also compared emotion recognition using emotion speech databases widely used
in previous studies. Table 4 compares prediction accuracy using the databases from the
respective papers. Although databases and emotions differed between the various studies,
accuracies achieved approximately 60–70%. However, the proposed method achieved
85.79% accuracy for EmoDB, and 87.11% for the RAVDESS database.

Table 4. Experimental results from International DB.

Paper Database Emotion Features Algorithm Accuracy

Chernykh (2017)
(a) EmoDB
(b) RAVDESS

(a) anger, excitement,
neutral, sad

(b) Anger, Neutral,
Happiness, Sadness, Fear

• 3 Time-domain
• 5 Spectral-

domain
• 13 MFCCs
• 13 Chroma:

LSTM with CTC loss
(a) 54%
(b) 71.08%

Shaqr (2019) RAVDESS neutral, calm, happy, sad, angry,
fearful, disgust, surprised

• eGeMAPS Multi-layer perceptron 74%

Zamil (2019)
(a) EmoDB
(b) RAVDESS

(a) Anger, Boredom, Disgust,
Anxiety, Joy, Neutral, Sad

(b) Disgust, Fear, Happy,
Neutral, Sad, Anger,
Calm

• MFCC Logistic Model Tree
(a) 64.51%
(b) 70%

George (2016) RECOLA Arousal, Valence - 1D Conv layer + LSTM 65.89%

Jianfeng (2019)
(a) EmoDB
(b) IEMOCAP

(a) Anger, Boredom, Disgust,
Anxiety, Joy, Neutral, Sad

(b) Angry, Excited,
Frustrated, Happy,
Neutral, Sad

Log mel-spectrogram 1D + 2D Conv layer +
LSTM

(a) 76.64%
(b) 62.07%

Proposed
(a) EmoDB
(b) RAVDESS

(a) Anger, Neutral,
Happiness, Sadness, Fear

(b) neutral, calm, happy, sad,
angry, fearful, disgust,
surprised

• MFCC
• Spectral
• 12 Chroma
• Harmonic

(a) LSTM + Voting
mechanism

(b) 2D CNN(Facial) +
Proposed(Speech)

(a) 85.79%
(b) 87.11%

In the case of the result using the RAVDESS database, we used two kinds of deep
neural networks for classifying emotions from speech and images, respectively. The
networks reflected temporal representations from sequential data of images and speech. We
fine-tuned the softmax functions of the pre-trained networks, considering the characteristic
of each input, to maximize the ability of the networks. Consequently, the proposed method
showed more accurate results than other models. Thus, higher accuracy can be acquired
by combining the proposed acoustic features with a FER model.

6. Conclusions

In this paper, we constructed a Korean emotion speech database for speech emotion
analysis and proposed a feature combination that could improve the emotion recognition
performance using an RNN model. We carried out speech emotion recognition using
the emotional speech database. To investigate whether harmonic and dissonant speech
intervals affect positive and negative emotions, respectively, we extracted and analyzed
harmonic features closely related to harmonic and dissonant speech. The experiments
showed that harmonic features have an effect on distinguishing valence, which increased
around 5% compared to that not using the harmonic features. This study set the LSTM
interval to be as short as possible, and then calculated emotion probability over each section
to decide the final emotion label, hence avoiding the gradient loss problem while still using
longer speech intervals to recognize emotion. It has been shown experimentally that
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recognizing emotions after dividing speech into short intervals produces better recognition
accuracy (83.81%) than recognizing speech emotion using one long LSTM model (75.51%).

In future works, in order to accurately learn deep running-based models, a consider-
able amount of data is required. Studies into speech emotion recognition use far less data
than studies based on videos or texts. It is necessary to build high-quality databases in
order to improve performance and generalization. In order to recognize emotions from
speech, it is necessary to find an accurate mapping of acoustic features and the intensity of
emotions, using large databases. Although studies have used a variety of acoustic features,
they still have the problem of not knowing what emotional intensity is manifested when a
certain feature is found at a certain level. It is necessary to solve these problems in order to
recognize emotions and their intensity more accurately.
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