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Abstract: Fused Deposition Modelling (FDM) enables the fabrication of entire non-assembly mecha-
nisms within a single process step, making previously required assembly steps dispensable. Besides
the advantages of FDM, the manufacturing of these mechanisms implies some shortcomings such as
comparatively large joint clearances and geometric deviations depending on machine-specific process
parameters. The current state-of-the-art concerning statistical tolerance analysis lacks in providing
suitable methods for the consideration of these shortcomings, especially for 3D-printed mechanisms.
Therefore, this contribution presents a novel methodology for ensuring the functionality of fully func-
tional non-assembly mechanisms in motion by means of a statistical tolerance analysis considering
geometric deviations and joint clearance. The process parameters and hence the geometric deviations
are considered in terms of empirical predictive models using machine learning (ML) algorithms,
which are implemented in the tolerance analysis for an early estimation of tolerances and resulting
joint clearances. Missing information concerning the motion behaviour of the clearance affected joints
are derived by a multi-body-simulation (MBS). The exemplarily application of the methodology to a
planar 8-bar mechanism shows its applicability and benefits. The presented methodology allows
evaluation of the design and the chosen process parameters of 3D-printed non-assembly mechanisms
through a process-oriented tolerance analysis to fully exploit the potential of Additive Manufacturing
(AM) in this field along with its ambition: ‘Print first time right’.

Keywords: additive manufacturing; fused deposition modelling; statistical tolerance analysis; non-
assembly mechanisms; empirical predictive models; geometric deviations

1. Introduction and Motivation

Additive Manufacturing (AM) processes have successfully established themselves in
industrial applications due to their batch size independent manufacturing costs and the
great freedom of design [1]. Recently, 3D-printing of non-assembly mechanisms via Fused
Deposition Modelling (FDM) or Stereolithography (SLA) has attracted the attention of re-
search, as a subsequent assembly step becomes thereby dispensable which in turn can help
reduce costs [2,3]. Consequently, whole functional assemblies including movable parts can
be fabricated as one component [4]. Figure 1 shows a non-assembly mechanism 3D-printed
via FDM. The moveable parts are thereby separated by water-soluble support material for
a non-destructive removability to ensure their mobility and thus the functionality of the
mechanism after the support has been removed. However, the manufacturing of these
mechanisms still implies some shortcomings, viz. comparatively large joint clearances,
ensuring the separability of the parts and geometric deviations, mainly influenced by the
choice of machine-specific process parameters. Especially geometric deviations remain
a major drawback that prevents the further progress of AM in the field of 3D-printing
non-assembly mechanisms and hence its usage in industrial applications [2,5]. In order to
meet the principle ‘Print first time right’ of AM, the virtual assurance of the functionality of
these mechanisms through a statistical tolerance analysis with consideration of geometric
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deviations and joint clearance is essential. Although there has been research effort regard-
ing the statistical tolerance analysis of systems in motion, also using predictive models, the
current state-of-the-art lacks in providing suitable methods for the consideration of both
geometric part deviations and comparatively large joint clearance, especially for additively
manufactured non-assembly mechanisms [6,7]. With the aim of closing this gap and to
help less AM-experienced engineers in designing non-assembly mechanisms and choosing
suitable process parameters, this contribution proposes a methodology for a statistical
tolerance analysis to ensure the functionality of these kinds of mechanisms. The integration
of information derived by multi-body-simulation (MBS) of the mechanisms and the usage
of empirical predictive models for the consideration of geometric deviations resulting from
the AM-process enables a realistic prediction of the functionality of non-assembly systems
in motion manufactured via FDM, prior to their production. This contribution thus aims to
provide the designer with a methodology to fully exploit the advantages of FDM in the
field of 3D-printing functional non-assembly mechanisms.

Support material

Building material

Figure 1. Additively manufactured non-assembly 4-bar mechanism after the Fused Deposition
Modelling (FDM)-process and after the support removal [8].

The paper is structured as follows—first of all, Section 2 presents the related work
regarding the statistical tolerance analysis of systems in motion considering joint clearance,
the influence of process parameters on geometric deviations in FDM and their predic-
tion using empirical predictive models. Subsequently, Section 3 introduces the holistic
methodology for the statistical tolerance analysis of non-assembly mechanisms consider-
ing geometric deviations and joint clearances resulting from the FDM-process. Section 4
presents the application of the proposed methodology to a 3D-printed planar 8-bar mech-
anism whereby the results are subsequently discussed in Section 5. Finally, in Section 6
conclusions are drawn and an outlook is given.

2. State-of-the-Art and Related Work

Besides the advantages of AM in general, viz. the geometric freedom in design and its
batch size-independent manufacturing costs, there are still some drawbacks, especially for
manufacturing non-assembly mechanisms [2]. In order to ensure the functionality of these
mechanisms, tolerance analysis is a suitable tool for an early evaluation of the design and
the choice of suitable process parameters.

2.1. Tolerance Analysis of Systems in Motion Considering Joint Clearance and Geometric Deviations

Various approaches for computer-aided tolerance analysis have been developed dur-
ing the last decades, whereby the three major approaches are tolerance stacks, tolerance
analysis based on the Small Displacement Torsor and vector loops [6]. Gaps between
parts resulting from their geometric part deviations can thereby be considered using the
vector loops approach. Therefore, the assembly is modelled as a chain of vectors, whereby
each part is represented as a vector. For the integration of joint clearance, the clearance
vector is introduced. The vector loop is thus enhanced through a virtual massless link
connecting the two centre points of the joint-pair. This clearance vector can be defined
according to worst-case or stochastic scenarios or due to a certain joint force [9]. The
tolerance analysis of systems in motion considering joint clearance and geometric devi-
ations has been a constant topic of research in the field of conventionally manufactured
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and assembled mechanisms [7,10]. However, Schaechtl et al. propose an approach for the
tolerance analysis of 3D-printed mechanisms. Tolerance values are hereby chosen based on
experience and the influence of varying process parameters is thus neglected [11]. Stuppy
and Meerkamm introduced the “integrated tolerance analysis of systems in motion”. This
methodology can be used for the tolerance analysis of mechanisms with deviations from
both, manufacturing and operating [9]. Walter et al. extended this methodology by the con-
sideration of interactions between deviations for systems in motion using meta-modelling
techniques for representing affected deviations. The methodology was thereby applied to a
non-ideal crank-mechanism [7]. According to Flores et al., there are three main approaches
for modelling the mechanisms in motion affected by joint clearance—the massless link
approach, the spring-damper approach and the momentum exchange approach [12]. In
order to enhance the tolerance analysis of systems in motion affected by clearance, an MBS
can be used to derive the missing joint forces [12]. For modelling the impact of journal
and bearing in an MBS, two approaches are firmly established, namely the continuous and
the discontinuous approach. In the continuous contact model approach, the forces arising
from the impact act perpendicular to the impact zone. This model can either be linear
(Kelvin-Voigt model) or non-linear (Hertz law) [12]. Lankarani and Nikravesh presented
an approach of a force model for the simulation of joint clearance in which both elastic
and damping effects are considered. The damping effect is hereby directly linked to the
energy dissipated during the impact process. With the help of this approach, the dynamics
of mechanisms including planar revolute clearance joints can be modelled for tolerance
analysis [13]. Rhyu and Kwak proposed an optimisation approach for designing mecha-
nisms in which tolerances and joint clearances were considered, which was later applied to
a planar four-bar mechanism including kinematic joints affected by clearance [14].

2.2. Geometric Part Deviations in FDM

The FDM-process is controlled by numerous process parameters, influencing the
geometric accuracy and consequently the total quality, such as functionality or aesthetics of
3D-printed parts [15]. Especially for non-assembly mechanisms, the dimensional accuracy
of the individual parts is essential for fitting in the assembly [2]. For producing parts that
meet a required dimensional accuracy, a proper selection of suitable process parameters is
therefore essential. Build direction and layer height significantly influence the dimensional
accuracy of the fabricated part and thus have to be considered in the design stage of mecha-
nisms. The influence of process parameters on geometric deviations of parts manufactured
via FDM has been studied extensively by many researchers in the last years. Wang et
al. for example examined the influence of layer thickness, deposition style, support style,
deposition orientation in X- and Z-direction and the build location on their influence on
the part accuracy. The results indicated that the deposition in the Z-direction was the most
significant parameter affecting the dimensional accuracy [16]. Sood et al. investigated
the influence of layer height, build orientation, raster orientation, raster width and air
gap. Regarding the results, it became obvious that layer height was the most significant
parameter [17]. In general, a small layer height results in smaller geometric deviations,
whereby the build time is significantly increased. Bakar et al. fabricated complex parts in
order to investigate the influence of the part shape on geometric deviations. Hereby it was
observed that a cylindrical shape results in higher geometric deviations than other shapes
due to its dependence on the build direction [18]. Peng et al. conducted an experimental
design in order to determine the influence of process parameters in FDM and thus layer
thickness and filling velocity were found to be the most significant process parameters
influencing the geometric accuracy [19]. According to Deswal et al. the geometric accuracy
of FDM parts depends upon few process parameters like build orientation, number of
contours, layer height, raster width, air gap and raster angle [20]. Sheoran et al. concluded
through experiments that, for both geometric deviations and surface roughness, the chosen
layer height is the most significant process parameter [21]. A Taguchi design of experiment
(DoE) was used by Mahmood et al. in order to evaluate the effect of process parameters on
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part deviations and tolerances of FDM parts. It was concluded that parallelism, angularity
and position had the largest deviation among the geometric deviations [22]. In summary,
basic relationships between significant process parameters, viz. layer height and part build
orientation and geometric part deviations can be determined in coherence with the layer-
wise manufacturing principle of FDM. However, the quantification of their influence on
the geometric part deviations is quite difficult, since it is always case- and machine-specific.
Therefore, empirical predictive models using ML algorithms can help determining the
resulting deviations of printed parts, influenced by the chosen process parameters [23].

2.3. Investigating Geometric Part Deviations in FDM Using Empirical Predictive Models

Machine learning (ML) offers promising techniques and algorithms to predict geomet-
ric part deviations and has already proven its applicability for conventional manufacturing
processes, such as milling [24] and turning [25]. In context of AM, the methods of ML
imply major advantages as it offers the possibility of discovering implicit knowledge and
the identification of relationships between process parameters in large data sets as for
example their influence on geometric deviations of additively manufactured parts [26].
Using ML techniques, predictive models can be built and thus be used for prediction
and performance optimisation [23]. The complexity of the AM-process makes it highly
suitable for the common ML techniques as supervised learning methods, like Support
Vector Machines (SVM), Artificial Neural Networks (ANN) and Gaussian Processes (GP),
because of the accessibility of labelled data sets [23,26]. Huang et al. developed a predictive
model for geometric deviations resulting through shrinkage in the FDM process. The pre-
dictive model is able to learn from the data obtained from a certain number of tested part
shapes. This allows to take effective countermeasures for compensating part deformations
of new and not yet tested parts in advance [27]. Sahu et al. compared the results from
experiments determining geometric part deviations of additively manufactured ABS-parts
with fuzzy decision-making logic [28]. In order to predict and subsequently compensate
geometric part deviations resulting from the FDM-process, Moroni et al. trained a GP
on previously gained training data. It was concluded that it is purposeful to determine
resulting part deviations before fabrication, so the design can be adapted a priori [29]. Sood
et al. analysed different process parameters on their influence on geometric deviations
of additively manufactured parts using ANN and Taguchi method [17]. Noriega et al.
developed a predictive model for investigating the actual dimensions of FDM parts by
training ANNs with experimental data, gained through tests and measurements. The
authors claim that the achieved accuracy of the prediction is proven to be more accurate
than the manufacturing accuracy of the FDM process itself [30].

2.4. Discussion of the State-of-the-Art

It can be concluded that statistical tolerance analysis of systems in motion considering
joint clearance has been steadily improved over the past decades and has already been
partly implemented in commercial software tools. However, kinematic joints are thereby
mostly presented as ideal and joint clearance is thus still neglected. For the 3D-printing of
non-assembly mechanisms including kinematic joints, the consideration of joint clearance
is inevitable, as these clearances are comparatively large to ensure the separability of the
parts after manufacturing and thus have to be considered for a realistic representation of
the motion behaviour [11]. Another significant drawback of FDM is the resulting, compar-
atively high, geometric deviation, which is strongly influenced by the choice of process
parameters. Thus, it has been a constant research topic in the last few years. Especially for
non-assembly mechanisms part deviations play a crucial role for their functionality and
have to be taken into account in the tolerance analysis. Predicting geometric deviations of
printed parts based on process parameters is therefore purposeful as it offers the possibility
of considering their influence on the functionality of the mechanism, so the design and the
process parameters can be adapted before fabrication. In particular in FDM, it is essential,
as there is currently no specific guideline for tolerancing and hence these values have to



Appl. Sci. 2021, 11, 1860 5 of 18

be estimated [31]. A process-oriented prediction of part deviations and resulting joint
clearances overcomes this drawback by taking the influence of the manufacturing process
directly into tolerance analysis [32]. ML techniques therefore offer suitable algorithms and
have already proven its applicability in the field of AM [29] and tolerance analysis [7].

In summary, it can be stated that there are already some promising approaches for
analysing systems in motion affected by clearance. However, these approaches focus
primarily on conventionally manufactured and assembled mechanisms, neglecting the
potential but also the inherent challenges of additively manufactured non-assembly mecha-
nisms. For ensuring their functionality and thus fully exploiting the potential of 3D-printing
in this field, existing approaches have to be further enhanced with process-specific infor-
mation, for example, through MBS and empirical predictive models to deal with the main
challenges, comparatively large joint clearances and geometric part deviations resulting
from the FDM process.

3. Statistical Tolerance Analysis of 3D Printed Non-Assembly Mechanisms in Motion

In order to deal with the highlighted challenges, this paper proposes a methodology
for the enhancement of the statistical tolerance analysis of 3D-printed systems in motion.
The conceptual framework, partitioned in an experimental and a simulative part, is shown
in Figure 2 and discussed in detail afterwards. In order to consider the comparatively large
joint clearances which are essential for ensuring the separability of the parts, information
derived through a MBS are used for the tolerance analysis. Geometric part deviations
resulting from the FDM-process itself are considered in terms of empirical predictive
models. Thereby, these geometric part deviations can be predicted before fabricating the
entire mechanisms with respect to the chosen process parameters and the part’s geometric
characteristics based on empirically gathered training data.

Vector-loop-approach

Multi-Body-Simulation

Sampling-technique

Predictive model

p2

p 1t

Bearing
Journal
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Loop
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Mean
Mobility band
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Journal
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tolerance analysis

Additive Manufacturing
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Figure 2. Framework for the statistical tolerance analysis of 3D-printed non-assembly mechanisms using empirical
predictive models.

3.1. Tolerance Analysis of Systems in Motion Considering Joint Clearance

As mentioned in Section 2.1, there are different approaches for the tolerance analysis
of systems in motion. In this contribution, the vector loop approach is used due to its
suitability to systems in motion and the possibility of considering joint clearance according
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to [11]. To show the general idea of the vector loop approach for planar non-assembly
mechanisms, it is applied in the following to a schematic 4-bar mechanism with two
kinematic joints affected by clearance (J12 and J23), whereby each of the linkages Lj is thus
represented as a vector (see Figure 3).

A B

𝜃!

𝐿"

𝐿!

𝐿#
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𝐿$%

𝜃#

𝐽"!
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𝐿#

Journal

Loop

𝑐!#

𝛾!#

F(t)
collision
plane

a) b) c)

Figure 3. (a) Vector loop of a 4-bar-mechanism with two kinematic joints affected by clearance.
(b) Schematic representation of joint clearance for kinematic joint J23 (joint clearance illustrated
exaggerated). (c) Schematic representation of clearance vector~c23 for kinematic joint J23.

The clearance is hereby modelled as the virtual, massless clearance vector~cij connect-
ing the two centre points of the joint pair as can be seen in Figure 3c [33]. For determining
the degrees of freedom (DoF) and thus the required number of vector loop equations p for
characterising the motion behaviour, the equation according to Goessner for a mechanism
consisting of g linkages and n joints is used [34]:

p = g − (n − 1). (1)

Applying this equation to the shown mechanism including four linkages Lj and four
joints Jij, it becomes evident that one vector loop is sufficient for the characterisation of its
motion behaviour. The resulting equation consists of a real and an imaginary part, which
both must be equal to zero. In the following, only the summarised form of the equation
will be shown (for further information, please refer to [11]):

L1 · ej·θ1 + c12 · ej·γ12 + L2 · ej·θ2 + c23 · ej·γ23 − LAB − L3 · ej·θ3 = 0. (2)

As for this non-linear vector loop equation, an explicit solution is difficult to find, a
numerical solution is required. Therefore, a numerical and iterative method needs to be
applied in order to determine the unknown angles θ of each joint Jij for every discretisation
step in order to reproduce the motion behaviour of the planar mechanism. In this paper,
the vector loop approach is illustratively applied to planar mechanisms, however it is also
applicable for three-dimensional mechanisms as the model can be enhanced by adding
another equation for the third dimension [6,35]. The dimensional length deviation of the
linkages Lj and their influence on the motion behaviour are thereby considered through the
integration of empirical predictive models. For the consideration of the clearance vectors,
the missing information such as their lengths cij and the force angle γ have to be known a
priori for solving the equation.

In order to determine the missing information for solving the vector loop equation,
including joint clearance, a MBS is purposeful. With the help of MBS, systems in motion
can be simulated using commercial software tools. Hereby the systems can be described by
mathematical substitute models. Based on these dynamic models, joint forces and angles of
kinematic joints can be determined and thus be used for solving the vector loop equation
in the tolerance analysis for the nominal mechanism without deviations [33]. Assuming
the surface of the joints is rigid and there is no friction, the direction of the clearance vector
coincides with the normal direction of the collision plane. With this premise, the clearance
vector~c, consisting of the clearance c and the force angle γij, points in the same direction
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as the joint force (see Figure 3c) [33]. Thus, the joint force derived through the MBS can be
used for determining the clearance vector ~cij for the vector loop equation (see Equation (2)).

3.2. Determination of Geometric Part Deviations Using Empirical Predictive Models

A key aspect for tolerancing in AM is the determination of geometric part deviations
resulting from the process. As there is currently no FDM-specific guideline for tolerancing
as part deviations are strongly machine-specific, tolerance values have to be determined
through a trial-and-error process, which is time- and cost-intensive [31]. In order to
avoid this iterative process during the design stage for every new nominal design and
set of process parameters, empirically built-up predictive models for considering the
influence of process parameters and design features on geometric part deviations and thus
determining resulting tolerances are purposeful. Predictive models or meta-models are
therefore useful methods to evaluate an approximation of high-fidelity models (e.g., the
FDM process). Physics-based equations to determine the influence of process parameters
on part deviations can therefore be substituted [26]. These models automatically learn the
relationship between input features and output objectives based on a previously gathered
training data set [36]. Despite these advantages, there are some challenges that have to
be faced when building up a predictive model. Gathering training data is a tedious task
and so the training data sets are usually small, whereby the quality of the model can
thus be impaired. Another cause of poor performance of the model is the overfitting
and underfitting issue [23]. Overfitting means that the algorithm tries to fit every data
point in the training set, whereby the model is highly sensitive to noises or outliners. A
multitude of input parameters can cause the model to overfit and impair the quality of the
model [23]. Consequently, the input parameters have to be reduced to the most significant
ones. Preliminary experiments are thus purposeful to determine these parameters to ensure
a sufficient model productivity [26]. To identify these most significant parameters in this
contribution, preliminary studies were conducted, whereby test joint specimens printed
via FDM are optically measured for examining geometric deviations. Subsequently, the
results are evaluated in the context of a literature review concerning their influence on the
geometric accuracy of FDM printed parts. In further experiments, the process parameters
were varied for gathering the training data for the predictive models. The procedure for
setting up empirical predictive models is schematically shown in Figure 4.

p2

p1t

Predictive
model

t

p

p1

p2

Optical 
measurement

Training 
data

Design of 
experiment

Test 
specimen

Figure 4. Procedure for gathering a suitable training data set to predict geometric deviations of 3D-printed parts.

The experimentally gathered data set is utilised for training the predictive models. ML
therefore offers various algorithms, whose suitability depends upon the amount of available
data and their quality. Regression models therefore help to describe basic relationships,
whereas neural networks are capable of recognizing complex relationships within the data
sets [23,26]. A requirement for good prediction quality, however, is a suitable evaluation of
the model. For the evaluation and thus the selection of the most suitable model, the Root
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Mean Square Error (RMSE) in combination with the Coefficient of Prognosis (CoP) can be
applied. The value for the CoP is calculated as follows [37]:

CoP = 1 −
SSPrediction

E
SST

. (3)

SSPrediction
E is thereby defined as the sum of squared prediction errors, which are

estimated based on cross validation, whereas SST is defined as equivalent to the total
variation [37].

In this paper, empirical predictive models are used for an early determination of
resulting joint clearances and tolerances of non-assembly mechanisms manufactured via
FDM based on chosen process parameters and predefined nominal part characteristics.
Subsequently, this information can be used in the statistical tolerance analysis for consid-
ering the nominal deviation of the linkages Lj and the resulting joint clearances cij in the
vector loop equation (see Section 3.1) for their realistic representation.

3.3. Sampling Technique

Sampling techniques are used in tolerance analysis to determine the influence of part
deviations on a certain quality criterion due to their greater capability and more indepen-
dent applicability compared to simplified statistical formulas. Therefore, techniques like
Monte-Carlo and Latin-Hypercube are well-established [38,39]. The dimensional part devi-
ations of the linkages Lj and the resulting joint clearances cij as a result of the FDM process
are represented in terms of tolerances and are therefore used for sampling. These values
are determined through the empirical predictive models, which are trained on previously
gathered research data (see Section 3.2). Consequently, through using a sampling tech-
nique for the tolerance analysis based on vector loops, the motion behaviour of the shown
4-bar mechanism can be simulated. The influence of deviations can thus be considered
for a realistic representation of the motion behaviour. Using a certain sampling size N,
the motion behaviour of N different virtual systems is realistically described [32]. The
requirement or a certain quality criterion of a system on which the influence of tolerances
is evaluated on its fulfilment is defined as the functional key characteristic (FKC) [40].
In this contribution, the motion accuracy of the kinematic joints is defined as the FKC.
Figure 5 shows the procedure for the statistical tolerance analysis based on vector loops
using sampling technique as an adaption of the conceptual framework (see Figure 2). The
missing information for numerically and iteratively solving the vector loop equation (see
Equation (2)), viz. the dimensional deviation of the linkages Lj and the resulting clearance
vector ~cij consisting of the joint clearance cij and the force angle γij are determined and
integrated through predictive models, respectively MBS. As a result, the unknown angles
θunknown of all kinematic joints Jij and thus the motion behaviour of the mechanism can be
determined for every discrete step i to in depending on the given starting angle θ1. This
angle is known since the position of the first linkage L1 is defined by the drive as a function
of time τ. The influence of geometric part deviations resulting from the FDM process on the
motion accuracy are considered through sampling for a certain sampling size N (illustrated
by the dotted line). Therefore, the mobility band of specific kinematic joints consisting of
N coupling curves for different virtual mechanisms and thus the FKC can be calculated.
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Figure 5. Procedure for the statistical tolerance analysis of 3D-printed non-assembly mechanisms.

4. Application

In this section, the presented methodology is exemplarily applied to a case study of a
FDM-printed non-assembly mechanism. The application is intended to demonstrate the
applicability of the methodology. Hereby, the focus lies on the evaluation of the nominal
design and the chosen process parameters of an already existing mechanism with respect
to its functionality. The presented methodology is therefore more likely to be applied
in the last design step, the tolerance design, than in the parameter design according to
Taguchi [41]. After presenting the case study in detail, the developed methodology is
incrementally applied.

4.1. Presentation of the Case Study

For the case study, a planar 8-bar mechanism, designed to execute a precisely defined
continuous motion, is chosen to show the general applicability of the presented method-
ology. The nominal design parameters of the linkages are thereby defined according
to [42]. For successfully 3D-printing the mechanism fully functional, planar and radial
joint clearances of the kinematic joints were adapted according to findings in preliminary
studies of Hallmann et al. Thereby minimum achievable joint clearances of FDM-printed
non-assembly mechanisms were systematically determined [8]. According to the resulting
guidelines for non-assembly mechanisms, a minimum joint clearance of c = cij = 0.4 mm
for kinematic joints is achievable, avoiding bonding of journal and bearing during printing
and thus is chosen for the presented case study. The planar clearance of cplanar = 0.2540 mm
was defined according to the chosen maximum layer height in the DoE, resulting in at
least one layer of support material between adjacent moveable parts. Subsequently, the
mechanism was 3D-printed fully functional as a single component with FDM-machine
Stratasys F370 using Acrylonitrile-Butadiene-Styrene (ABS) as build material and a water-
soluble support material for a non-destructive removability of support structures within
the kinematic joints Jij. Figure 6 shows the successfully 3D-printed 8-bar mechanism. In
order to save space and thus support material, the alignment of the mechanism in the build
chamber was optimised as can be seen in the illustration.
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Figure 6. 3D-printed, fully functional 8-bar non-assembly mechanism fabricated via FDM.

The nominal parameter values of the case study are listed in the Table 1.

Table 1. Nominal design parameters of the presented case study.

Definition Design Parameter Nominal Value

Linkage 1 L1 81 mm
Linkage 2a L2a 116 mm
Linkage 2b L2b 87 mm
Linkage 3 L3 161 mm
Linkage 4 L4 60 mm
Linkage 5 L5 53 mm
Linkage AC LAC 203.5 mm
Angle θ2a2b 215◦

Radial clearance cij 0.4 mm
Planar clearance cplanar 0.2540 mm

4.2. Tolerance Analysis Model

For the tolerance analysis of the mechanism, the vector loop approach (see Section 3.1) is
used. Applying Equation (1) to the shown 8-bar mechanism consisting of eight linkages
g and seven kinematic joints n, it becomes apparent that two vector loop equations are
required for solving the vector loop model [11]. The summarised equations are listed in
the following:

L1 · ei·θ1 + c12 · ei·γ12 + L2a · ei·θ12 + c23 · ei·γ23 − LAB · ei·θA − L3 · ei·θ23 = 0, (4)

L1 · ej·θ1 + c12 · ej·γ12 + ej·θ12(L2a + L2b · e−i·θ2a2b) + c23 · ej·γ23+
+c24 · ej·γ24 + L4 · ej·θ24 + c45 · ej·γ45 + L5 · ej·θ45 − LAC · ej·0 = 0.

(5)

For solving this set of non-linear equations, the Newton-Raphson method is applied
and missing information concerning the clearance vector and the dimensional deviations
of the linkages needs to be derived through MBS and predictive models (cf. procedure in
Figure 5).

In order to determine the missing angle γij of the clearance vector ~cij for solving the
vector loop equation, a MBS (see Section 3.2) of the presented 3D-printed mechanism is
built up, using the commercial software MSC ADAMS as it is suitable for virtually model
systems in motion. Herein the so-called ‘Impact-function‘ is implemented, which is similar
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to the continuous contact force model introduced by Lankarani and Nikravesh [13]. This
function is used for modelling the interaction between journal and bearing and thus the
joint clearance of the regarded mechanism. After the substitute model of the mechanism
was defined, the simulation of the motion behaviour was conducted for two revolutions,
whereby the joint forces and the hence calculated angles γij are subsequently exported for
the second revolution since influences from the numerical run-in phase are thus avoided.
The results are used for solving the vector loop equations including the clearance vectors ~cij
of the mechanism. In Figure 7, the forces of the kinematic joints Jij for the 8-bar mechanism
for the joint clearance c = 0.4 mm are illustrated.
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Figure 7. Resulting joint forces for one revolution of the 8-bar mechanism simulated in MSC ADAMS
for joint clearance c = 0.4 mm.

4.3. Empirical Predictive Models

The last step for fully solving the vector loop equations is to determine the resulting
joint clearance cij for the clearance vector ~cij and the geometric deviation of the linkages Lj,
respectively their tolerances, to consider the influence of the process parameters on the motion
accuracy of the regarded mechanism by empirical predictive models (see Section 3.2). For deter-
mining the most significant parameters influencing the accuracy of 3D-printed mechanisms,
preliminary studies were conducted. Findings coincide with related researches concerning
this topic, as the build orientation along the Z-axis, the layer height, the seam style and the
part’s geometry have a major impact on geometric deviations of 3D-printed parts [15,43].
As a result, the following process parameters and a varying part geometry are considered
for gathering the training data (see Figure 8).

alignrandom

t

Seam styleLayer height Part geometryBuild orientation Z

z
z

Figure 8. Schematic representation of the considered process parameters and the part geometry for
manufacturing non-assembly mechanisms via FDM.

Further process parameters, viz. extrusion temperature, extrusion speed and ambient
temperature are predefined as they are automatically chosen by the used FDM machine
Stratasys F370 itself for the used material ABS and thus cannot be varied or controlled
by the operator. The part geometry, viz. the size of pin and hole and the linkage length
also plays a major role and must therefore be taken into account for gathering the training
data. Hence the nominal geometry of the parts is varied in the DoE using the highest, the
smallest and a mean value of the linkage lengths presented in Table 1. For gathering the
training data for the predictive models, following parameters and factor levels were chosen
for the full-factorial DoE (see Table 2).
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Table 2. Design of experiment (DoE) for experimentally gathering the training data sets.

Parameters Factor Levels

Layer height 0.1778 mm; 0.2540 mm
Seam style align; random
Build orientation Z-direction 0◦; 90◦

Linkage length 53 mm; 87 mm; 161 mm

After 3D-printing a total number of 288 test specimens according to the defined DoE,
including 12 repeat tests and non-destructively removing the support structures, they were
digitalised by a GOM ATOS 12M scanner and the geometric deviations are determined
using GOM Inspect software. For evaluating the geometric part deviations, three part
characteristics were measured, the diameter of pin and hole to determine the resulting
clearance and the axis of the linkages to determine the dimensional length deviation, that
is, the tolerance values. In total, 288 data points for each training data set were acquired
and stored in .csv-files, which are subsequently used as the input values for training
the predictive models. Figure 9 shows examples of the 3D-printed non-assembly test
specimens after printing before the support structures were dissolved non-destructively in
a subsequent cleaning process.

Figure 9. Non-assembly test specimen for gathering training data for the predictive models using
FDM machine Stratasys F370.

Before the test data is suitable for training the predictive models, the data is ran-
domised. This randomisation is based on a random swapping of the input variables and is
particularly advisable when using full-factorial DoE since the parameters are mostly sorted
mathematically and thus approximations are always determined for certain data groups
but not for the entire testing space [37]. Due to their good model adaption, GP and SVM
were chosen as ML techniques since they provide a suitable method for the prediction
of geometric part deviations resulting from the FDM process, especially for smaller data
sets [44]. For building up the predictive models, the functionality of MATLAB 2019a was
utilised. After the input variables have been defined, the training data is randomised
according to a predefined distribution. In this process, 20% of the training data is kept out
in order to subsequently evaluate the forecast quality of the models based on the calcula-
tion of the CoP. The predictive models are then generated based on the training data set.
For the application, two different predictive models are required. One for predicting the
dimensional deviations of the linkages and one for predicting the resulting joint clearances
of the mechanism. In order to determine the forecast quality of the predictive models and
to check their applicability to the training data set, the RMSE values are automatically
calculated and the CoP values (see Equation (3)) are calculated using the kept out data
set. The advantage of CoP over Root-Mean-Squared-Error (RSME) is its automatic scaling
of the value. For example, a value of 0.8 corresponds to a forecast quality of 80% for the
forecast accuracy of new data points and in general represents a suitable value [37,44]. As a
consequence, the CoP values in combination with the RMSE values of the different models
can be compared more precisely. The results are illustrated in following Table 3.



Appl. Sci. 2021, 11, 1860 13 of 18

Table 3. Coefficient of Prognosis (CoP) and root mean squared error (RMSE) values for the different
empirical predictive models.

Empirical Predictive Model CoP Value RMSE Value [mm]

SVM Joint clearance 0.9216 0.0356
GP Joint clearance 0.9183 0.0362
SVM Tolerance value 0.8906 0.0666
GP Tolerance value 0.8926 0.0653

Regarding the results in Table 3 it becomes evident that both GP and SVM indicate
suitable values and thus good forecast quality, which seems plausible as both are especially
suitable for operating in smaller training data sets because of their good model adaption
and their low implementation effort [44].

4.4. Results of the Tolerance Analysis

Since all necessary information for solving the vector loop equations is now avail-
able, the motion behaviour of the mechanism can be statistically analysed using sampling
techniques (see Section 3.3). For the integration of the predictive model, using the SVM
algorithms, the objective values, viz. the tolerance value of the linkage deviation and the
resulting joint clearance are used for sampling. These values are therefore assumed to be
normally distributed (σ = t/6). Furthermore the number of samples N is set to 10,000
with which valid results could be achieved in prior studies in combination with reasonable
computing time [7]. This enables the generation of N different virtual mechanisms, while
the predictive models create a single discrete value [32]. For the N virtual non-assembly
mechanisms, this results in 10,000 different coupling curves which represents the mobility
band of the mechanism. Figure 10 illustrates the coupling curve and the mobility band
of the kinematic joint J24 as a result of the statistical tolerance analysis using sampling
technique. Thereby, the mobility band in comparison to the ideal coupling curve of the
3D-printed mechanism for different process parameter sets (cf. Table 4) can be calculated.
In order to evaluate the results in this context, two parameter sets were defined according
to a best case scenario (low layer height, optimal build orientation Z and seam style) in pa-
rameter set 1 and a worst case scenario (higher layer height, unfavourable build orientation
Z and seam style) in parameter set 2 for 3D-printing non-assembly mechanisms [8].

Table 4. Chosen process parameters for both parameter sets.

Parameter Set 1 Parameter Set 2

Layer height 0.1778 mm 0.2540 mm
Build orientation Z 0◦ 90◦

Seam Style random align

In order to evaluate the functionality of the presented mechanism for the different
parameter sets, the movement accuracy for the coupling curve of kinematic joint J24 is
defined as the FKC as a function of the time τ (see Section 3.3):

FKC(τ) = J24 = L1 · ej·θ1 + c12 · ej·γ12 + ej·θ2(L2a + L2b · e−i·θ2a2b) + c23 · ej·γ23 . (6)

Consequently, the coupling curve of joint J24 and thus the maximum deviation from
the nominal movement accuracy of the FKC is calculated using a 95% quantile for the two
different sets in order to evaluate their influence on the defined key characteristic.
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Coupling curve of Joint 𝐽!" (Parameter set 2)

Mobility band Joint clearance Ideal coupling curve

Parameter set 1

Parameter set 2

a)

b)

c)

Figure 10. (a) Coupling curve of kinematic joint J24 as a result of the statistical tolerance analysis
(Parameter set 2). (b) Section of whole coupling curve for parameter set 1. (c) Section of whole
coupling curve for parameter set 2.
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The results of the statistical tolerance analysis comparing both parameter sets are
illustrated in Table 5.

Table 5. Deviation of the desired motion behaviour for the functional key characteristic (FKC), using
a 95% quantile for the different parameter sets.

Parameter Set 1 Parameter Set 2

Predicted tolerance 0.36 mm 0.47 mm
Predicted deviation of clearance c 0.04 mm 0.14 mm
Deviation FKC 2.21 mm 2.58 mm

The results in Table 5, in combination with Figure 10, indicate that both comparatively
large joint clearances and the influence of the geometrical part deviations significantly
affect the coupling curve of the regarded additively manufactured kinematic joint. The
comparison of the results for the different parameter sets shows that the choice of process
parameters has a greater impact on the motion accuracy of the mechanism as parameter
set 1 indicates a smaller deviation and thus a smaller mobility band (see Figure 10). This
seems plausible as a larger layer height, a build orientation in Z-direction of 90◦ and the
seam style ‘align’ generally lead to higher deviations in both, linkages and joint clearance.
For a better classification of the results, the deviation from the desired motion accuracy is
additionally calculated for the influence of joint clearance, neglecting the influence of the
geometric part deviations. In this case the deviation is about 1.75 mm.

5. Discussion

The proposed methodology presents an approach for ensuring the functionality of
FDM-printed non-assembly mechanisms taking into account comparatively large joint
clearance and geometric part deviations depending on the choice of process parameters.
The results of the statistical tolerance analysis using sampling technique of the presented
case study indicate that the joint clearance has a major influence on the motion behaviour
and thus has to be considered (1.75 mm maximum deviation). The same applies to the
geometric deviations of the linkages resulting from the FDM process as they also mainly
influence the motion behaviour of the mechanism which can be seen in the higher deviation
of the FKC (2.21 mm and 2.58 mm deviation). Furthermore, it can be stated that the choice
of process parameters has an impact on the motion accuracy as parameter set 1 results in a
smaller deviation of the coupling curve (see Table 5).

The joint clearance was considered in the tolerance analysis in terms of MBS. Hereby
gravity and friction within the joints were neglected in the first approach due to the high
computational effort. For a further enhancement of the MBS, gravity affecting the journal
and friction between journal and bearing can additionally be considered and subsequently
evaluated on their influence. Through the implementation of predictive models using ML
techniques, the geometric deviations resulting from the choice of process parameters were
precisely predicted in terms of tolerances and resulting joint clearances. The trained models
indicate good forecast quality regarding the CoP and the RMSE values in Table 3. The inte-
gration of these empirical predictive models in the statistical tolerance analysis eliminates
a major drawback as there is currently no applicable guideline for tolerancing in FDM and
tolerance values have to be estimated. In order to predict geometric deviations of printed
parts considering other process parameters, further experiments need to be conducted.
Hereby the usage of a different printers is purposeful as parameters like e.g., extrusion
temperature and velocity can be varied and thus be considered. Since this contribution
proposes a general methodology for ensuring the functionality of additively manufactured
non-assembly mechanisms, with some process-specific adaptions, it can be applied to other
AM technologies, such as SLA and SLM as well. Furthermore, for a realistic representation
of the joint clearance affected by form deviations like e.g., the staircase effect resulting from
the AM process, the surface of bearing and journal could be considered in terms of Skin
Model Shapes or Statistical Shape Analysis for the integration in tolerance analysis [45].
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Hereby, the influence of the seam style could also be evaluated more precisely as it may
cause clattering motion within the joint.

6. Conclusions and Outlook

In this contribution, a methodology for the statistical tolerance analysis of additively
manufactured non-assembly mechanisms using empirical predictive models was presented.
Since the current state-of-the-art concerning statistical tolerance analysis lacks in providing
suitable methods for the consideration of comparatively large joint clearances and part
deviations resulting from the AM process, this contributions thus closes this gap by the
integration of predictive models and MBS. The application to an additively manufactured
8-bar mechanism has shown the general applicability of the methodology and the benefit
of analysing its motion behaviour based on the chosen process parameters. It can be stated
that the proposed methodology is suitable for evaluating the functionality of additively
manufactured non-assembly mechanisms before fabrication. With the help of predictive
models and MBS, the deviation from the desired coupling curve can be calculated, whereby
the influence of geometric deviations and large joint clearances resulting from the FDM pro-
cess depending on the choice of process parameters can be considered more precisely. Thus,
this contribution provides less AM-experienced engineers with a methodology to evaluate
and optimise their design and choose suitable process parameters before fabrication.

Ongoing research activities will focus on the experimental validation of the presented
methodology. Therefore, the motion behaviour of the presented 3D-printed non-assembly
mechanism will be optically measured to determine its real motion behaviour and compare
the results to the presented methodology. Subsequently, the general applicability of the
presented methodology has to be checked, applying it to other AM-processes, e.g., SLA
and SLM. Moreover, a future topic concerning the further improvement of non-assembly
AM mechanisms for their use in industrial applications is the optimisation of process
parameters. Therefore, a combination of ML techniques with a subsequent optimisation
of the FDM-process parameters may be purposeful [23]. Other techniques in the pre-
processing of the mechanisms, like adaptive slicing and non-planar printing are promising
methods for the further improvement of the geometric accuracy of additively manufactured
parts in general [46,47].

Author Contributions: Conceptualization, P.S., B.S. and S.W.; methodology, P.S.; software, P.S.;
investigation, P.S.; writing—original draft preparation, S.P.; writing—review and editing, B.S. and
S.W.; visualization, P.S.; supervision, B.S. and S.W.; project administration, S.W.; funding acquisition,
S.W.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the German Research Foundation (DFG), grant number
WA 2913/27-1.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the German Research Foundation (DFG) for supporting the
research project “Statistical tolerance analysis of linkage mechanisms taking into account deviations
from additive manufacturing” under the grant number WA 2913/27-1.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABS Acrylonitrile-butadiene-styrene
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