
applied  
sciences

Article

Fully Leveraging Deep Learning Methods for Constructing
Retinal Fundus Photomontages

Jooyoung Kim 1 , Sojung Go 1 , Kyoung Jin Noh 1,† , Sang Jun Park 1,* and Soochahn Lee 2,*

����������
�������

Citation: Kim, J.; Go, S.; Noh, J.K.;

Park, J.S.; Lee, S. Fully Leveraging

Deep Learning Methods for

Constructing Retinal Fundus

Photomontages. Appl. Sci. 2021, 11,

1754. https://doi.org/10.3390/

app11041754

Academic Editor: Francesco Bianconi

Received: 13 January 2021

Accepted: 11 February 2021

Published: 16 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University
Bundang Hospital, Seongnam 13620, Korea; atlantice123@gmail.com (J.K.); sojung1294@gmail.com (S.G.);
yellowd91@gmail.com (K.J.N.)

2 School of Electrical Engineering, Kookmin University, Seoul 02707, Korea
* Correspondence: sangjunpark@snu.ac.kr (S.J.P.); sclee@kookmin.ac.kr (S.L.)
† Current address: StradVision, Inc. 505, 464, Gangnam-daero, Gangnam-gu, Seoul 06123, Korea.

Abstract: Retinal photomontages, which are constructed by aligning and integrating multiple fundus
images, are useful in diagnosing retinal diseases affecting peripheral retina. We present a novel
framework for constructing retinal photomontages that fully leverage recent deep learning methods.
Deep learning based object detection is used to define the order of image registration and blending.
Deep learning based vessel segmentation is used to enhance image texture to improve registration
performance within a two step image registration framework comprising rigid and non-rigid regis-
tration. Experimental evaluation demonstrates the robustness of our montage construction method
with an increased amount of successfully integrated images as well as reduction of image artifacts.

Keywords: fundus photo; montage; object detection; keypoint matching; vessel segmentation; rigid
registration; non rigid registration; blending

1. Introduction

Retinal fundus images can be acquired non-invasively, with high-resolution and high
quality, in order to observe the state of the retina. Acquisition is simple, with relatively
low-cost equipment, which makes them ubiquitous in routine screenings and clinical ex-
aminations. Because they enable close observation and assessment of the retina, fundus
images can be used in the diagnosis of retinal degenerative diseases and cardiovascu-
lar complications, including age related macular degeneration, diabetic retinopathy [1],
cerebral disorders [2], and hypertention [3].

Yet, the accurate diagnosis of diseases using fundus imaging is mainly done manually
by clinicians. In order to improve their convenience, more recent software, such as the
works by Son et al. [4,5], have leveraged machine learning technology, in particular, deep
learning methods that are based on convolutional neural networks (CNN).

Most fundus images have a limited field of view, commonly within an angle of 30 to
50 degrees, depending on the parameters of the imaging equipment. This limitation may
not hinder diagnoses of diseases that are localized in a small portion of the retina. However,
for retinal diseases mainly affecting peripheral retina, such as diabetic retinopathy or retinal
breaks, a wider angle of view is required, because it may be necessary to check the entire
retina, including the optic disc, the surrounding of the fovea, and the peripheral regions all
at once. For instance, in the work by Wykoff et al. [6], the severity of diabetes is measured
using seven to nine fundus images continuously photographed in various directions to
cover a wide angle of view. While these images do cover the wider field of view, the
clinician needs to aggregate the information either mentally, or by image registration. An
automatic method to integrate and visualize these multiple images would definitely benefit
the clinician during examinations.
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The photomontage technique does exactly this by aligning multiple images through
image registration, and then stitching and blending them into a single image [7–11]. In
the work of Mahurkar et al. [7], without many techniques for registration, background
subtracted images are warped using a polynomial function that is based on guided matches.
In Can et al. [8], a fully automated method that is based on a hierarchical matching scheme
with a model of weak perspective camera, rigid motion, and approximate quadratic surface
of the retina was proposed. In Cattin et al. [9], the improved SURF keypoint matching
method [12] was used to improve the matching and, thus, the montage. In Lee et al. [10],
the primary focus is on the modeling and validating the geometry of the eye. In a more
recent work by Feng et al. [11], deep learning is indeed used as a CNN, but only to segment
the vessel map from which bifurcation features are localized and matched for registration.

There are several issues that still can be improved within the frame of integrating
retinal fundus images to achieve a wider field of view. One is the order and combination of
the image alignment. As the number of images to be integrated increase, the combinatorial
space of optimally aligning the images may become very large. As most image registration
methods, such as feature point based methods [13], operate on pairs of images, it is simple
to sequentially register the next image to the montage one-by-one. Here, determining the
optimal order of images to be subsequently added arises as one key problem. Another issue
is the accuracy of image registration and image warping during alignment and stitching. As
the images are from the retina, distortion from projecting the three-dimensional spherical
shape into two-dimensions increase as the stitched images are positioned farther from the
center of the montage. The image registration and warping must be as accurate as possible
in order to minimize artifacts.

In this paper, we present a novel framework for constructing photomontages of the
retina from multiple fundus images that fully leverages recent deep learning methods.
We apply a deep learning based object detection method [14] to detect the optic disc and
retinal fovea, which is then used as reference landmarks to determine the order of image
registration and alignment. We also adopt a recently proposed two step image registration
framework [15,16] comprising rigid and non-rigid registration, but with key modifications
to improve robustness for images in the peripheral of the retina. Here, CNN based vessel
segmentation is used as the basis to maximize the accuracy of both rigid and non-rigid
registration. Figure 1 depicts the overview of the proposed framework comprising the
landmark detection, order determination, and iterative registration.

Fundus set Optic disc / 
fovea detection

Determining the order of 
matching fundus

Deep Learning 
based Object 

Detector

Iterative registration 
and image blending

Figure 1. Overview of the proposed framework for constructing retinal fundus photomontages.
Through deep learning based object detection, we are able to apply prior knowledge of the fovea and
optic disc to determine the optimal order in which to integrate the images into the montage. Deep
learning is also leveraged to reduce errors in registration.

The idea behind using object detection is based on two observations. The first is that
the fovea is anatomically close to the center of the retina. Thus, it can be a good reference
point to center the photomontage. However, because it has fairly vague features, in the
form of a slightly darker spot on the retina, it is not easy to use it as a reference in image
alignment. Our second observation is about the optic disc, in that it has characteristic
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appearances. This makes feature point matching easier around the optic disc, and it can be
exploited as a reference for more reliable image registration. Based on these observations,
we categorize the images based on the existence of the fovea and the optic disc. Namely,
(i) images containing both, (ii) images containing only the optic disc, (iii) images containing
only the fovea, and (iv) images containing neither. Each category of images is integrated
into the montage in this order, based on the positions of the fovea and/or optic disc within
the image. For images with neither the fovea nor the optic disc, we rely on keypoint
matching to determine the order.

When constructing the montage, we not only apply an accurate registration method,
but also include a criterion for rejecting possible mismatched images. If the rigid transform
and non-rigid displacement vectors computed during registration turn out to be excessively
large distortions, we consider that the registration process might have failed and exclude
that image from the montage. Combining these components, our framework can be
repeatedly applied to all the image frames to generate the final montage.

By applying the detected positions of the fovea and optic disc, we effectively in-
corporate prior knowledge in the process, thereby resulting in a more robust montage
construction with reduced failures. In addition, we can also improve the efficiency by
avoiding the need to compare many image pairs in order to determine the best image to
integrate next. We also improve the robustness of the image integration by maximizing the
accuracy of image registration. We provide experimental evaluation on 62 retinal image
sets to demonstrate the robustness, efficiency, and accuracy of the proposed framework.

2. Methods

We assume that the given set of fundus images are of varying viewing angles of the
retina, with all images partially overlapping at least one other image. Henceforth, we
refer to an image within a set as a frame. The process to determine the order of frame
registration, or frame sorting, into the montage comprises fovea and optic disc detection
and frame categorization, montage center frame selection, and per-frame sorting. The
photomontage is initialized by the montage center frame, and then expanded by iteratively
matching and blending the images into the montage one-by-one. Here, only images that
have passed a validity test are included and those that do not are excluded. Details of each
subprocess are described in the following subsections.

2.1. Frame Sorting
2.1.1. Disc and Fovea Detection and Frame Categorization

We apply the Faster R-CNN [14] method, depicted in Figure 2, since it has a good
balance between efficiency in computation and storage, and detection performance. It
comprises a CNN for feature extraction, a region proposal network (RPN) for exploring
the bounding box location of object candidates, and a Fast R-CNN classifier for the object
candidates, and it is combined in an end-to-end fashion. For the CNN, we used the ResNet-
50 [17], which was pre-trained on the ImageNet dataset [18]. We applied transfer learning
by fine-tuning the network on 13,000 images that were centered on either the optic disc or
the fovea, sampled from our private dataset described in Section 3.1. For the RPN, we fixed
the size of the object bounding boxes, since the size of the optic disc and fovea are generally
constant in the fundus images. The results are given as the 2-D position and size of the
bounding box, and confidence score for each object class, namely the fovea and optic disc.
Here, we select the object with maximum confidence if there are more than one detection,
as well as apply a threshold value of 0.9 on the confidence score, in order to determine the
fovea and optic disc, respectively. For the detected fovea and optic disc, we often only use
their point coordinate that is defined as the center coordinate of the bounding box.

After the fovea and the optic disc are detected, we categorize the frames into four
categories, namely, frames F f &o containing both the fovea and optic disc, frames F f

containing only the fovea, frames F o containing only the optic disc, and peripheral frames
F p that do not contain either one.
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Figure 2. Network diagram for disc and fovea detection. We apply the Faster R-CNN [14] method
which is a two-step method comprising a region proposal network for detecting object candidates
and a Fast RCNN network for classifying and localizing the bounding boxes for detection.

2.1.2. Montage Center Frame Selection and Per-Frame Sorting

We denote the center frame of the montage as Imc. Because of the proximity of the
fovea and the optic disc, images where the fovea can be located near the center also contain
the optic disc. Thus, we select the initial frame among the F f &o frames. More specifically
we select Imc as the frame among F f &o with the minimum distance between the fovea
center coordinate and the image center coordinate.

For the per-frame sorting, we first sort the frame categories in the order of F f &o, F o,
F f , and F p. For both F f &o and F o, we sort the frames in the order of the relative distances
between the optic disc coordinates within the frame and that of Imc. That is, if we denote
the pixel coordinate of the optic disc within Imc and the frames Ii ∈ F f &o as po

mc and po
i ,

respectively, we sort the indices of Ii based on the Euclidean distance ||po
i − po

mc||2. We
apply this simple criterion, because frames that have similar optic disc coordinates have
higher overlap.

We apply a similar approach to frames in F f , but based on the coordinates of the
fovea instead of the optic disc. For the frames shownin F p we use the number of successful
keypoint matches with the montage as the criterion for selecting the next frame.

Because the montage must be constructed at the point when selecting the next frame
from F p, sorting is actually performed in a frame-by-frame manner, so that the next frame
is iteratively determined, at which point registration is performed for that image and then
integrated into the montage.

2.2. Frame Integration

We propose a modified version of the registration framework of Noh et al. [15,16],
combining keypoint matching based rigid registration, CNN based vessel segmentation,
and B-spline based non-rigid registration. Our modification stems from the need to enhance
the number of keypoints in the rigid registration for the peripheral frames with less amount
of texture when compared to frames containing the optic disc. Thus, we perform vessel
segmentation first, and then use the vessel map in a preprocessing scheme to enhance the
frame appearance. Figure 3 depicts a visual summary of this registration pipeline. Each
frame is iteratively registered with, and blended into, the montage, in the order determined,
as described in the previous subsection. In the following, we review each subprocess along
with the process for blending new frames into the montage.
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Sorted 
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Figure 3. A visual summary of the frame integration pipeline, including a two-step rigid and non-rigid registration method
adapted from [15], together with image blending.

2.2.1. Vessel Segmentation and Frame Preprocessing

Unique landmarks are vital for image registration, for which vessels are an important
and reliable source. However, often in fundus images, the vessels have very low contrast
and they are unclear, especially for those in the peripheral that mostly contains thin
vessels. Thus, we propose a preprocessing method to enhance the contrast that is based on
vessel segmentation.

We apply the SSANet that was proposed by Noh et al. [19], which incorporates a layer
for scale-space approximation to better deal with vessels of various widths, in order to
generate a pixelwise vessel probability map for each frame. We then construct a binary
mask from the map through thresholding, which is then used as a stencil for enhancing the
frame contrast. Specifically, we simply increase pixel values by 30% for non-vessel pixels,
while maintaining the values of vessel pixels. Because vessel pixels consistently have
lower intensities, this enhances the contrast. Figure 4 depicts a visualization of this process.
We note that we train the SSANet on 554 images that were sampled from our private
dataset described in Section 3.1, with ground truth being generated by the method of
Noh et al. [15,16], based on the registered vessels of corresponding fluorescein angiography
(FA) images, with minor manual corrections.
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Fundus image Vessel mask

SSA-Network

Fundus image Vessel maskSSANet Contrast enhancing between 
vessel and non vessel

Figure 4. Visual description of the proposed preprocessing scheme based on vessel segmentation
using the SSANet of [19].

2.2.2. Keypoint Matching Based Rigid Registration

Rigid registration that is based on keypoint matches is first applied to account for large
scale differences in the viewing direction between frames. We apply the SURF keypoint
detector and descriptor [12] among many possible methods due to its balance of efficiency
and robustness. The transform between the subsequent frame with the montage is modeled
as a two-dimensional perspective homography and RANSAC (random sample consensus)
is applied to disregard the outliers [20].

Inadequacy in applying a 2-D homography to represent the view transform of a 3-D
spherical object and limited number of matched keypoints stemming from small overlap or
insufficient texture may cause failures. Figure 5 depicts an example of erroneous registra-
tion and subsequent warping, which occurs when feature matching between overlapped
images is not done properly. We add a simple validity test to exclude integrating an
erroneously registered frame into the mosaic to avoid this. In particular, we measure the
difference in pixel area before and after the determined homography transform. If the
difference is larger than 10%, we exclude the frame. Here, the threshold value of 10% was
empirically set based on the particular dataset in our experiments.

(
c
)

Original input frames Insufficient number of keypoint matches

Vessel-adaptive frame 
preprocessing

Sufficient number of keypoint matches

Registration error

Registration success

Registration failure

Figure 5. An example case of rigid registration failure that occurred because too few keypoint
matches were established. We include a validity test, based on the difference of pixel area before and
after the transform, so that frames, such as these, are not integrated into the mosaic.

2.2.3. Non-Rigid Registration

We apply non-rigid registration to supplement simple rigid registration, which is
likely to have limited accuracy due to the distortions that occur from projecting the original
three-dimensional (3-D) shape as a two-dimensional (2-D) surface.

We perform pixel-wise non-rigid registration on the vessel probability maps to ensure
sufficient amount of landmarks. The deformable transform is modeled as a B-spline trans-
form model, and similarity is measured by normalized cross-correlation. The optimization
of the deformation is determined by the gradient based L-BFGS-B [21] algorithm.

When integrating each frame into the montage, this non-rigid registration is applied
between each frame and the current montage. Thus, we must construct and store the vessel
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map montage as well as the photomontage. Accordingly, while rigid registration does
not depend on the vessel maps, we use the homography obtained at that step to perform
rigid-registration on the vessel maps before we apply the non-rigid registration of the
vessel maps. After the B-spline optimization, we apply the displacement vectors from the
vessel map registration to the original frame to expand the photomontage.

2.2.4. Blending

The color intensity in the outer light, its scattering, and the opening of the eyelid are
just a few factors that affect the achieved fundus image. Because the variations that occur,
there are differences in the intensity, color, and contrast of the frame appearance. When
different frames are registered, the overlapping regions have different pixel values due to
these variations, and must be resolved to construct a visually pleasing photomontage.

To address this, we use the multi-resolution spline method [22] at the overlapping
regions and boundaries of the frames, as depicted in the final step in Figure 3. Multi-
resolution splines can minimize image intensity differences between each layer by applying
weights around the center of the image pair and then applying the Gaussian filter and
Laplacian filter.

2.3. Algorithm Summary

Here, we summarize the overall framework shown in Algorithm 1 to show how the
frame sorting and frame integration is actually combined in an effective and efficient
manner. Note that a montage of the vessel segmentation results must also be constructed
and stored to perform non-rigid registration during the photomontage construction.

3. Experimental Results
3.1. Dataset and Experimental Environment

We used fovea–centered retinal fundus images from the Seoul National University
Bundang Hospital Retina Image Archive (SBRIA), which contains images that were ob-
tained at the health screening center and ophthalmology outpatient clinic at Seoul National
University Bundang Hospital obtained from 1 June 2003, through 30 June 2016, using
various fundus cameras (CF60Uvi and CR6-45NM [Canon, Utsunomiya, Japan]; VX-10,
VX-10a, nonmyd 7, and GENESIS-D [Kowa Optimed, Tokyo, Japan]) [5,16,23]. Our ex-
perimental test dataset comprises 62 image sequences that were collected from both eyes
of 31 patients, where each image subset has a minimum of six to maximum nine frames,
totalling 454 images, or 7.32 frames per subset. Each image is of resolution 3872× 2592.

Experiments were performed on a system with 3.50 GHz i9-9900x CPU [Intel, Santa
Clara, USA] and two GeForce RTX 2080ti GPUs [Nvidia, Santa Clara, USA]. We used the
TorchVision package of PyTorch [24] as the implementation of the Faster R-CNN in disc
and fovea detection, and the OpenCV implementation of SURF [25], and the SimpleITK
implementation of B-spline registration [26]. PlantCV python-based opencv and PlantCV
libraries were used to perform the technique. PlantCV is an opencv source library and it is
used to find branch points in blood vessel images. All code was implemented in Python 3.

3.2. Quantitative Evaluation

We measure quantitative performance in two terms: (1) the number and portion
of successfully integrated frames for each sequence and (2) the target registration error
(TRE) based on landmark points. A frame is deemed as successfully integrated into
the montage unless the keypoint matching based rigid registration fails, even with the
safeguard measure, which is determined by manual inspection. Landmark points for
which TRE is measured are defined as vessel bifurcation points that are automatically
detected from the vessel segmentation map using the PlantCV library [27]. We note that,
since the registration results vary considerably for each comparative method, TRE could
not be measured on the same keypoints or the same image pairs. Thus, we only provide
an aggregate comparison of the average TRE. Because the number of integrated frames



Appl. Sci. 2021, 11, 1754 8 of 13

are compared within an identical setup, we believe that these results present a more
straightforward comparison of the performance between methods.

Algorithm 1: Retinal Fundus Photomontage Construction Using Deep Learning.
Input : Set of fundus image frames F ,

Trained Faster R-CNN for detecting optic disc and fovea
Trained SSANet for vessel segmentation

Output : Constructed photomontageM, vessel map montage V
Function InitMontage( f):

Get v = SSANet vessel segmentation on f
SetM = f and V = v

Function AddToMontage( f):
Get v = SSANet vessel segmentation on f
Preprocess f using v
Get homography h from keypoint based rigid registration of f intoM
Get transform T ( f ) = h× f
if Difference in area between T ( f ) and f < 10% then

Transform h× v to align with V
Get displacement vector map D from B-spline based non-rigid registration
of v into V

Warp D(v) and add into V
Warp D( f ) to align withM
Blend D( f ) withM

for all frames fi in F do
Detect optic disc and fovea in fi and store center points of fovea p f

i and optic
disc po

i
if both optic disc and fovea are detected in fi then add fi to F f &o

else if only optic disc is detected in fi then add fi to F o

else if only fovea is detected in fi then add fi to F f

else add fi to F p

end

InitMontage( finit = arg min fi∈F f &o ||p f
i − pcenter

i ||), pcenter
i is image center of fi

Set po
init and p f

init as optic disc and fovea position of finit
while F f &o is not empty do

AddToMontage( fnext = arg min fi∈F f &o ||po
i − po

init||), pop fnext from F f &o

end
while F o is not empty do

AddToMontage( fnext = arg min fi∈F o ||po
i − po

init||), pop fnext from F o

end
while F f is not empty do

AddToMontage( fnext = arg min fi∈F f ||p f
i − p f

init||), pop fnext from F f

end
while F p is not empty do

AddToMontage( fnext = arg max fi∈F f &o keypoint matches between fi andM), pop
fnext from F p

end

Table 1 presents the quantitative evaluation. As to serve as an ablation study, we
provide a comparison with the results when using the greedy approach that is based on
the number of keypoint matches for sorting all frames to show the effect of our object
detection based frame sorting method. We also provide a comparison between the results
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for other preprocessing methods, including a simple approach to normalize the minimum
and maximum pixel intensities, and a more complex modified morphological top-hat
transform by Li et al. [28], which was particularly proposed for retinal images. While
each component contributes to slightly decrease TRE, the number of correctly integrated
increases considerably. When compared to the method using min/max normalization and
keypoint match sorting, our method with the proposed frame sorting and the preprocessing
results in a photomontage with, on average, 75.14% more frames, increased from 3.83 to
6.34, equivalent to an increase of 34.38 percentage points. In terms of TRE, there is a
9.53% reduction. We also provide statistical analysis of the difference of the number of
frames integrated into the montage as the P-value of the paired t-test, which supports the
effectiveness of the proposed method that is based on significant improvements.

Table 1. Comparison of preprocessing frame sorting methods for constructing a photomontage on 62 image sequences.

Preprocessing Frame Sorting Criterion Avg. Frames (std) p-Value † % of Frames Avg. TRE (std)

Min/max norm. Number of keypoint matches 3.83 (1.48) 2.96× 10−16 51.87% 26.16 (30.93)
Min/max norm. Optic disc/fovea detection 3.62 (1.41) 9.66× 10−19 49.28% 24.97 (33.23)

Modified top-hat [28] Optic disc/fovea detection 5.1 (1.98) 1.12× 10−4 69.33% 24.22 (30.1)
Vessel contrast Number of keypoint matches 6.04 (1.31) 0.24 82.82% 23.98 (30.41)

Vessel contrast ‡ Optic disc/fovea detection 6.34 (1.46) – 86.25% 23.67 (31.1)

† P-value: the p-value of the null hypothesis for the number of frames measured by the paired t-test of comparative methods and the proposed method in
last row. ‡ This row refers to the proposed method.

3.3. Qualitative Evaluation

We first present a qualitative comparison between a sample result for the different
preprocessing methods in Figure 6. The min/max normalization can in this case increase
their differences due to the presence and absence of the optic disc in the frame pair, which
results in insufficient keypoint matches. For the modified top-hat transform of [28], the
preprocessing mostly enhances local textures, which are not distinctive enough to be used
as keypoint matches. The proposed preprocessing method is not affected by the presence
or absence of the optic disc, and it enhances vessel textures that are suitable to be applied
as keypoints.

Min/max Vessel enhancement 
(Proposed)

(
c
)

Modified top-hat transform[28]

Figure 6. Qualitative comparison of results from different preprocessing methods: min/max normal-
ization where pixel values are rescaled, so that the minimum and maximum values of each image are
normalized, modified top-hat transform proposed in [28], and the proposed method. The lower row
shows the results of applying the SURF method [12] for keypoint matching on the corresponding
input frame pairs above.

We present comparative qualitative evaluations for three methods, namely, the mon-
tage function of KOWA’s VK-2 [29], the AutoStitch application [30], and the proposed
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method. Figures 7 and 8 show the results where all of the methods generate montages
of similar size, but with differences in the quality of the generated montage. Overall, all
three methods seem to generate similar montages, as depicted in (a–c); we can see that
the proposed method reduces artifacts that occur in other methods, as depicted in the
zoomed view of local artifact regions in (d–g). Figure 7d and Figure 8d, ghosting artifacts
are visible from the results of the KOWA VK-2 montage, which are corrected in the results
of the proposed method in Figure 7e and Figure 8e. Similarly, in Figure 7f and Figure 8f,
misalignment causes ghosting of the same blood vessel from the results of AutoStitch,
which are corrected in Figure 7g and Figure 8g.

In Figure 9, we present more challenging image sets where the comparative methods
fails, leading to insufficient coverage of the montage and various artifacts. For the montages
of the KOWA VK-2, many artifacts are evident, even within the insufficiently formed
montage. For the results of AutoStitch, fewer artifacts are visible, but it seems that only
two or three frames have been integrated. The proposed method is able to generate a more
complete montage when compared to these methods.

(a) KOWA VK-2 Montage

(b) (c)(b)

(b) AutoStitch (c) Proposed method

(d) KOWA VK-2 Montage (e) Proposed method (f) AutoStitch (g) Proposed method

Figure 7. Retinal photomontages constructed by (a) the montage function of KOWA VK-2 [29],
(b) AutoStitch [30], and (c) the proposed method, respectively. Local regions highlighted as boxes
in (a–c) are enlarged in (d–g). (d) and (f) show the comparison between KOWA VK-2 montage
and the proposed method, and (e,g) show the comparison between AutoStitch and the proposed
method, respectively.
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(a) KOWA VK-2 Montage

(c)

(b) AutoStitch (c) Proposed method

(d) KOWA VK-2 Montage (e) Proposed method (f) AutoStitch (g) Proposed method

Figure 8. Retinal photomontages constructed by (a) the montage function of KOWA VK-2 [29],
(b) AutoStitch [30], and (c) the proposed method, respectively. Local regions highlighted as boxes
in (a–c) are enlarged in (d–g). (d) and (f) show the comparison between KOWA VK-2 montage
and the proposed method, and (e,g) show the comparison between AutoStitch and the proposed
method, respectively.

(a) KOWA VK-2 Montage

(c)

(b) AutoStitch (c) Proposed method

Figure 9. Comparison of Mosaic images constructed by different application. (a) KOWA software.
(b) AutoStitch. (c) proposed.
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4. Discussion

We present a new method to construct retinal photomontages that apply recently
developed deep learning methodologies for object detection and segmentation. Not only
do we adopt a recent registration method, but we also propose an improved frame sorting
for sequencing frame integration helps to improve the registration accuracy, which can be
observed by the reduction of TRE. We also propose an improved preprocessing method
utilizing the results of the vessel segmentation that is required in non-rigid registration, to
enable more robust feature keypoint matching in rigid registration. For future works, we
plan to clinically apply our process in the early diagnosis and treatment of various retinal
diseases as well as degenerative diseases.
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