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Abstract: Many studies have been conducted on recommender systems in both the academic and
industrial fields, as they are currently broadly used in various digital platforms to make personalized
suggestions. Despite the improvement in the accuracy of recommenders, the diversity of interest
areas recommended to a user tends to be reduced, and the sparsity of explicit feedback from users has
been an important issue for making progress in recommender systems. In this paper, we introduce
a novel approach, namely re-enrichment learning, which effectively leverages the implicit logged
feedback from users to enhance user retention in a platform by enriching their interest areas. The
approach consists of (i) graph-based domain transfer and (ii) metadata saliency, which (i) find an
adaptive and collaborative domain representing the relations among many users’ metadata and (ii)
extract attentional features from a user’s implicit logged feedback, respectively. The experimental
results show that our proposed approach has a better capacity to enrich the diversity of interests
of a user by means of implicit feedback and to help recommender systems achieve more balanced
personalization. Our approach, finally, helps recommenders improve user retention, i.e., encouraging
users to click more items or dwell longer on the platform.

Keywords: recommender system; personalization; diversity; sparsity; re-enrichment learning; graph-
based domain transfer; metadata saliency

1. Introduction

Online contents and services have been rapidly growing in recent decades. To help
users make decisions when faced with overwhelming options and to achieve commercial
success in making profit, both academic and industrial research on finding specific sets
of items that meet the personalized interests of users has been intensely conducted. For
this purpose, recommender systems have been suggested and designed that are based on
a user’s history, including whether the user has bought an item, which ratings the user
has given to items, etc. Previous studies have reported that recommendations account for
60% of the clicks on the main screen of Youtube [1], 75% of what people watch through
Netflix [2], and 35% of the sales through Amazon [3].

Recommendation is obviously not an easy task. A recommender system needs to
provide a personalized user experience with long-term satisfaction under the condition
that users’ preferences can change over time [4]. Behaviors based on the preferences of
users could be either positively or negatively influenced by recommendation results. Tradi-
tionally, the recommendation problem has been considered as equivalent to the problem
of precisely predicting the rating that a user would leave on an item. However, recent
academic studies and industrial providers have both emphasized that one of the main
measurement targets is improved user retention [5,6]. In spite of the gains in theoretical
accuracy, it was unclear that the winning strategy in accuracy would result always in
increasing business value [7].
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Still, recommender systems are mostly optimized toward the accuracy of predictions of
item ratings, and are likely to gradually narrow down the interest area of a user—the so-called
the diversity problem [8–11]. That is to say, recommendations where the lesser interests
get squeezed out by the main interest ironically help the system minimize prediction
errors. This not only impedes the diversity of experiences of users, but also causes filter
bubbles [12,13], e.g., a reduced spectrum of user consumption and the political bias, which
limit discovery or neglect the potential for promoting new items from the long tail [14,15].
Moreover, as the training of a recommender system mostly relies on explicit feedback
(typically the ratings of items), it is inevitable to face the fact that only a small portion of
users leave their ratings—the so-called the sparsity problem [16,17].

In this paper, we propose a novel data interpretation approach, which includes graph-
based domain transfer and metadata saliency, for recommender systems, and show its
effective application for a personalized recommender, namely re-enrichment learning. To
address the problems of diversity and sparsity, the goal of re-enrichment learning is to
find conspicuous features of the implicit logged feedback [18,19] that tell the behavior
of a user, e.g., how frequently the user clicks on a certain item or how long the user
stays on the platform, and to promote immanently correlated recommendations. Unlike
explicit feedback, implicit logged feedback is relatively easier to spontaneously collect from
users. Metadata saliency describes the confidence of a recommendation in the transferred
domain, which reflects the graph-based relationships among items. It is generally known
that the visual saliency represents the position-based visual preference [20]. As such,
methods for predicting eye fixation maps on websites or mobile interfaces [21–23] have
been studied, and the relation between the probability of the movement of a mouse pointer
and the eye fixation has been discussed [24]. Inspired by those works, metadata saliency
is a novel approach to interest fixation for distinguishing a certain set of items from the
others. Based on the establishment of links between one group of items and their closely
related ones, re-enrichment learning is used to train a recommender system based on
the metadata saliency, thus enriching the potential interest areas of a user rather than
narrowing them down. The experimental results show that our approach is effective in
interpreting implicit logged feedback and helpful in persuading a user to click more or stay
longer on a commercial platform.

The organization of the rest of this paper is as follows: Section 2 presents a review
of the related work, Section 3 describes our proposed approach in detail, and Section 4
provides the comparative experiments and the discussion. Finally, our conclusion is given
in Section 5.

2. Background

Recommender systems can be largely classified into three categories: the collaborative
approach, content-based approach, and hybrid approach [16,17,25]. Firstly, the collabora-
tive approach is based on the idea that people with similar preferences are likely to agree on
an evaluation of an item. This approach consists of neighborhood-based methods, which
directly use the users’ item ratings to estimate the classification of a new item, and model-
based methods, which use the ratings to acquire knowledge and teach a predictive model.
The advantage of this approach is that new data can easily be added in an incremental
manner, whereas its weakness to the cold-start problem of new users and the sparsity
problem are its disadvantages. Koren et al. (SVD) [26] suggested a singular value decompo-
sition (SVD)-based matrix factorization algorithm that uses stochastic gradient descent for
optimization. Rendle et al. (Bayesian personalized ranking (BPR)) [27] introduced a generic
optimization criterion and learning algorithm for personalizing a recommender system.
The optimization criterion is based on the maximum posterior estimator derived from
Bayesian analysis, while the learning algorithm is based on stochastic gradient descent
with bootstrap sampling. He et al. (L-GCN) [28] adopted the neighborhood aggregation of
a graph convolution network (GCN) [29] and proposed learning user and item embeddings
by linearly propagating them with respect to the interaction graph of the user and item.



Appl. Sci. 2021, 11, 1733 3 of 17

They used the weighted summation of the embeddings, which are learned at all layers, as
in the final stage.

Then, the content-based approach is based on the combination of a user’s profile and
an item description. In other words, the similarity between the items that the user has
liked in the past and the detailed content of an item play important roles. This approach
shows strength when recommending an item that is not yet rated by any user, whereas it
suffers from the overspecialization problem. Wang et al. (deep knowledge-aware network
(DKN)) [30] proposed a multi-channel and word-entity-aligned knowledge-aware convo-
lutional neural network for semantic and knowledge-based representation of news as well
as an attention module to dynamically compute the aggregated historical representation of
a user. Wu et al. (neural news recommendation with personalized attention (NPA)) [31]
suggested personalized convolutional neural networks that adopt the embedding of user
IDs as the queries of the correlations between words and news. The meta-context dimen-
sion tree (Meta CDT) was proposed for the selection of the most suitable contents and
services for a user in a certain context, and was used in a practical context-aware applica-
tion by Colace et al. [32] and Casillo et al. [33]. The approach has strength in tailoring the
information domain according to the user’s needs as well as in analyzing relevant features
of context models.

Lastly, there also are hybrid approaches that combine the collaborative and content-
based approaches to exploit the advantages of the individual approaches [16,34]. Many
types have been proposed, such as by aggregating the predictions of collaborative and
content-based approaches or integrating one approach’s characteristics into the other.
Kula (light factorization machine (L-FM)) [35] proposed a hybrid matrix factorization model
that represents users and items as linear combinations of the latent factors of their content
features. Cheng et al. (wide and deep (W&D)) [36] introduced a framework for jointly
training feed-forward neural networks with embedding and a linear model based on
feature transformation for generic recommenders with sparse inputs.

Many of the recent studies have discussed the problem that unbalanced or biased
recommendations can shrink the diversity of interests of a user. Practical evaluation
scenarios and techniques have been introduced to produce unbiased estimators in spite of
biased or missing data [37,38]. Research has been carried out on adopting the relationships
among items or entities as well as among users [39]. For instance, each user has an
individual graph-based representation for their explicit feedback of ratings, and the graph
can provide insights into how good use of the hidden information can be made in terms of
personalized recommendations. Still, most of the previous approaches have difficulty with
the aforementioned sparsity and diversity problems. For the sparsity problem, we need to
further study how to incorporate the naturally obtainable feedback information from users.
In addition, there must be many alternatives to alleviate the diversity problem resulting
from unbalanced recommendations.

3. Re-Enrichment Learning

The two main objectives of re-enrichment learning are literally to enrich the interest
areas recommended to a user and to achieve them by extracting meaningful features from
naturally acquirable feedback data. In other words, re-enrichment learning is directly
designed to tackle the diversity and sparsity problems of a recommender system. Our
proposed approach is composed of two cores: graph-based domain transfer and metadata
saliency. The domain of metadata saliency is determined by the graph-based domain
transfer, while the graph itself can be changed recursively by the metadata saliency from
new feedback. To be more concrete, every implicit logged feedback of a user causes a
change in the user’s metadata saliency; the update in the metadata saliency is promptly
reflected in the user’s graph description, as well as in the universal domain determined
from a large set of users; the new environment of graph again recursively influences the
next feedback of the user.
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3.1. Graph-Based Domain Transfer

An undirected weighted graph is assigned to every user in order to build a data
structure that consists of item categories as the finite set of nodes and the similarities
between categories as the finite set of edges.

Gk,t = (Vk,t, Ek,t) s.t. k ∈ {1, ..., N} and t ≥ 0 (1)

Vk,t = {vk,t(1), vk,t(2), ..., vk,t(M)} (2)

Ek,t = {ek,t(1, 2), ek,t(1, 3), ..., ek,t(M− 1, M)} (3)

As noted in Equations (1)–(3), the graph of the kth user among N users at time t, Gk,t, is
made up of M nodes Vk,t with their attributes vk,t and MC2 edges Ek,t with their attributes
ek,t. The edge attribute between the two nodes vk,t(i) and vk,t(j) is ek,t(i, j), which can be
computed as in Equation (4), where i, j ∈ {1, ..., M}. The attribute of an edge represents
the combination of the influences and similarity of two nodes. A node is determined to be
influential when its attribute is large, and two nodes are determined to be similar when
they share similar levels of attributes to that of the same user. Here, the attribute of a
node is the metadata saliency, which represents the attentional prominence of the node
from the entire set of nodes. Equation (4) is composed of two terms: (i) the likelihood
for the influence of a node and (ii) the weight for the similarity between two nodes. A
softmax function has been adopted in the first term to produce the influence of a node as a
probabilistic value within [0, 1] (see Equations (5) and (6)), where h ∈ {1, ..., M}, and α is
the influence factor, which determines the degree of importance of an individual feedback
(s.t. α ≥ 1). In the second term, the inversed substitution between two nodes’ attributes
is adopted to produce the similarity as a weight value (see Equations (7) and (8)). The
attributes of nodes have been normalized to remove scale dependency.

ek,t(i, j) = σ
(
α · v′k,t(i)

)
·
(
1−

4
vk,t

′
(i, j)

) (4)

σ(α · v′k,t(i)) =
eα·v′k,t(i)

∑M
h=1 eα·v′k,t(h)

(5)

v′k,t(i) =
vk,t(i)−min

∀h
vk,t(h)

max
∀h

vk,t(h)−min
∀h

vk,t(h)
(6)

4
vk,t

′
(i, j) =

4
vk,t(i, j)−min

∀h

4
vk,t(i, h)

max
∀h

4
vk,t(i, h)−min

∀h

4
vk,t(i, h)

(7)

4
vk,t(i, j) = |vk,t(i)− vk,t(j)| (8)

Then, the edges can be denoted by an |Vk,t| × |Vk,t| matrix, i.e., adjacency matrix
Ek,t = ek,t(i, j) [40], where each element indicates the attribute of an edge, and the elements
can be stored in a triangular matrix as ek,t(i, j) = ek,t(j, i) (as shown in Figure 1). Finally,
the attributes of nodes and edges, as well as the adjacent matrix that allows their sequential
representation, are able to respond to every feedback event.
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𝑒𝑒𝑘𝑘,𝑠𝑠(3,1) 𝑒𝑒𝑘𝑘,𝑠𝑠(3,2) 𝑒𝑒𝑘𝑘,𝑠𝑠(3,3) 

0 

Figure 1. Adjacency matrix Ek,t.

In the end, a universal domain Dt at time t can be determined based on the graphs of
N users, where Dt(h) is the hth domain in which M nodes are sorted by the level of the
attribute of the edge connected to the hth node (see Equation (9)). That is to say, in Dt(h), the
hth node itself appears first, the node with the second largest attribute of the edge connected
to the hth node appears second, and so on. Understandably, the domain changes over
time as the individual graphs vary—e.g., with fluctuating attributes, newly inserted nodes
starting with zero-level attributes, etc. Empirically, two nodes that have large attributes and
share the edge of a large attribute become adjacent neighbors in the transferred domain.
Here, being neighbors has dire consequences with respect to metadata saliency.

Dt = {Dt(1), Dt(2), ..., Dt(M)} (9)

3.2. Metadata Saliency

A user’s behavioral history can be used not only as primary cumulative data, but
also as information from which secondary features are extracted. Metadata saliency is
one of the secondary features that can play an important role, especially in leveraging
implicit logged feedback data. A few interesting items usually account for the majority
of interest fixation, and they can be quantified by extracting metadata saliency from the
logged feedback. Among the various types of feedback, we focus on the ones that contain
the retention data of a user, and we start with the simplest type: the clicks on recommended
items. The metadata saliency of the ith

d category in the transferred domain at time t, vk,t(id),
is computed based on the i∗ th

d clicked category, as in Equation (10). A Gaussian fixation
model has been adopted [21,24,41,42], of which the average and standard deviation are i∗

and 1, respectively, in order to reinforce the metadata saliency of the ith
d category, but also to

enrich its nearest neighbors with respect to the transferred domain. The Gaussian fixation
is also scaled based on the metadata saliency of the ith

d category at time t− 1, vk,t−1(id),
and the influence factor α (see Equation (11)). The very first metadata saliency, vk,0, can
be set by a preference survey for new users for the cold start (discussed in Section 4.2.1).
Otherwise, for users who refuse the survey, the average of the metadata saliencies of many
random users can be an alternative for vk,0 (discussed in Section 4.2.2).

vk,t(id) = vk,t−1(id) +
A
∣∣
i∗d√

2π
· e−

1
2 (id−i∗d)

2 (10)

A
∣∣
i∗d
=

1

ev′k,t−1(i
∗
d)+α

(11)
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Suppose that a graph has been built to represent the metadata saliencies of movie
genres for a user (see Figure 2). A node is presented as a circle, of which the radius indicates
its attribute level. An edge is drawn as a line, of which the thickness is proportional to
its attribute level. The user must mostly have preferences for Action movies, as well as
Sci-Fi movies, because the two nodes corresponding to those genres are the two biggest
circles, as shown in Figure 2. Provided that the user clicked an item that belongs to the
Action category at time t, not only does the metadata saliency of Action node get larger
at time t + 1, but that of the Sci-Fi node also benefits from it to a certain extent due to the
connection of the edge to the two nodes and the Gaussian fixation effect. Moreover, the
Fantasy and Adventure nodes also deserve a small benefit from the feedback. Because
of the new feedback, the attributes of the nodes and edges change simultaneously and
incrementally create a new condition in the graph representation. As such, the metadata
saliency naturally changes over time by means of the newly collected feedback. The change
in metadata saliency is promptly reflected in a user’s graph and, by extension, also in the
universal domain, which is built upon many users’ graphs. Consequently, the evolutive
characteristic based on the mutual interaction in the graph makes re-enrichment learning
prompt and flexible.

Action 

 Adventure 

 Animation 

Crime 

Documentary 

Fantasy 

Mystery 

Sci-Fi 

War 

Thriller 

Figure 2. Conceptual visualization of a graph (node: circle radius, edge: line thickness).

3.3. Summary

In summary, we provide Figure 3 to depict a diagram that connects all the steps of the
process, and the process can be listed as follows:

• Step 1: Obtain the user’s implicit logged feedback i∗d at time t from the recommender.
• Step 2: Update nodes Vk,t−1 → Vk,t: Calculate node attribute vk,t(id) at time t using

the universal domain Dt−1 and the node attribute vk,t−1(id) at time t− 1 (as shown in
Equation (10)).

• Step 3: Update edges Ek,t−1 → Ek,t: Calculate the edge attribute ek,t(i, j) at time t
using the node attribute vk,t(id) at time t (as in Equation (4), which consists of the two
following terms).

– Compute the likelihood of influence of the node: σ
(
α · v′k,t(i)

)
(see Equation (5)).

– Compute the weight for the similarity between two nodes: 1 −
4

vk,t

′
(i, j) (see

Equation (7)).

• Step 4: Update the universal domain Dt−1 → Dt (as in Equation (9)): Sort domain
Dt(h) by edge attribute.

• Step 5: Apply the node attribute vk,t(id) at time t, i.e., the metadata saliency, to the
recommender.
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Furthermore, we provide a pseudocode to effectively present how the different steps
of our proposed approach are organized (see Table 1).

1. Action 

2. Adventure 

3. Animation 

4. Crime 

5. Documentary 

6. Fantasy 

7. Mystery 

8. Sci-Fi 

10. War 

9. Thriller 

𝒊𝒊𝒅𝒅∗ 

Obtain 
Feedback 

Update 
Nodes 

+ + + + 

+ + 

+ + 

+ + 

+ 

+ 

Update 
Edges 

→ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Update 
Universal domain 

6 8 2 9 4 7 3 5 

8 2 1 9 4 7 3 5 

8 6 1 9 7 4 5 3 

6 1 2 9 4 7 3 5 

4 7 

√ 

2 6 8 1 5 3 

9 4 7 2 6 8 1 5 3 

4 9 2 6 8 1 5 3 

7 9 2 6 8 1 5 3 

5 

3 

4 7 2 6 8 1 9 

4 7 2 6 8 1 9 

Figure 3. The process of re-enrichment learning.

Table 1. The pseudocode for re-enrichment learning.

Pseudocode

Input : Implicit logged feedback i∗d , Nodes Vk,t−1, Edges Ek,t−1, Universal domain Dt−1
Output : Nodes Vk,t, Edges Ek,t, Universal domain Dt
Parameter : Influence factor α

/∗ Update Nodes Vk,t−1 → Vk,t ∗/
for k = 1 : N do

for id = 1 : M do
1 : Calculate Metadata saliency vk,t(id)

end for
∗ : Construct Nodes Vk,t = {vk,t(1), vk,t(2), ..., vk,t(M)}

end for
/∗ Update Edges Ek,t−1 → Ek,t ∗/
for k = 1 : N do

for i = 1 : M do
for j = i : M do

1 : Calculate Likelihood for influence of node σ
(
α · v′k,t(i)

)
2 : Calculate Weight for similarity between two nodes 1−

4
vk,t

′
(i, j)

3 : Calculate Edge attribute ek,t(i, j) = σ
(
α · v′k,t(i)

)
·
(
1−

4
vk,t

′
(i, j)

)
end for

∗ : Construct Edges Ek,t = {ek,t(1, 2), ek,t(1, 2), ..., ek,t(M− 1, M)}
end for

end for
/∗ Update Universal domain Dt−1 → Dt ∗/
for h = 1 : M do

1 : Calculate Domain Dt(h) by sorting nodes w.r.t. edge attribute
end for

∗ : Construct Universal domain Dt = {Dt(1), Dt(2), ..., Dt(M)}



Appl. Sci. 2021, 11, 1733 8 of 17

4. Experiment and Discussion

4.1. Experimental Setup

4.1.1. Dataset

• MovieLens dataset [43]: The MovieLens (100k) dataset was collected by the Grou-
pLens Research Project at the University of Minnesota (see Figure 4). It consists of
100,000 ratings, which range from 1 to 5, obtained from 943 users on 1682 movies
as items. The data were acquired through the MovieLens website during the seven-
month collection period. The dataset was cleaned up by excluding users who wrote
less than 20 ratings. A movie can belong to more than one genre; there are 18 genres,
defined as: (i) Action, (ii) Adventure, (iii) Animation, (iv) Children’s, (v) Comedy,
(vi) Crime, (vii) Documentary, (viii) Drama, (ix) Fantasy, (x) Film-Noir, (xi) Horror,
(xii) Musical, (xiii) Mystery, (xiv) Romance, (xv) Sci-Fi, (xvi) Thriller, (xvii) War, and
(xviii) Western.

• Amazon dataset [44,45]: The Amazon review dataset contains the reviews of items
and their metadata collected from the Amazon platform (see Figure 5). The dataset
sampled for the experiment included around 70 million ratings of 745,018 products,
ranging from 1 to 5. In the experiment, 20 categories were included: (i) Beauty, (ii)
Fashion, (iii) Appliances, (iv) Arts, crafts, and sewing, (v) CDs and vinyl, (vi) Cell
phones and accessories, (vii) Digital music, (viii) Gift cards, (ix) Grocery and gourmet
food, (x) Industrial and scientific, (xi) Luxury beauty, (xii) Magazine subscriptions,
(xiii) Movies and TV, (xiv) Musical instruments, (xv) Office products, (xvi) Patio, lawn,
and garden, (xvii) Pet supplies, (xviii) Prime pantry, (xix) Software, and (xx) Sports
and outdoors.

Figure 4. Examples of movies from different genres (MovieLens dataset).

Figure 5. Examples of goods from different categories (Amazon dataset).

4.1.2. Evaluation

Learning from implicit user feedback, e.g., click and dwell time, has been an important
factor in improving recommender systems [18]. The common implicit retention metric [19],
the click-through rate (CTR) [6,46–49], was adopted to intuitively and directly evaluate
the effectiveness of the methods for user satisfaction or retention on digital platforms.
Specifically, the metric was used to measure the ratio of clicks to recommendations, as in
Equation (12).
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CTR =
Number of click-throughs

Number of recommendations
× 100 (%) (12)

Furthermore, the metric of mean average precision [50], MAP@K, supports the consis-
tency of an experiment. This metric indicates how many items a user engages with among
those recommended to them, as CTR does, but also uses the sequence of feedback (see
Equation (13), where S indicates the number of samples). To begin with, average precision,
AP@K, is defined as the summation of the engaged precision values divided by the number
of engagements, m, where P(i) is the precision at i and δ(i) is a bivariate function for
engagement (as in Equations (14)–(16)).

MAP@K =
1
S

S

∑
n=1

(AP@K)n (13)

AP@K =
1
m

K

∑
i=1

P(i) · δ(i) (14)

P(i) =
Number of relevant recommendations

∣∣
i

Number of recommendations
∣∣
i

(15)

δ(i) =

{
1 if ith recommendation is engaged,
0 otherwise.

(16)

A/B experiments [5,19,51] were conducted to verify the difference between applying
and not applying re-enrichment learning to baseline methods. Five baseline methods are
used for comparison: SVD [26], BPR [27], L-GCN [28], L-FM [35], and W&D [36]. The
baseline methods are either collaborative or hybrid approaches because our proposed
method treats the category preferences of users, e.g., movie genre and product category,
rather than the internal content of an item, e.g., the words in a news article. We collected
data from 32 participants, who clicked on all the items that seemed to be interesting. For
fairness, the participants were informed of which method was used in each experiment.
The time required to finish one sequence of collecting implicit feedback ranged from 10 to
30 min depending on the participant. The sequence of collecting feedback was repeated
four times for every participant. A total of 4532 feedbacks were collected for the MovieLens
dataset and 4830 feedbacks were collected for Amazon dataset were collected.

Lastly, a non-parametric statistical hypothesis test, Wilcoxon test [52], was performed
to check the significance of improvements. We adopted a significance level α of 0.05,
which indicates a 5% risk of concluding that a difference exists when there is no actual
difference. The interpretation of a result in the Wilcoxon test is that the null hypothesis,
“The population median (η) equals the hypothesized median (η0)”, is wrong when the
p-value is smaller than the significance level (i.e., the difference is significant).

4.1.3. Configuration

The baseline methods were applied with the settings of default parameters given
in their open sources. Based on the scaling property of signal processing, the influence
factor α in Equation (4), which operates as the scaling factor of the softmax function, was
identically set to 4 in all cases. This parameter determines the agility of re-enrichment
learning in adapting to recent short-term feedback.

4.2. Results and Discussion

4.2.1. Recommending Movies

At the beginning, users were asked to respond to a survey on their preferred categories
as a cold start. Otherwise, users could also skip it to simply use the given averaged
preference model built upon the feedback collected from other previous users. When
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responding to the survey, the selected categories directly created an initial metadata saliency.
Then, a set of 10 movies, with their images and titles, was recommended to a user at a
time, and the user was allowed to click on any items they were interested in. The user
could also skip the entire set and go on to the next set. Table 2 shows our A/B experiments,
and it compares the results of all baseline comparison methods with respect to CTR
and MAP@K for the MovieLens dataset. As demonstrated in Figure 6, our proposed
re-enrichment learning helps baseline methods improve the resulting retention of users by
providing a feature that enriches the interest areas of the user instead of overspecializing
them. Compared to the intuitive metric, CTR, MAP@K additionally reflects the order
in which the user engages with items within a recommended set, so we can infer that
our approach has nothing to do with recommending more attractive items in the front.
Still, the results of CTR and MAP@K show a consistent tendency for improvement. In
addition, Table 3 presents the results of the Wilcoxon test which essentially calculates the
difference between sets of paired samples and analyzes these differences to establish if
they are statistically significantly different from one another. The resulting p-values in all
cases were much smaller than the significance level α, which allows the conclusion that
the differences between the population distribution and the hypothesized distribution are
statistically significant.

A B A B A B A B A B

S V
D

B P
R

L - G
C N

L - F
M

W & D

0

1 0

2 0

3 0

CT
R

 A  :  w / o  R e - e n r i c h m e n t  l e a r n i n g
 B  :  w /    R e - e n r i c h m e n t  l e a r n i n g

(a) Average click-through rate

A B A B A B A B A B

S V
D

B P
R

L - G
C N

L - F
M

W & D

0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

MA
P@

K

 A  :  w / o  R e - e n r i c h m e n t  l e a r n i n g
 B  :  w /    R e - e n r i c h m e n t  l e a r n i n g

(b) Mean average precision @ K

Figure 6. Visualization of A/B experiments on the MovieLens dataset.

Table 2. The results of A/B experiments on the MovieLens dataset.

Method CTR MAP@K
A B B − A (B − A)/A A B B − A (B − A)/A

SVD 14.76% 18.52% + 3.76% ↑ 25.47% 0.306 0.339 + 0.033 ↑ 10.91%
BPR 17.10% 20.90% + 3.80% ↑ 22.22% 0.318 0.368 + 0.049 ↑ 15.51%

L-GCN 17.40% 20.37% + 2.97% ↑ 17.07% 0.341 0.363 + 0.022 ↑ 6.54%
L-FM 12.89% 16.91% + 4.02% ↑ 31.19% 0.280 0.329 + 0.049 ↑ 17.56%
W&D 14.28% 17.18% + 2.90% ↑ 20.31% 0.290 0.324 + 0.034 ↑ 11.77%

This observation is supported by Figure 7, which shows an example comparing the
initial metadata saliency of a user to the metadata saliency variations over 30 implicit
feedbacks. The x-axis presents the node of a graph (i.e., movie genre), while the y-axis
shows the attribute of a node (i.e., the level of metadata saliency). As can be observed
in Figure 7a, the user started with two large saliencies at Action and Sci-Fi. Despite the
fact that the Action and Sci-Fi genres accounted for the majority of the 30 feedbacks and
the two were still ranked in the two largest saliencies, the metadata saliencies of other
genres (Adventure and Thriller) prominently increased because they had relatively large
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edge attributes with Action and Sci-Fi (see the thicker lines in Figure 7a). We depict all
the edges connected to Action as red-colored lines and all the edges connected to Sci-Fi
as blue-colored lines, which show that Adventure and Thriller are fairly interrelated with
Action and Sci-Fi with respect to the thickness of the lines. It is worth observing that
Adventure and Thriller were encouraged to be recommended, and were consequently
selected quite a few times.

Table 3. The Wilcoxon test of the A/B experiments on the MovieLens dataset.

Method CTR MAP@K
p-Value α p-Value α

SVD 0.000001220 < 0.05 0.003038835 < 0.05
BPR 0.000001947 < 0.05 0.000007521 < 0.05

L-GCN 0.000001472 < 0.05 0.002098150 < 0.05
L-FM 0.000001110 < 0.05 0.000256538 < 0.05
W&D 0.000002135 < 0.05 0.000070817 < 0.05

A
ct

io
n

A
dv

en
tu

re
A

ni
m

at
io

n
C

hi
ld

re
n'

s
C

om
ed

y
C

rim
e

D
oc

um
en

ta
ry

D
ra

m
a

Fa
nt

as
y

Fi
lm

-N
oi

r
H

or
ro

r
M

us
ic

al
M

ys
te

ry
R

om
an

ce
Sc

i-F
i

Th
ril

le
r

W
ar

W
es

te
rn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Initial metadata saliency (vk,0)

A
ct

io
n

A
dv

en
tu

re
A

ni
m

at
io

n
C

hi
ld

re
n'

s
C

om
ed

y
C

rim
e

D
oc

um
en

ta
ry

D
ra

m
a

Fa
nt

as
y

Fi
lm

-N
oi

r
H

or
ro

r
M

us
ic

al
M

ys
te

ry
R

om
an

ce
Sc

i-F
i

Th
ril

le
r

W
ar

W
es

te
rn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Metadata saliency after 30 feedbacks (vk,30)

Figure 7. The effect of implicit feedback on metadata saliency (MovieLens dataset).

Collaborative approaches find new items in which a particular user is most likely to
be interested by modeling the task as a regression or classification using the rating data.
By being provided with a recommendation of an item that satisfies them, the user is likely
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to engage more with the platform. By replacing the rating with metadata saliency, the
retention results of collaborative approaches were increased. This observation directly
shows that users spent more time exploring the enriched interest areas. In addition, only
small subsets of movies from the available set of movies were rated by users [16], which
made it difficult to successively collect explicit cues for training. In contrast, metadata
saliency is based on implicit logged feedback, which can be naturally and continuously
obtained. Moreover, hybrid approaches already merge different techniques or features to
avoid limitations, but they also can be further assisted by re-enrichment learning. Based
on our graph-based domain transfer, the relations between the categories were effectively
incorporated, and that allowed the metadata saliency to emphasize the salient interest
areas of the user, as well as the interest areas implicitly linked to them. As a result, applying
re-enrichment learning led to significantly improved click-through rates for the hybrid
approaches. L-FM is based on the latent representation approach, which aims to learn
user and item representations from the interaction data [35], while the wide linear model
of W&D aims to memorize sparse feature interactions based on cross-product feature
transformation [36]. These characteristics allow L-FM and W&D to be run together with
graph-based domain transfer and metadata saliency.

4.2.2. Recommending Goods

Likewise, the preference survey was followed by a set of 10 recommendations, and
users could click on any items they wished. Experiments were carried out using the
Amazon dataset [44,45], which contains Amazon products’ review data as well as the
products’ metadata. Table 4 reports the results of our A/B experiments, and Figure 8
demonstrates their visual comparisons. We observed that the methods with re-enrichment
learning outperformed their baselines, generally producing increased CTR and MAP@K.
The results of the Wilcoxon test on the Amazon dataset show more or less the same tendency
as those of the MovieLens dataset. As shown in Table 5, the p-values were fairly smaller in
all cases than the significance level α, which means that the differences between A and B
were significant.
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Figure 8. Visualization of A/B experiments on the Amazon dataset.
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Table 4. The results of A/B experiments on the Amazon dataset.

Method CTR MAP@K
A B B − A (B − A)/A A B B − A (B − A)/A

SVD 15.43% 19.21% + 3.78% ↑ 24.50% 0.303 0.340 + 0.037 ↑ 12.21%
BPR 16.16% 19.03% + 2.87% ↑ 17.76% 0.313 0.337 + 0.024 ↑ 7.61%

L-GCN 16.46% 19.56% + 3.10% ↑ 18.83% 0.315 0.341 + 0.027 ↑ 8.46%
L-FM 11.79% 15.01% + 3.22% ↑ 27.31% 0.247 0.296 + 0.049 ↑ 19.75%
W&D 11.52% 15.34% + 3.82% ↑ 33.16% 0.242 0.285 + 0.043 ↑ 17.71%

Table 5. The Wilcoxon test of the A/B experiments on the Amazon dataset.

Method CTR MAP@K
p-Value α p-Value α

SVD 0.000000834 < 0.05 0.000029252 < 0.05
BPR 0.000001340 < 0.05 0.000600795 < 0.05

L-GCN 0.000000833 < 0.05 0.000643566 < 0.05
L-FM 0.000000916 < 0.05 0.000043941 < 0.05
W&D 0.000001110 < 0.05 0.000104444 < 0.05

Figure 9 demonstrates an example of the variations in metadata saliency over 30 feedbacks
by a user. This example is interesting because the user did not participate in the preference
survey at the beginning. As such, the average metadata saliency from 70M previous
feedbacks was used for the initial metadata saliency (see Figure 9a). The two categories,
Digital music and Gift cards, initially obtained relatively large metadata saliencies. On the
other hand, the user mostly selected Appliances, Cell phones and accessories, Industrial
and scientific, and especially Sports and outdoors. Consequently, the metadata saliency
levels of those categories increased during the latter feedback (see Figure 9b). The rest of
the categories moved opposite to the most selected ones, yet the saliency levels, of which
the edge attribute was large (see the thicker lines in Figure 9a), were rather slightly raised.

Re-enrichment learning noticeably raised the click-through rates of the collaborative
approaches. The advantage of collaborative approaches is that adding new data in an in-
cremental manner is relatively easy, and re-enrichment learning is quite well matched with
this advantage. It is easy to add a new node and its edges, starting with initial attributes set
to zero. Furthermore, our proposed approach supplements the weakness of collaborative
approaches when very few explicit feedbacks, i.e., ratings, are limitedly collectable from
users. Furthermore, we observed that hybrid approaches with re-enrichment learning
also outperformed their baselines. Re-enrichment learning effectively exploits the implicit
logged feedback information and led to better click-through rate results. The observation
from Figure 9 intuitively conveys that the interest areas that have close relations in the
graph-based transferred domain to the areas selected by a user were nourished due to
re-enrichment learning. In consequence, the recommendations based on re-enrichment
learning encouraged users to consume more content.
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Figure 9. The effect of implicit feedback on metadata saliency (Amazon dataset).

5. Conclusions

In this paper, we introduced a novel approach that effectively exploits the implicit
logged feedback from users to enrich their potential interest areas and to increase user
retention in recommender systems for digital platforms. Our approach includes graph-
based domain transfer and metadata saliency, which are incorporated to operate as re-
enrichment learning. A universal domain was built based on the graph representation of
item categories and their interrelations as nodes and edges, respectively. While capturing
the attentional prominence of a node, metadata saliency also confers benefits on the
nearest neighbors of the node in the universal domain. Every implicit logged feedback
of a user causes a change in the user’s metadata saliency; the update in the metadata
saliency is promptly reflected in the user’s graph description, as well as in the universal
domain determined by a number of users; the new environment of graph again recursively
influences the next feedback of the user. The eventual goal is the improvement of user
retention, rather than accurately predicting ratings, as there are many better ways to help
people find interesting items than focusing only on those with high predictions of ratings.

It should be pointed out that re-enrichment learning shows a constant tendency of
internal and external advantages. Internally, it has a better capacity to enrich the diversity
of possible interest areas of users and to help recommender systems achieve more balanced
personalization. In addition, to address the issue of sparsity of explicit feedback, it extracts
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the immanent features from implicit logged feedback, which is much more naturally
collectable. Externally, it derives an intuitive interpretation of the relation between the
recommender system and profitability. In other words, it helps find an industrial value as
well as a better solution that makes users click on more items or dwell longer on platforms.

In future work, we plan to extend this approach both to create other types of saliency
in metadata and to fertilize the graph representation by incorporating various user informa-
tion, e.g., gender, age, and occupation. We believe re-enrichment learning to be promising
for industrial applications.
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