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Abstract: The prediction interval (PI) is an important research topic in reliability analyses and
decision support systems. Data size and computation costs are two of the issues which may hamper
the construction of PIs. This paper proposes an all-batch (AB) loss function for constructing high
quality PIs. Taking the full advantage of the likelihood principle, the proposed loss makes it possible
to train PI generation models using the gradient descent (GD) method for both small and large
batches of samples. With the structure of dual feedforward neural networks (FNNs), a high-quality
PI generation framework is introduced, which can be adapted to a variety of problems including
regression analysis. Numerical experiments were conducted on the benchmark datasets; the results
show that higher-quality PIs were achieved using the proposed scheme. Its reliability and stability
were also verified in comparison with various state-of-the-art PI construction methods.
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1. Introduction

The prediction interval (PI) is widely used to evaluate uncertainty. Different from
the confidence interval (CI) which only relies on statistical analyses of the observed data,
the PI describes the uncertainty by means of predictions, which cover estimates of both
model uncertainty and data uncertainty [1]. The PI is thus more reliable and effective
than the CI. Compared with the regular point prediction, the PI offers more robust results
for follow-up operations with full consideration of prediction uncertainty. The risk of
over-fitting problems can also be reduced by the PI, which is beneficial for real-world tasks.
PIs have found many successful applications such as wind power generation [2—4], water
consumption forecasts [5], sinter ore burn-through point forecasts [6], parking demand
predictions [7], isolated microgrid systems [8], etc.

In recent years, as statistical learning theory has evolved, feedforward neural networks
(FNNs) have become universal approximators which are well suited for approximating
nonlinear mappings [9]. However, commonly used point predictions generated by FNNs
suffer from the inability to estimate uncertainty. Although plenty of models have been
proposed to construct Pls through FNNs and have achieved remarkable results, many of
them may be unsuitable for real-world tasks due to high computational costs and complex
assumptions. Consequently, new techniques are necessary to efficiently generate high-
quality PIs. Existing methods can be classified into two categories: (1) Those that construct
PIs indirectly by point estimates based on statistical theory; and (2) those that directly
estimate the lower and upper boundaries of Pls.

On the basis of Cls, traditional PI construction methods tend to gain PIs through
statistical relationships between point estimates and bias estimates. Chryssolouris et al. [10]
and Hwang and Ding [11] developed the Delta method for PI construction based on
nonlinear regression by applying asymptotic theories and employing the NN as a nonlinear
regression model. Bishop [12] and MacKay [13] utilized the Bayesian technique to construct
PIs. Due to the introduction of the Hessian matrix, this method suffers from the burden
of high computational complexity. Heskes [14], Carney et al. [15] and Errouissi et al. [16]
adopted the bootstrap method to construct PIs with FNNs. Bootstrap procedures are
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useful for uncertainty estimates, and are widely used in many fields, as they provide
reliable solutions to obtain the predictive distribution of the output variables in NNs [17].
It has been shown that while the bootstrap method generates more reliable PIs than other
methods [18], it suffers from high computational costs under large datasets.

A special case of a traditional PI construction method is the mean-variance estimation
(MVE) method, proposed by Nix and Weigend [19]. The MVE method has a low computa-
tional cost and is easy to implement because of the dual-FNN structure. However, due to
the assumption that the error term obeys a normal distribution with the expectation of the
true target, this method may yield bad results in real-world datasets.

In order to reduce computational complexity, Khosravi et al. [20] developed the lower
upper bound estimation (LUBE) method to estimate the lower and upper boundaries of PI
directly by FNNs. The LUBE method is a distribution-free PI construction method which
uses heuristic search algorithms such as Simulated Annealing (SA) [20], Genetic Algorithm
(GA) [21] and Particle Swarm Optimization (PSO) [22] to adjust model parameters. Unlike
traditional PI construction methods, the LUBE method attempts to improve the quality of
PIs instead of focusing on prediction errors. Due to the flexibility of LUBE, it is gaining
popularity in several communities, such as solar power prediction [23].

Nevertheless, in the case of large-scale models, the heuristic search scheme adopted by
the LUBE method makes it difficult to obtain optimal results. Since gradient descent (GD)
has become the standard training method for FNNs [24], it is poorly-suited to production
environments.

To introduce the GD into the training process, Pearce et al. [25] proposed the quality-
driven (QD) loss method. The QD loss is a differentiable loss function which is based on the
likelihood principle, thus rendering the NN-based PIs trainable by GD. In order to reduce
the computational cost, the QD loss applies the central limit theorem to approximate the
binomial distribution during the derivation, which has the requirement for the minimum
amount of data (50 points for example [25]) involved in each calculation epoch. If the
minibatch method is used for training, a large batch size should be selected, which may
reduce the generalization performance of the model and cause a waste of computing
resources [26]. Hence, QD loss is unsuitable for training on small sample sets as it may
cause errors due to a lack of data. Thus, the application of QD loss is limited because of the
fact that it is difficult to obtain large sample sets in many real-world tasks [27]. However,
recently, QD loss has received a lot of attention for its diversion and simplicity.

On the basis of the QD loss method, Salem et al. [28] developed the SNM-QD+
method. By introducing the split normal density (SND) functions and penalty functions,
they improved the stability of the training process. However, the method did not solve
the problems of poor training reliability in the case of small-batch data and the gradient
disappearance during training.

Based on a literature review, the following aspects were found to be lacking:

1.  Some existing methods are not able to handle large-scale data because of the high
computational costs, while other methods are unsatisfactory for small-batch data due
to assumptions regarding data distribution. No method that can be applied to all
batch sample sizes at present;

2. Many of the PI generation methods suffer from a fragile training process. Due to the
ubiquitous disadvantage of high computational complexity, existing methods may be
more likely to suffer from problems such as over-fitting, gradient disappearance and
gradient explosion when encountering complex models;

3. Itis difficult to get high-quality point estimates and PIs at the same time.

To address the aforementioned problems, this paper proposes an all-batch (AB) loss
function to construct high-quality PIs. On the basis of making full use of the advantages of
likelihood principles, the proposed AB loss function can be applied to both small and large
batches of samples. With the structure of dual FNNSs, a PI generation framework is also
proposed which can output point estimates and bias estimates to build PIs. The accuracy
and flexibility of the proposed method are validated by experiments conducted on ten
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regression datasets; the results show that the proposed scheme can handle small-batch data.
Different from existing methods, the proposed scheme probes the following strategies:

1.  Instead of using the central limit theorem as the approximator, the AB loss estimates
the likelihood function directly by adopting the Taylor formula, which enables the
AB loss to adapt to both small and large batches;

2. To address the problem of the gradient disappearance which occasionally occurs
during the training by QD loss, a penalty term for misclassification is proposed. The
proposed penalty term can speed up the convergence of the model and improve the
quality of the output Pls;

3. By utilizing the structure of the dual FNNs similar to the MVE method, the point
estimates and the bias estimates can be obtained separately without affecting each
other, which is more flexible in real-world tasks.

The remainder of this paper is organized as follows. Section 2 introduces the AB loss
as well as the proposed PI generation framework. Numerical experiments are conducted
in Section 3. Section 4 discusses the experimental results and the future work. Finally,
Section 5 draws conclusions.

2. Materials and Methods

This section first describes the mathematical concepts of PI, and then introduces the
QD loss method. Finally, the AB loss function as well as the PI construction framework
with dual-FNN structure are built to generate high-quality Pls.

2.1. Prediction Interval

Since PI can be applied in most regression tasks, regression analysis was chosen as
the topic of this paper. In most regression problems, the relationship between input and
output can be expressed as:

y=f(x)+e 1

where x and y are the observation values of input and output respectively, f is the input-
output mapping operator, which refers to the training model and ¢ is the noise with zero
expectation.

To simplify the problem, we assume that the errors are independent and identically
distributed (i.i.d.). Then, the variance of the problem can be expressed as:

o =02 402, 2)
where 72, refers to the model misspecification and parameter estimation variance, and ¢
refers to the noise variance in observation data [29]. The main target of PI is to estimate
these deviations in the form of upper and lower boundaries.

As described in the LUBE method [20], confidence and sharpness are two aspects for
quality evaluation of PIs. Quantifying the quality of PlIs facilitates the construction of an
efficient PI generation model.

2.1.1. Confidence

High-quality PIs should ensure high confidence. In order to quantify the confidence,
the confidence level (1 — a)% is defined as the probability that the observation is contained
by the upper and lower boundaries of PI. Define vector § which represents whether the
current point is captured by PI formally.

o 1,if Yi € [Li, u,'],
pi= { 0,if y; ¢ Ly, Uy, )
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where y; is the observation value, L; and U; represent the lower and upper boundaries of
PI. Thus, the total number of observations captured by PIs can be defined as follows:

c=Y " Bi 4)

According to this, PI coverage probability (PICP) demonstrates the probability that
target values are captured by Pls.
PICP =c/n, ®)

where n represents the total number of the observations. The quality of generated PIs can
be estimated by the comparison between PICP and confidence level [20,30-32].

2.1.2. Sharpness

In addition, high-quality PIs have requirements for both confidence and sharpness.
In most existing methods, sharpness is mainly defined as the distance between the upper
and lower boundaries. It is clear that if the distance approaches infinity, the PICP of the PI
tends to 100%. Thus, to measure the width of PIs, normalized mean prediction interval
width (NMPIW) is defined as follows [20,30,32]:

NMPIW =1/(nR)Y " (U; — L), 6)

where R is the range of the underlying target, U; and L; represent the upper and lower
boundaries of PIs corresponding to the ith sample. To generate high quality PIs, NMPIW
should be reduced as much as possible on the basis of ensuring a certain PICP.

To balance PICP against NMPIW, the coverage width-based criterion (CWC) is defined
as follows [20]:

1,PICP < i ’ @)
CWC = NMPIW(1 + y(PICP) exp(—5(PICP — u))),

3 { 0,PICP > u

where 1 is the confidence level and # is a hyperparameter determining how much penalty
is assigned to PIs with a low coverage probability. Direct PI generation methods like the
LUBE method [20] treat CWC as the target function, which enables the model to be trained
from the perspective of improving the quality of PIs.

2.2. Quality Driven Loss

As for confidence, the QD loss method takes a likelihood-based approach. Assuming
that §; is i.i.d. for each index, the total number of observations captured by PIs c obeys a
binomial distribution, i.e., ¢ ~ Binomial(n, (1 —«)). According to the central limit theorem,
the distribution of ¢ can be approximated by a normal distribution under the condition of a
large sample set.

Binomial(n, (1 —a)) =~ N(n(1 — a),na(1 — a)). 8)

Then, by utilizing the maximum likelihood method, the training goal can be trans-
formed into:
—log L(Q‘B,a) o« (n(1—a) —c)?/na(l — )

= (n/a(1—a))((1 —a) — PICP)% ©

As for sharpness, Pls that fail to capture their targets should not be encouraged to
shrink further [25]. Therefore, the captured Mean PIs Width (captured MPIW) is proposed
as the sharpness measurement.

MPIWeqpr, = 1/¢Y | (U; — L;)B;. (10)
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Finally, the QD loss is given as follows:

Ay max(0, (1 —a) — PICP)?,

(11)

where A is a hyperparameter that controls the importance of confidence vs. sharpness.
To solve the problem that PICP is non-differentiable, the soft version of PICP is
presented as follows:

PICPyp =1/nY ., (o((U; —yi)s) - o((yi — Ly)s)), (12)

where ¢ is the sigmoid function and s is the softening factor. The QD loss method enables
the model to be trained by GD, which greatly reduces the difficulty of implementation, and
can be used in large-scale models.

2.3. All-Batch Loss Function

The limitation of the QD loss is the assumption of data scale caused by the use of
central limit theorem. In order to improve the quality of PIs in the case of small-batch data,
the all-batch (AB) loss function is proposed in this study.

2.3.1. Derivation

Under the assumption of QD loss, the total number of observations captured by
PIs ¢, which is defined in (4), can be represented by a binomial distribution, i.e., ¢ ~
Binomial(n, (1 — «)). Then, the likelihood function can be expressed as:

)(1—a) (13)

To simplify the calculation, instead of using the central limit theorem, the AB loss
adopts the Taylor formula for direct approximation. Thus, the negative log likelihood
(NLL) of the distribution is:

—logLy =~} ;logi+ Y logi+); ;logi (14)
—clog(l—a)— (n—c)loga.

For simplicity, the Taylor expansion of log(1 + x) is introduced.

k+1
log(1+x) =Y, (—1)";‘:1 +o(xF 1), x e (=1,1]. (15)

In order to calculate the equation, x” = 1 + x is introduced to transform the equation,
and two orders of Taylor expansion are taken for the approximation.

3
log(x') ~ —%x’z +2x' — E,x/ € (0,2]. (16)

To meet the requirements of the convergence domain, the NNL is transformed into:

—log Ly = —Yi log 3 + X log 3 + X log (17)
—clog(l—a) — (n—c)loga.

With several common series expansions, the intermediate equation can be obtained as
follows: ' ,
Yiilog(y) ~ 18
—18kn?+ (12k2 +12k)n— 23— 32—k (18)
12n2 )
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Finally, the NNL can be calculated by:

—logLg ~ (} — 2n)(1 — PICP)PICP 19)
—nPICPlog =% — nloga.
During the training process, the output upper and lower boundaries should meet the
following condition.
u; > Yyi > L;. (20)

However, if FNNSs are used as the main model, the division of the upper and lower
boundaries output neurons will be achieved by initializing the network parameters, which
is unreliable. In the QD loss method, the upper and lower boundaries obtained by the
FNNs may thus encounter the following three situations, which may result in gradient
disappearance.

L > U,
u>1L;, > Yi, (21)
yi > U; > L.

To resolve the problem of gradient disappearance, a penalty term is hence applied in
the AB loss and could be described below formally.

_ Ign Li —U; yi — U Li—yi
P= Y (ep(Z5=) Fexp(Z5—) +exp(= =), (22)

where B controls the importance of the penalty term.

As for sharpness, the captured MPIW which is defined as the distance metric of the
upper and lower boundaries is used in the AB loss due to its reliability. Because of the
non-differentiable character of the original PICP, the soft version of PICP is used in AB loss.
Finally, the AB loss is constructed formally:

LOSSAB = MPIWmPt_
+7((3 = §1)(1 = PICPy;) PICPy (23)
—nPICPyy log 124 — nloga) + P,

where 7 controls the importance between confidence and sharpness.

2.3.2. Comparison with QD Loss

Even if the AB loss and the QD loss are derived from the same assumption, there are
many differences between the two methods.

The main difference between the two methods is the different approximation methods
for binomial distribution. The QD loss method applies the central limit theorem as an
approximator, which assumes that the number of sample points is sufficient. Under such
assumptions, each batch should have enough data in the training process, which may
consume more computing resources. The correctness of the training results is questionable
on the small batch of samples. The AB loss, by contrast, adopts the Taylor formula as an
approximator, which may make the best use of the advantages of binomial distribution.
Since AB loss only utilizes the second-order Taylor expansion formula during derivation, it
may introduce numerical errors into the original NNL. However, QD loss approximates
the binomial distribution to a normal distribution, which fundamentally changes the
original assumption. Thus, AB loss may yield more reasonable results. Mathematically,
the proposed method has no limitation on the size of the training set, which expands its
potential for application in deep learning.

Due to the introduction of the penalty term, the AB loss is more stable than the QD
loss. During the training process, when the PICP is low, the use of the QD loss may cause
the problem of gradient disappearance, which may prevent the training from continuing.
The penalty term adopted in the AB loss is conducive to guiding the update of network
parameters in the direction of improving PICP. Moreover, the penalty term ensures that the
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network continues training when the PICP is low, which may improve the stability of the
training process.

Another benefit of the penalty term in the AB loss is that it simplifies the training
process. When adopting the QD loss for training, the output layer should be initialized
according to the range of training data, which limits the application of the QD loss. Never-
theless, when using the AB loss for training, there is no need to independently initialize the
output layer of the network. The neurons of the output layer only need to be distinguished
logically, which simplifies the training process.

2.4. Prediction Interval Generation Framework

In order to get the point estimates and the PIs at the same time, a PI generation
framework with the structure of dual FNNs is proposed in this paper. The generation of Pls
is separated from the implementation details of the core model in the proposed framework.
By changing the structure of the core model, the proposed framework can be applied to
different tasks, such as sequence modeling, classification, etc.

2.4.1. Structure

The basic structure of the framework is described in Figure 1. Two FNNs were adopted
to generate the prediction estimate and the bias estimate respectively. Consequently, the
structure of the prediction model and the bias model could be adjusted separately to meet
the requirements of the task.

ypred.

Model,yeq.

Input(x) Vibias U =Y. Yovias

Modelb;as L = ypredA + yLbias

Figure 1. Schematic of the proposed framework for construction of PIs.

The selection of the prediction network depends on the type of the task, and the bias
network usually utilizes FNNs due to their strong nonlinear approximation ability. In
order to make the output of the model consistent regardless of which structure is used, the
output format of the two models should be the same.

2.4.2. Framework Training

The loss function of the framework includes two parts: prediction loss and deviation
loss. The training process of the framework mainly makes use of the two parts of the
loss function to obtain highly reliable PIs with GD. The prediction loss is the loss function
adopted to train the prediction network, which needs to be selected according to the task,
including L1 loss, Cross-Entropy loss etc. AB loss is chosen to be the main part of the
bias loss, and the parameters of the bias network are adjusted by the bias loss to obtain
high-quality PIs related to the task.

The training process can be described as follows. Firstly, the preprocessed data is input
into the prediction network and the prediction network outputs the prediction estimates.
The process can be expressed below:

Ypred. = fMp,ed, (x)/ (24)

where fy, , represents the model mapping operator of the prediction network, and x
refers to the input data and y,.s. denotes the predict value.
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Then, the preprocessed data is input into the bias network, and the bias network
outputs the bias value.

Ybias = beias (x)' (25)

where f),. - represents the model mapping operator of the bias network and y,,;,, means
the vector contains the upper bias and the lower bias. The upper and lower boundaries
can be calculated by the prediction estimate and the bias estimate.

L= Ypred. + YLbiass

26
u= Ypred. + Yubias (26)

where V1 pis and yyypiss are the lower bias and upper bias.
Since GD is the standard method for model training, a GD-based method was adopted
for parameter updates. And the final loss of the framework is shown as follows:

Loss = Loss yreq. + L0ss ap, (27)
where L0ss 4. is the chosen loss function for the prediction model.

3. Experiments

Numerical experiments were conducted to verify the effectiveness and flexibility of
the proposed scheme. The data sources include two nonlinear datasets with gaussian noise
and exponential noise separately and eight benchmark regression datasets. A comparison
among the MVE method, the LUBE method, the QD loss and the AB loss proved that the
AB loss with the PI generation framework yielded better results.

3.1. Data Description

Table 1 depicts the details of the used datasets. The datasets denote a number of
synthetic and real-world regression case studies from different domains.

Table 1. Dataset used for experiments.

Case Study Target Samples Reference
#1 Nonlinear function with gaussian noise 2000 [25]
#2 Nonlinear function with exponential noise 2000 [25]
#3 Boston housing 506 [33]
#4 Concrete compressive strength 1030 [34]
#5 Energy 768 [35]
#6 Forward kinematics of an 8-link robot arm 8192 [36]
#7 Naval 11,934 [37,38]
#8 Power plant 9568 [39,40]
#9 White wine quality 4898 [41]

#10 Sailing yachts 308 [42]
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In case study 1 and 2, the data are generated from a synthetic mathematical function
shown below [25]:
0.2 x (1.5sin(7tx) 4+ on), (28)

where x is the input term, and oy is the noise term that subjects the normal distribution,
ie., oy ~ N(O, x4), in case study 1, while subjects the exponential distribution, i.e., o5y ~
exp(1/x?), in case study 2. In order to generate the dataset, the input term in each case
study is set to be randomly sampled from interval [—2,2].

In case study 3, a dataset concerning housing prices in the Boston Massachusetts area
was adopted. This dataset is often used to verify the effectiveness of regression analysis
methods. The dataset in case study 4 contains eight features, which are applied to build
a regression model of concrete compressive strength. Case study 5 aims to exploit 12
different building shapes simulated in Ecotect for energy analysis. By using the simulated
posture information of each axis of an 8-link robot arm, case study 6 realizes the forward
kinematic analysis of the robot. Case study 7 is a numerical simulation of a naval vessel
(Frigate) characterized by a Gas Turbine (GT) propulsion plant. The dataset applied in case
study 8 is collected from a Combined Cycle Power Plant over 6 years (2006-2011), which is
used to predict the net hourly electrical energy output of the plant. Case study 9 employs
11 features to predict the quality of white wine. The dataset in case study 10 is proposed
for prediction of residuary resistance of sailing yachts.

3.2. Experiment Methodology

Experiments were conducted on the comparison of PI generation performance among
the MVE method, the LUBE method, the QD loss and the AB loss. In order to ensure the
fairness of the experiment, the PI generation framework proposed in Section 2 was used as
the basic structure in the implementation of the QD loss and the AB loss. In order to get
the best possible results, the PSO method was applied for training in the LUBE method
while the GD with the Adam [43] optimizer was adopted in the MVE method, the QD loss
and the AB loss. Case study 1 compares the performance of the QD loss and the AB loss in
the case of small batches, while case study 2 shows the PI generation performance of the
MVE method and the AB loss under different noises. Other benchmark datasets verify the
reliability and effectiveness of the AB loss on general regression tasks.

As for metrics, a modified CWC was used for model validation. In the original CWC,
it was difficult to achieve an appropriate trade-off between confidence and sharpness; this
was resolved by introducing additional hyperparameters in the modified CWC [44].

PIARW = 1yn Uk
CWC = (14 PIARW)(1 (29)

+7(PICP) exp(—12(PICP — p))),

where 11 and 7, are two hyperparameters that represent the importance between sharp-
ness and confidence. By adjusting these two hyperparameters, the quality of PIs can be
evaluated from different aspects.

In case study 1, due to the specific data distribution, the Cls at the 95% confidence
level can be easily obtained. The relationship between the PI Width (PIW), which can be
estimated by Cls under ideal conditions, and the input variable in case study 1 is described
as the formula below:

PIW = 2 x 0.2 x 1.96 x x2, (30)

where x is the input value.

Therefore, for case study 1, a more reasonable metric is to calculate the Mean Square
Error (MSE) between the predicted PIW and the expected PIW, which is described as
follows:

1
MSEpiw = - 31 (PIWreg; = PIWex ), (31)

where PIW,;; and PIWeyp, ¢ ; are the predicted PIW and the expected PIW.
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The performance of the AB loss and the QD loss were verified by changing the batch
size during training. In order to prove that the AB loss has better performance in small
batches, the minibatch method is applied for training, and the batch size is set to 16, 32, 64
and 128 for experiments. In other benchmark datasets, the models were trained using the
MVE method, the LUBE method, the QD loss and the AB loss separately. The dataset is
divided into training set and test set at a ratio of 7:3, and a batch of 128 sample points is
used for training according to the minibatch method.

3.3. Parameters

Table 2 summarizes the parameters adopted in the experiments. The number of
hidden layer neurons in each FNN is set to 50, and the expected confidence level of the
Pls is set at 95%. Meanwhile, the hyperparameters of the MVE method, the LUBE method,
the QD loss and the metric CWC are set according to the original paper [19,20,25,44]. The
coefficient of the penalty term S is set at 1.2 to ensure that it has a small impact during
normal training and a big impact when errors occur. The weight parameter of the AB loss
is set to 0.03 according to the results of the numerical experiments in case study 1. In all
benchmark experiments, to meet the characteristics of each dataset, the weight parameters
of the AB loss and the QD loss is set separately to a value that makes the PICP of the result
at least equal to the confidence level, which is 95%.

Table 2. Parameters used in the experiments.

Method Parameter Numerical Value
C n 0.05
ommon ngoch 1000
7 50
LUBE " 095
A 15
QD Loss s 160
A 0.03
AB Loss B 12

In the LUBE method, due to the complicated network structure, it is hard to find
parameters that meet the requirements of the confidence level by PSO. Therefore, the best
result after 1000 rounds of iterative search is adopted as the final result in the implementa-
tion of the LUBE method.

3.4. Model Comparisions

In case study 1, after changing the batch size, the performance of the QD loss and the
AB loss is shown in Figures 2 and 3. Compared with the PIs generated by QD loss, the PIs
generated by AB loss are closer to the original curve on small batches.

The median values of PICP, MPIW, CWC and MSE metric values of each experiment
in case study 1 are shown in Table 3. In the case of small batches, the model trained with
AB loss has a significant improvement in MSE. As for the CWC metric, using AB loss has
an improvement of up to 20%, which is mainly because of the average situation which is
considered by CWC metric. The results prove that the AB loss is more reliable than the QD
loss in the case of small batches.
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Figure 2. Comparison of PI boundaries for the AB loss by changing the batch size. The upper and lower boundaries are the
predicted 95% PIs. The predicted value is generated by the prediction network in the framework.
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Figure 3. Comparison of PI boundaries for the QD loss by changing the batch size. The upper and lower boundaries are the
predicted 95% PIs. The predicted value is generated by the prediction network in the framework.
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Table 3. Statistical characteristics of PICP, MPIW, CWC and MSE for the QD Loss and the AB loss
with changing batch size.

Batch QD Loss AB Loss
Size PICP (%) MPIW CWC MSE PICP (%) MPIW CWC MSE
16 96.24 1.21 625.40 0.29 95.20 0.94 503.70 0.14
32 96.24 1.17 584.94 0.32 96.74 1.01 515.22 0.13
64 95.49 0.95 488.79 0.20 96.99 1.03 557.50 0.08
128 95.49 0.95 506.38 0.13 97.24 1.02 536.68 0.07

Figure 4 shows the results of the MVE method and the AB loss under various types
of noise. According to the results, the MVE outputs PIs close to the generated data for
normal noise, but struggles with exponential noise, while the AB loss approximates both
reasonably. Such results are consistent with the assumption of the variance distribution in
the MVE method. They also verified that the AB loss may not be restricted by the variance
distribution, which is more flexible than the MVE method.
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Figure 4. Comparison of PI boundaries for the MVE method and the AB loss under normal noise and exponential noise.
The upper and lower boundaries are the predicted 95% PIs.

According to Table 4, the MPIW of the QD loss and the AB loss with GD is smaller
than the LUBE method with PSO, which indicates that the QD loss and the AB loss can
generate higher quality PIs. Due to the heuristic search algorithm, it is difficult to find the
optimal result in a limited time when there is no restriction on the data. Therefore, the
implemented LUBE method performed poorly in the experiment. According to the CWC
metric values, in case study 3, 4 and 7, the performance of the QD loss is slightly better
than the AB loss while in other cases, the AB loss gives a better performance. The result
confirms that the AB loss can generate high-quality PIs in regression tasks.
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Table 4. Statistical characteristics of PICP, MPIW and CWC for the LUBE method, the QD loss and
the AB loss in 8 benchmark experiments.

Case LUBE Method QD Loss AB Loss

Study PICP(%) MPIW PICP(%) MPIW CWC PICP(%) MPIW CWC
#3 94.07 5.89 95.00 1.15 344.00 96.00 1.16 355.90
#4 94.17 498 95.60 1.34 141.20 95.60 1.41 150.00
#5 96.09 4.19 96.10 1.16 86.57 100.00 0.73 72.71
#6 94.90 5.33 95.10 1.72 786.90 96.80 1.68 760.66
#7 92.37 342 96.70 3.23 300.90 100.00 3.38 314.70
#8 95.13 3.72 95.80 0.99 339.40 95.40 0.94 321.30
#9 94.00 6.90 95.70 442 562.60 97.80 3.85 500.30
#10 96.10 5.31 100.00 0.37 26.10 98.39 0.28 18.96

The weight parameter is vital for model training, which determines the quality of
PI generated by the trained model. By adjusting the weight parameters, the importance
between confidence and sharpness can be determined. A good model should be sensitive
to the change of the weight parameter, which makes it more convenient for parameter
adjusting.

Figures 5 and 6 illustrate the relationship between the weight parameter and the
metric values obtained after convergence when using the AB loss and the QD loss. With
the increase of the weight parameter, the PICP obtained by the AB loss increases and
approaches 1, while the PICP obtained by the QD loss oscillates.
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Figure 5. Relationship between the weight parameter and the value of PICP, MPIW and CWC when
using AB loss.
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Figure 6. Relationship between the weight parameter and the value of PICP, MPIW and CWC when
using QD loss.
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4. Discussions

Case study 1 demonstrates that the model trained by the AB loss obtains higher quality
PIs under samples of all batch sizes if compared with the QD loss. According to Table 3,
the model obtained by QD loss does not fit the superimposed noise well for batch sizes
of 16 and 32. The performance of the QD loss improves gradually with the increasing of
batch size for training. This implies that the QD loss may be inadaptable to small sample
sets, while the AB loss performs well for all batch sizes. The AB loss takes advantage of
the direct application of the Taylor expansion to approximation, without the necessity of
changing the basic assumption of the binomial distribution, which allows it to solve more
practical problems while ensuring accuracy.

Many traditional PI construction methods were built based on the various assumptions
regarding data distribution, which may be unsatisfied in real-world datasets. However,
as a distribution-free method, the AB loss is more suitable for practical applications. As
shown in Figure 4, compared with traditional methods such as MVE, more reasonable
results may be obtained when different noises are added to the dataset. Thus, there is no
limitation on data distribution when utilizing the AB loss for model training. The results
of numerical experiments also prove that the AB loss can obtain higher quality PIs than
existing state-of-the-art methods in most cases.

In addition, it can be seen that the AB loss is more sensitive to confidence measurement
than the QD loss, which indicates that the PIs generated by the proposed method are more
likely to meet the required confidence level. When utilizing the AB loss, more energy should
be devoted to sharpness measurement, which may result in high quality PIs. Meanwhile,
from the curves of CWC with weight parameters in Figures 5 and 6, it can be seen that the
best parameters are easier to find when adopting AB loss, which simplifies the parameter
adjustment process and makes it more convenient to deploy in practice.

In summary, the results prove the reliability and the quality of PIs constructed by the
AB loss. By introducing the AB loss into the PI generation model, it is possible to use small
batches for model training, which is appropriate in many real-world tasks.

Future works may be investigated in the following aspects:

1.  The realization of the AB loss in this study did not consider the impact of model
uncertainty. Since two networks are used to predict the prediction estimate and the
bias estimate, the uncertainty of the model was not determined in the implementation.
It is possible to use methods such as bootstrap to estimate model uncertainty to
improve the quality of the results;

2. The existence of the penalty term means it is not necessary to initialize the model be-
fore the training process, although this feature increases the computational complexity.
More efforts should be made to simplify the penalty term;

3. Itis difficult to adjust the weight parameter of the AB loss on different datasets. A
more efficient way should be explored to balance the contradiction between confi-
dence and sharpness.

5. Conclusions

An all-batch (AB) loss function is proposed in this work for the construction of PIs,
and a high-reliability PI generation framework is constructed to generate Pls as well
as point estimates based on the proposed AB loss and the dual-FNN structure. The
proposed AB loss avoids restriction on the data scale in QD loss, which makes it suitable
for small batches. By taking full advantage of likelihood theory, the proposed scheme can
perform well under all batch sizes of samples. A comparison among the MVE method,
the LUBE method, the QD loss and the AB loss was conducted to prove the flexibility
and effectiveness of the proposed scheme. The proposed scheme was advantageous in
terms of its strong adaptability, simple structure and high degree of stability, and may
thus be applicable to solve various practical problems, such as wind speed forecasts,
landslide displacement, electricity load predictions, etc. By combining various advanced
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machine learning technologies such as cross validation, pruning, dropout, etc., the quality
of constructed prediction intervals may be further enhanced.
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