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Abstract: This study classified the gait patterns of normal and stroke participants by using time- and
frequency-domain features obtained from data provided by an inertial measurement unit sensor
placed on the subject’s lower back (L5). Twenty-three participants were included and divided into
two groups: healthy group (young and older adults) and stroke group. Time- and frequency-domain
features from an accelerometer were extracted, and a feature selection method comprising statistical
analysis and signal-to-noise ratio (SNR) calculation was used to reduce the number of features. The
features were then used to train four Support Vector Machine (SVM) kernels, and the results were
subsequently compared. The quadratic SVM kernel had the highest accuracy (93.46%), as evaluated
through cross-validation. Moreover, when different datasets were used on model testing, both the
quadratic and cubic kernels showed the highest accuracy (96.55%). These results demonstrated the
effectiveness of this study’s classification method in distinguishing between normal and stroke gait
patterns, with only using a single sensor placed on the L5.

Keywords: clinical gait analysis; gait classification; feature selection; Support Vector Machine; stroke
gait; wearable sensor

1. Introductions

Wearable devices, especially ones equipped with accelerometers and inertial mea-
surement unit (IMU) sensors, have been widely used in gait analysis or physical activity
monitoring [1–4]. Wearable devices can be used not only for calculating important gait
parameters, such as spatiotemporal parameters [1–3], or for investigating the gait stability
and variability between normal and pathological gait [4–7], but also for classifying different
types of gait patterns, for example, Complex Regional Pain Syndrome (CPRS) gait pat-
tern [5] or Parkinson’s disease gait pattern [6]. Wearable devices can open up the possibility
of collecting huge amounts of data during daily life conditions. Then, the bigger amount
of data collected, combined with specific feature extraction process, will lead to possible
application in clinical gait analysis, such as early detection of gait movement disorder.
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Compared to the conventional method, gait classification with a wearable device would
increase the mobility of gait assessment, while still minimizing the subject’s discomfort,
and it finally would provide the long-term goal of gait assessment in everyday life, in
order to be able to do early detection of gait alteration. The gait parameters calculated and
analyzed with wearable devices are not only limited to parameters related to clinical-gait
performance, such as spatiotemporal parameters (stride time, step time, step length, etc.),
but also features extracted from wearable signals, such as an accelerometer or gyroscope.
In fact, a gait spatiotemporal characteristic can also be represented based on features
extraction from a set of spatiotemporal local descriptors from gait video sequences [7].

Furthermore, Sejdic et al. examined gait patterns, using time, frequency, and time–
frequency domain features, from an accelerometer signal, which was placed on the lower
back of the subject [8]. The statistical analysis revealed that some of the extracted fea-
tures could differentiate between the healthy and clinical population, which, in that case,
included Parkinson’s disease and Peripherals Neuropathy [8]. Moreover, some studies
have used different machine learning techniques to discriminate neurodegenerative dis-
eases, such as Parkinson’s disease and Huntington’s disease [9,10]. In 2017, Papavasileiou
et al. proposed a method for successfully distinguishing patients with post-stroke and
Parkinson’s disease from healthy participants, by using a pair of smart shoes that can
measure the ground contact force on both feet [11]. Besides gait pattern, gait stability was
also being monitored by wearable devices. In 2012, Iosa et al. examined gait stability and
harmony in children with Cerebral Palsy (CP) [9]. The gait stability itself can be quantified
by measuring the upper-body acceleration’s dispersion and smoothness. Meanwhile, the
gait harmony is defined as the capacity of our body to transfer the symmetry and rhythmic
movement of intra-limb. The gait harmony itself can be calculated by the ratio between the
even and odd harmonics from the acceleration signal; it can also be calculated by the ratio
between gait parameters from one leg to the opposite leg [9]. Their study found a general
reduction of gait stability, which showed by higher root mean square (RMS) acceleration,
peak-to-peak angular velocity, and minimal value of acceleration in children with CP [9].

In terms of gait-pattern classification with wearable devices, previous studies from
Hsu et al. [10] and Caramia et al. [11] compared several combinations of IMU sensors
placed on the lower limb and trunk. In addition, their studies achieved 89.1% accuracy and
96% accuracy, respectively [10,11]. However, compared to our study, which used only a
single IMU sensor, those studies used several IMU sensors placed on the lower limb and
trunks. Furthermore, the other two studies from Mannini et al. [12] and L. Wang et al. [13]
utilized less sensors: three IMUs on both shank and lumbar spine, and two shank-mounted
accelerometers, respectively. Those studies classified multi-class gait patterns from healthy,
post-stroke, Huntington’s disease, and Parkinson’s disease with accuracy of 90.5% and
93.9%, respectively [12,13].

Therefore, to the best of our knowledge, there is no study which used data only from
a single IMU sensor placed on the lower back, for differentiating normal and stroke gait
patterns. Accordingly, in this study, we classified normal and stroke gait patterns by using
time and frequency features of data obtained from only a single IMU sensor placed on a
subject’s lower back (L5). We hypothesized that, the time- and frequency- domain features
from acceleration of lower back is able to classify normal and stroke gait pattern with the
help of feature selection and machine learning classifier.

2. Materials and Methods
2.1. Participants

Twenty-three participants participated in this study, which comprised 7 healthy young
adults (age: 23.5 ± 1.9 years), 4 healthy older adults (age: 70.5 ± 5.3 years), and 12 patients
with stroke (age: 63.4 ± 6.9 years), and all of them were divided into two groups (healthy
group and stroke group).
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The healthy young and older adults were free from any musculoskeletal pathology
that may interfere with the experimental results. Patients with stroke should be able to
walk independently, without an assisting device. We categorized the young and elderly
participants as the healthy group. This experimental protocol was approved by local
Institutional Human Research Ethics Committee. All the participants were informed and
signed written consent before experiment.

2.2. Equipment

A Trigno™ wireless IMU sensor (Delsys Inc., Boston, MA, USA) was used in this study.
The IMU sensor comprises a triaxial accelerometer (sampling rate 148 Hz; range ±16 g),
a gyroscope (sampling rate 148 Hz; range ±2000◦/s), and a magnetometer gyroscope
(sampling rate 74 Hz). All the three sensors were coupled with a 16-bit analogue-to-digital
converter. However, in this study, we used only the data from the accelerometer and
gyroscope.

The wireless IMU sensor was synchronized with a three-dimensional (3D) motion-
capture system comprising seven cameras (sampling rate 200 Hz) (Qualisys AB, Göteborg,
Sweden) and three force platform devices, namely two AMTI (Advanced Mechanical Tech-
nology, Inc., Watertown, MA, USA) force platforms (sampling rate 2000 Hz) (Advanced
Mechanical Technology, Inc., Watertown, MA, USA) and one Kitsler force platform (sam-
pling rate 2000 Hz) (Kitsler Instruments, Winterthur, Switzerland). All the equipment,
including the camera, force plates, and IMU sensors, were synchronized via a trigger
line and controlled with Qualisys Track Manager QTM (Vers. 2.12; Qualisys AB, Göteborg,
Sweden). However, because of the different sampling rates of the motion-capture system
and wireless wearable devices, the IMU sensor sampling rate was up-sampled to 2000 Hz,
matching that of the force platform.

2.3. Experimental Protocol

Retroreflective markers were placed on the subject’s lower extremity and secured
with medical-grade tape. In total, there were 30 markers placed on the bilateral hip, knee,
and ankle segments of the subject. Subject static calibration was performed before a level
walking trial, with the subject standing in the neutral position on one of the force platforms.

The IMU sensor was placed on the subject’s lower back (L5), according to previous
studies using wearable IMUs for gait analysis [8,14,15], and secured with medical-grade
tape. After the static calibration process was completed, the participants were asked to
perform level walking for approximately 12 m. The three force platforms were placed at
the same floor level in the middle of the walking route, so that the participants could step
on the three force platforms consecutively. Figure 1 shows the illustration of synchronized
sensor and motion-capture-system equipment. Each subject performed six repetitions of
the level-walking trial at his/her self-preferred speed.

The trajectory of each marker and the ground reaction force (GRF), acceleration, and
angular velocity data were recorded and exported to .c3d files, for further processing.
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Figure 1. Illustration of synchronized sensor and equipment (motion-capture system). IMU, inertial measurement unit;
AMTI, Advanced Mechanical Technology, Inc. (Watertown, MA, USA).

2.4. Data Processing and Feature Extraction

The 3D trajectory data from the motion-capture system were labeled, using QTM 2.12
software. After the labeling process, the data were exported in .c3d format, for further
analysis with Visual 3D Professional (C-Motion Inc., Germantown, MD, USA) software.

In Visual 3D software, the trajectory data were combined with the GRF data, to define
the heel-strike (HS) and toe-off (TO) gait events. The defined HS and TO events were
used for data segmentation. The 3D acceleration data were filtered by using a fourth-
order Butterworth low-pass filter with a cutoff frequency of 2 Hz [16,17]. Then, the events
defined using Visual 3D were applied to segment the acceleration data into one stride (HS
to another HS on the same foot). The filtered and segmented data could only be used
with the time-domain features. The time- and frequency-domain features were extracted
for each of the three axes respectively. In this study, we decided to used data from a
3D-motion-capture system, to define the gait events, since we included stroke patients as
our subject, and according to our best knowledge, there is no validated algorithm to define
gait cycle for stroke patient population from an accelerometer placed on lower-back.

The problem of automatic gait-event detection with a wearable device was that the
algorithm was developed specifically for particular sensor placement. For example, Perez-
Ibara, in 2020 [18], compared some algorithms that used a heel-placed sensor to identify
gait event, and Gadaleta et al., in 2019, used 3 sensors placed on the ankle and L5, with
a deep learning method, to identify gait event [19]. Moreover, even if we could find an
algorithm that used the same sensor placement, it may not validate abnormal gaits, like
hemiparesis, myelopathic, or other neurological disease gait. Perez Ibara et al. proved that
none of the available algorithms in the literature could maintain high accuracy when being
used to identify gait event on hemiparesis or myelopathic subjects, even though they had
good results on normal subjects [18]. Nevertheless, Del Din et al. successfully validated
gait-event detection with an accelerometer on a Parkinson’s disease patient, but still not on
hemiparesis or stroke patients [15]. Therefore, in our study, we preferred to used data from
a 3D-motion-capture system for gait-event detection.

The time-domain features extracted in this study were standard deviation, skewness,
and kurtosis of the acceleration in the vertical, anteroposterior, and mediolateral directions.
The root mean square (RMS) of the acceleration data and peak-to-peak value of the gy-
roscope in the vertical, anteroposterior, and mediolateral directions were also extracted
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to examine gait stability, according to previous studies in which gait stability have been
examined by using wearable devices [9,20–22].

The frequency-domain features extracted in this study were peak frequency [8,23],
bandwidth, lower bound frequency, upper bound frequency, power at 99% occupied
bandwidth, and power at half-power bandwidth. All the accelerometer and gyroscope
signal processing and feature extraction procedures were performed by using MATLAB
(The MathWorks Inc., Natick, MA, USA). Table 1 presents the list of features and their
descriptions.

Table 1. Features number, name, and abbreviation.

Feature No. Name Abbreviation

1–3 Acceleration SD on 1 stride gait cycle SD ACC V/AP/ML
4–6 Acceleration Skewness on 1 stride gait cycle Skew ACC V/AP/ML
7–9 Acceleration Kurtosis on 1 stride gait cycle Kurt ACC V/AP/ML

10–12 Acceleration RMS on 1 stride gait cycle RMS ACC V/AP/ML
13–15 Peak-to-peak angular velocity on 1 stride gait cycle P2P Gyro V/AP/ML
16–18 Acceleration first dominant frequency FD Freq V/AP/ML
19–21 Acceleration band power on 3 dB bandwidth Power 3dB V/AP/ML
22–24 Acceleration bandwidth frequency on 3 dB bandwidth BW 3dB V/AP/ML
25–27 Acceleration lower bounds frequency on 3 dB bandwidth Flo 3dB V/AP/ML
28–30 Acceleration upper bounds frequency on 3 dB bandwidth Fhi 3dB V/AP/ML
31–33 Acceleration band power on 99% occupied bandwidth Power all V/AP/ML
34–36 Acceleration bandwidth frequency on 99% occupied bandwidth BW all V/AP/ML
37–39 Acceleration lower bounds frequency on 99% occupied bandwidth Flo all V/AP/ML
40–42 Acceleration upper bounds frequency on 99% occupied bandwidth Fhi all V/AP/ML

2.5. Statistical Analysis and Feature Selection

One-way ANOVA was performed to statistically determine the difference between
the groups for all extracted features. A Tukey post hoc test was also performed for multiple
comparisons between groups for each extracted feature. Statistical significance (α) was set
at 0.05. All statistical analysis procedures were performed by using SPSS Version 24.0 (IBM
Corp, Armonk, NY, USA). A post hoc power analysis was performed on statistically differ-
ent features determined from one-way ANOVA [24]. The power analysis was performed
with G*Power software (ver. 3.1.9.2; Heinrich-Heine-Universität Düsseldorf) [24].

Two stages of feature selection were performed in this study. After obtaining the
statistically different features from the post hoc test results, the second stage of feature
selection was then performed by calculating the signal-to-noise ratio (SNR) [25]. The SNR
is used to rank features and define how well the feature can discriminate between two
classes. The SNR can be calculated by using the following formula:

SNR =
(µclass 1 − µclass 2)

(σclass 1 + σclass 2)
(1)

where µclass 1 and µclass 2 are the mean value of features of classes 1 and 2, respectively;
σclass 1 and σclass 2 are the standard deviation of the features of classes 1 and 2, respectively.
After the calculation of the SNR and ranking of all the features, four features with the
highest SNR score were selected to be used as features for the classification model.

2.6. Classification

The Support Vector Machine (SVM) classification method, a powerful method that has
been widely used in many areas, including human-motion and gait-pattern classification,
was used in this study [12,26–31]. This geometry-based classifier produces the largest
margin between two classes by constructing boundaries that separate all data points of
one class from the other class. In this study, the aim of the SVM classification was to find
Optimal Separation Hyperplane (OSH) between healthy and stroke patients groups. SVM
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finds the OSH margin by maximizing the distance between class. That can happen by
transforming the input data into a higher dimensional space by calculating the means of a
kernel function. Then, the separation hyperplane can be constructed between the 2 classes
in the transformed space [32].

Training datasets from selected features were used to train four SVM kernels (lin-
ear, Gaussian, quadratic, and cubic), by employing the Classification Learner toolbox in
MATLAB [33]. From all 23 subjects, 18 subjects (9 from healthy group and 9 from stroke
group) were used for training and validation purpose; meanwhile, the others 5 subjects
(2 from healthy group and 3 from stroke group) served as the unseen testing dataset. Since
each of subjects completed 6 trials of the level walking task, there was a total of 30 testing
datasets (12 datasets from normal group and 18 datasets from stroke group). Tenfold
cross-validation was performed to validate the models [12]; then, the final trained model
was tested on the unseen 30 testing dataset, as explained before.

The performance of the SVM classifier was validated by using the following three
metrics [26,34]:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (2)

Sensitivity =
TP

TP + FN
× 100% (3)

Speci f icity =
TN

FP + TN
× 100% (4)

where TP and TN are the number of true positives and true negatives, respectively. FP
and FN are the number of false positives and number of false negatives, respectively. In
this study, TP was defined as the classifier correctly identifying a stroke gait, and TN was
defined as the classifier correctly identifying a normal gait.

The classifier accuracy indicates the overall detection accuracy. Sensitivity refers to the
accuracy of the classifier in recognizing the stroke gait condition. Specificity is defined as
the ability of the classifier to avoid false detection of normal gaits [26]. The summary of the
methodology is shown in Figure 2.
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Figure 2. Diagram of classification method from data pre-processing, feature extraction and gait classification with Support
Vector Machine (SVM) classifier.

3. Results
Feature Extraction and Selection

Forty-two features were extracted from the time- and frequency-domain accelerom-
eter and gyroscope data. Specifically, from time-domain acceleration data (12 features),
time-domain angular velocity data (3 features), and frequency-domain acceleration data
(27 features). Additionally, among the 42 features, only 15 showed a significant difference
between the young–elderly and stroke participants, whereas only one feature showed a
significant difference between all groups.
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The 15 features that showed a significant difference between the young–elderly and
stroke participants exhibited no significant difference between the young and elderly
participants (p-value < 0.05). These are outlined as follows: the acceleration standard
deviation in the vertical and anteroposterior directions, acceleration skewness in the vertical
direction, acceleration RMS in the vertical and anteroposterior directions, first dominant
frequency in the anteroposterior direction, power at 3 dB bandwidth in the vertical and
anteroposterior directions, lower and upper bound frequency at 3 dB bandwidth in the
anteroposterior direction, band power at 99% occupied bandwidth in the anteroposterior
and mediolateral directions, bandwidth, and upper bound frequency at 99% occupied
bandwidth in the mediolateral direction.

The result of frequency characteristic of acceleration on three different axes was
calculated by Fast Fourier Transform (FFT), and the result is show in Figure 3. Among these
15 features, the mean value of features from the young and elderly groups was always
higher than that of features from the stroke participants.

This study classified normal and stroke gait patterns, using data obtained from the
IMU sensor placed on the subject’s lower back (L5); therefore, we only selected 15 features
with significant difference between the young–stroke and elderly–stroke groups. The post
hoc test revealed the achievement of statistical power, and the SNR value was calculated
for those 15 features; the results are listed in Table 2. The result from the statistical power
calculation revealed that all the significantly different features had a statistical power of
more than or equal to 0.8. This statistical power analysis indicated that there was lower
probability of making Type II error (false negative). In other word, with our current sample
size, we had a higher probability of detecting an effect when there was an effect.

Table 2. List of statistically significant features and signal-to-noise ratio (SNR) value.

Feature
Number

Feature Name
(Abbreviation)

p-Value
(ANOVA)

Achieved
Statistical Power SNR Value

1 SD ACC V 0.000 0.99816 0.42581
2 SD ACC AP 0.000 0.99999 0.37793
4 Skew ACC V 0.050 0.79921 0.17291
10 RMS ACC V 0.000 0.99810 0.42377
11 RMS ACC AP 0.000 0.99999 0.37786
17 FD Freq AP 0.002 0.99990 0.35230
19 Power 3dB V 0.001 0.90132 0.40920
20 Power 3dB AP 0.004 0.82464 0.39399
26 Flo 3dB AP 0.001 0.99994 0.35812
29 Fhi 3dB AP 0.002 0.99981 0.33804
31 Power all V 0.000 0.98057 0.41361
32 Power all AP 0.000 0.99999 0.53191
33 Power all ML 0.038 0.80151 0.15502
36 BW all ML 0.002 0.91135 0.33509
42 Fhi all ML 0.002 0.91121 0.32780

The second stage of feature extraction was performed for the 15 features. The SNR
was calculated for each feature, and the features were ranked according to the calculated
SNR values. The four features that had the highest SNR values were selected for SVM
training, and their description is explained below:

• Root mean square of acceleration on vertical direction (RMS ACC V): calculated from
root mean square of vertical acceleration data on one stride gait cycle [9,20–22].

• Standard deviation of acceleration on vertical direction (SD ACC V): calculated from
standard deviation of vertical acceleration data on one stride gait cycle [9,20–22].

• Band power on 99% occupied bandwidth on anteroposterior acceleration (Power
all AP): calculated from 99% occupied bandwidth of the result from Fast Fourier
Transform on anteroposterior acceleration data during whole duration of level walk-
ing [8,23].
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• Band power on 99% occupied bandwidth on vertical acceleration (Power all V): cal-
culated from 99% occupied bandwidth of the result from Fast Fourier Transform on
vertical acceleration data during whole duration of level walking [8,23].
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SVM training, coupled with 10-fold cross-validation, was performed with four kernels
(linear, Gaussian, quadratic, and cubic). Thereafter, a set of test data was used to train
the models. The results derived for the models and performance assessment are shown
in Table 3. The performance index table obtained from the cross-validation of the models
showed that the SVM classifier with the quadratic kernel had the highest accuracy (93.46%),
whereas the SVM classifier with the cubic kernels had the lowest accuracy (90.65%). How-
ever, testing the trained models by using different test datasets revealed that both the
quadratic kernel and cubic kernel had the highest accuracy (96.55%), whereas the linear
and Gaussian kernels had the lowest accuracy (89.29%). Additionally, the model with
the linear SVM kernel had the highest sensitivity (92.16%) on train/validation dataset;
meanwhile, the quadratic and cubic kernels had the highest sensitivity (94.4%) on the
testing dataset. The specificity assessment results revealed that all SVM kernels achieved
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100% specificity, indicating that the four models can avoid misclassification of normal and
gait data.

Table 3. Classifier performance assessment result of four different SVM kernel classification.

Performance Index SVM Linear SVM Gaussian SVM Quadratics SVM Cubic

Train/Validation
Accuracy (%) 91.59 92.52 93.46 90.65

Sensitivity (%) 92.16 90.20 90.20 88.24
Specificity (%) 91.07 94.64 96.43 92.86

Testing
Accuracy (%) 89.29 89.29 96.55 96.55

Sensitivity (%) 82.35 82.35 94.44 94.44
Specificity (%) 100.00 100.00 100.00 100.00

4. Discussion

We classified normal and stroke gait patterns by using data from an IMU sensor
placed on the subject’s lower back (L5). First, the accelerometer and gyroscope data
were segmented based on gait event, which was defined by a 3D-motion-capture system.
Then, the time- and frequency-domain features were extracted from the segmented data,
and the features which showed statistically significant differences between groups were
selected for next-stage feature-selection process. The second stage of the feature-selection
process calculated the SNR values of the features and ranked them accordingly. The
results from the second-stage features selection were used to train four SVM kernels,
and the trained models were used to test a different test dataset. To the best of our
knowledge, this study is the first to classify normal and stroke gait patterns by using
features obtained from an IMU sensor placed on the subject’s lower back. A previous
study from Mannini et al., in 2016, used two sensors placed on the shank and waist, and
then classified three different gait patterns by using features from the Hidden Markov
Model (HMM) [12]. Meanwhile, our study used only one sensor placed on subject’s lower
back and extracted features from the time- and frequency-domain features of the sensor.
Moreover, both time- and frequency-domain features were selected, instead of selecting
only time-domain features, because previous studies have shown that frequency-domain
features have unique characteristics that can discriminate between normal and pathological
gait patterns or activities [8,12,33,35,36]. A study performed frequency-domain analysis of
gait by using an accelerometer, demonstrating the acceleration frequency characteristics of
human gait [23,37].

Feature selection through statistical analysis and SNR calculation was performed to
obtain minimum redundancy, implying that the selected features should be maximally
different from each other and have maximum relevance, as well have the strongest cor-
relation with the target variable [29]. The statistical analysis acted as the first stage of
feature selection, by indicating which feature has significant differences between groups.
Furthermore, the second level of feature selection was done by the SNR calculation, which
ranked the selected features and demonstrated how well the features could discriminate
between two classes.

One of the selected features was the acceleration RMS in the vertical direction, which
was related to gait stability. RMS of acceleration is commonly used in gait analysis study
due to its easy calculation and has clear physical value [38]. Mizuike et al., in 2009,
examined the RMS of acceleration data from normal and stroke subjects, while doing level
walking with self-preferred speed. The result showed that the raw RMS of acceleration in
three different axes was significantly lower in the stroke group, as compared to the elderly
group [38].

A previous study using upper-body acceleration investigated gait stability between
stroke and normal participants and revealed that the acceleration RMS of stroke participants
was slightly smaller than that of the healthy control group [39]. This finding is in agreement
with our finding, which indicates that the acceleration RMS in the vertical direction was
significantly smaller in the stroke participants than in the healthy participants (young
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and elderly). Therefore, this feature yielded a satisfactory SNR value, indicating adequate
discrimination between the two classes.

Furthermore, the data segmentation into specified gait-event bases, like heel strike
or toe-off, was important in our study, because the features that may be useful happened
during that specified gait event. The level-walking trial performed by each subject included
the phase where the subjects prepared to walk and stop their walk after finishing the
trial, thus segmenting the data of the whole duration of the walk into each independent
stride (from heel-strike to another heel-strike) was important to make clean data for the
classification model. Since SVM relies on hand-crafted features, feeding the classifier model
with clean data and highly correlated features is important to produce classifier with high
accuracy. Moreover, the duration of each subject’s stride or step time was different; thus,
segmented data in a constant time frame will create less meaningful features, since the
segmentation was created on different gait events. However, there is also a possibility to
combine the features segmented based on gait-event with features extracted from whole
duration data, such as being done by Rehman et al., in 2020, which used whole duration-
based features extraction in forms of signal complexity, signal power-spectral-density, and
signal magnitude [2].

Trained model validation showed that the SVM classifier with the quadratic kernel
had the highest accuracy among the other three models. However, when the trained models
were tested by using different testing datasets, both the quadratic and cubic kernels had
the highest accuracy (96.55%). Among the 18 stroke datasets, these models misclassified
only one subject as a normal subject. This result was anticipated, because the misclassified
data came from the subject with mild impairment condition, which may not affect the
subject’s gait patterns significantly. According to a previous study classifying normal and
pathological gait patterns, this result is also expected because this type of classification
method focused on gait alteration caused by pathology, not on the pathology itself [12].
Testing model specificity revealed that all SVM kernels exhibited 100% specificity, indicating
that no normal subject was misclassified with the stroke gait pattern. This result can be
attributed to the mean value derived for the elderly and young participants, which was
always greater than the stroke participants, when a significant difference existed between
them.

Compared with state-of-the-art of the studies, our result achieved the best accuracy,
with a testing result of 96.55%. In 2009, Kaczmarczyk et al. classified different gait patterns
of post-stroke patients with only a 3D-motion-capture system and not using any wearable
devices [40]. Their result showed accuracy of 100% and 86% with kinematics input from the
lower limb. However, this study did not use any wearable sensor; thus, it was anticipated
that the classification result will be good because it used the golden standard of the 3D-
motion-capture system [40]. Furthermore, if we compared with more recent published
studies that used a wearable device to classify different gait patterns, we found that our
result still outperformed the best result from Caramia et al., in 2018, which produced 96%
accuracy [11]. However, they achieved their result by using eight IMU sensors attached to
the lower limbs and trunk. In addition, another study from Mannini et al., in 2016, used only
three IMU sensors placed on both the shank and lumbar spine and achieved 90.5% accuracy
for classifying healthy elderly, post-stroke, and Huntington’s disease groups [12]. The
study from Mannini et al. [12] only achieved better results against a study from Hsu et al.,
in 2018, which compared several combinations of seven IMU placements and achieved
89.1% accuracy when using a shank-based sensor and decision-tree-based model [10].
Another study that used only two shank-mounted accelerometer achieved its best result
with 93.9% accuracy of classifying multi-class gait patterns (healthy, peripheral neuropathy,
post-stroke, and Parkinson’s disease) [13]. To summarize, our study outperformed the
other studies which used wearable devices to classify different types of gait patterns; even
more important, our study achieved the result by using only a single IMU sensor placed
on the lower back (Table 4).



Appl. Sci. 2021, 11, 1541 11 of 14

However, there are still limitations in our study: first, the gait-event definition that
still used data from a motion-capture system. Further investigation is required to replace
the motion-analysis system to classify the walking cycle, using IMU sensor data, so that
the amount of equipment required can be reduced and simplified. Second, the analysis
and data processing was not being done in real-time manners. In the future, an additional
mobile-computing device may be considered to be used, in order to create real-time
application for clinical setup/hospital.

In terms of future application, this study opened up the possibility for building an
in-home healthcare monitoring system, together with other wearable sensor algorithms for
gait event detection, gait analysis, and physical activity classification. On those systems,
wearable devices will take part in monitoring the user’s gait pattern in home; thus, early
detection of gait alteration could be known before the user gets a medical diagnosis from a
hospital. Furthermore, for elderly people, the application will not be limited to monitoring
the gait pattern but also to monitor their activity intensity and fall detection. All of those
applications for in-home healthcare monitoring will become valuable data sources for
clinicians in hospitals, in order to create more precise treatments for each patient.

Table 4. Comparison of method and results with other studies.

Authors/Year Subjects Sensor Placement Features and Classifier Results

Kaczmarczyk
et al., 2009 [40] 74 hemiplegic patients Only 3D motion capture

and no wearable sensors

• Kinematics feature
from 3D motion
capture

100% and 86% accuracy
from kinematic feature

Mannini et al.,
2016 [12]

15 post-stroke, 17
Huntington’s disease, 10
healthy elderly

3 IMU sensors placed on
both shank and lumbar
spine

• Group specific HMMs
and time- and
frequency-domain
features

• SVM classifier

90.5%

Hsu et al.,
2018 [10]

20 subjects of
post-stroke and other
neurological disorder

Multiple placement: 7
IMU on lower back,
both thigh, shank, and
foot

• Time-domain feature
and gait temporal
parameter

• Various classifier:
SVM, MLP, DT, RF

89.13% testing accuracy
from shank-based
sensor and DT model

Caramia et al.,
2018 [11]

27 healthy control and
27 PD with different
stages

8 IMU placed on lower
limbs and trunk

• Spatiotemporal gait
and kinematic
parameters

• Various classifier: NB,
LDA, K-NN, DT, SVM

96% when using all IMU
and majority voting
classifiers

L. Wang et al.,
2020 [13]

8 peripheral neuropathy,
15 PD, 13 post-stroke,
and 13 healthy control

2 IMU placed on shank • 8 gait parameters
• SVM Classifier 93.9%

Ours 11 healthy control and
12 post-stroke

1 IMU placed on lower
back (L5)

• Time- and frequency-
domain features

• SVM with 2 stages
feature selection

96.55%

HMM, Hidden Markov Model. PD, Parkinson’s disease. MLP, Multi-Layer-Perceptron. DT, Decision Tree. RF, Random Forest. LDA,
Linear-Discriminant Analysis. K-NN, K-Nearest Neighbor.

5. Conclusions

This study classified normal and stroke gait patterns by using time- and frequency-
domain features obtained from acceleration data provided by an IMU sensor placed on the
subject’s lower back. Two stages of feature selection, which included statistical analysis
and SNR calculation, were used to reduce the selected features until only four features
remained. Among four SVM kernels, the quadratic kernel showed the highest accuracy
when evaluated through cross-validation; this kernel and the cubic kernel both showed the
highest accuracy (96.55%) when different test datasets were used. This study proved that a
single placement of an accelerometer on a trunk was able to differentiate between normal
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and stroke gait patterns with the help of time- and frequency-domain features and an SVM
classifier.
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