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Abstract: Seabed logging (SBL) is an application of electromagnetic (EM) waves for detecting
potential marine hydrocarbon-saturated reservoirs reliant on a source–receiver system. One of
the concerns in modeling and inversion of the EM data is associated with the need for realistic
representation of complex geo-electrical models. Concurrently, the corresponding algorithms of
forward modeling should be robustly efficient with low computational effort for repeated use of the
inversion. This work proposes a new inversion methodology which consists of two frameworks,
namely Gaussian process (GP), which allows a greater flexibility in modeling a variety of EM
responses, and gradient descent (GD) for finding the best minimizer (i.e., hydrocarbon depth).
Computer simulation technology (CST), which uses finite element (FE), was exploited to generate
prior EM responses for the GP to evaluate EM profiles at “untried” depths. Then, GD was used
to minimize the mean squared error (MSE) where GP acts as its forward model. Acquiring EM
responses using mesh-based algorithms is a time-consuming task. Thus, this work compared the
time taken by the CST and GP in evaluating the EM profiles. For the accuracy and performance, the
GP model was compared with EM responses modeled by the FE, and percentage error between the
estimate and “untried” computer input was calculated. The results indicate that GP-based inverse
modeling can efficiently predict the hydrocarbon depth in the SBL.

Keywords: seabed logging; electromagnetic data; hydrocarbon depth; inverse modeling; Gaussian
process; gradient descent; computer simulation technology

1. Introduction

Seabed logging (SBL) is an application of the marine controlled-source electromagnetic
(CSEM) surveying technique for discovering and characterizing high-resistive bodies (e.g.,
hydrocarbon-saturated reservoirs) remotely in the deep marine environment based on
contrasts of electrical resistivity of the subsurface. Its capability of identifying the fluid
content inside the potential reservoirs is undoubted. This emerging application uses a
powerful electric dipole transmitter to continuously emit low-frequency electromagnetic
(EM) waves, normally between 0.1 and 10 Hz [1], in all directions through the seawater
column and subsurface beneath the seabed. The SBL exploits the fact that hydrocarbon-
saturated reservoirs have higher electrical resistivity (approximately 30–500 Ωm) than
its surroundings, such as seawater (approximately 0.5–2.0 Ωm) and sedimentary rocks
(approximately 1.0–2.0 Ωm) [2]. The conductivities (i.e., inversely proportional to resis-
tivities) of hydrocarbon-filled reservoirs can reach about 0.01–0.1 S/m or lower in certain
depths underneath the seabed. The main component of an SBL is the utilization of a towed
EM source known as a horizontal electric dipole (HED) and stationary EM receivers for
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recording the returned EM signals [1]. Studies related to the commercial SBL application
can be found in [1–9]. Figure 1 is adopted from [10] to depict the illustration of the SBL
application in the offshore environment.

Figure 1. Illustration of the seabed logging (SBL) application in the deep marine environment.
The source is towed by a ship and the electromagnetic (EM) receivers are placed on the seafloor
beforehand. The target reservoir is in the sedimentary rock. The low-frequency EM waves travel in
all directions (straight arrow: direct wave; dotted arrow: air wave; dashed arrow: guided wave).

Numerical modeling is a crucial task in geophysics problems since it provides prior
knowledge and information of the potential reservoirs. Many powerful computational
modeling techniques have been exploited for processing the EM responses, such as finite
element (FE), finite difference (FD), finite volume (FV), integral equations (IE), etc. These
numerical techniques are capable of modeling the subsurface realistically in the marine
environment by defining grids or meshes. According to [11], the FE technique is highly
preferred due to its ability to support unstructured meshes. These meshes are able to
provide a quality geological representation by placing small grid elements in the areas
where better resolution is highly needed, such as in large conductivity contrast areas [11].
However, as the consequence, the mesh-based algorithms require a very lengthy compu-
tational time to solve the linear system; in addition, these forward modeling techniques
involve very complicated deterministic mathematical equations. According to [12,13], the
most time-consuming task in the algorithms is solving the integral and multiple linear
equations, not to mention for the inversion scheme that requires multiple EM forward
solutions [13]. Here, the corresponding forward modeling should be robust and capable of
operating the EM simulation rapidly, especially for repeated use in the large number of
iterations involved in the inversion scheme as well as for multiple source–receiver positions
in the SBL application [14].

To address these problems, this work aimed to develop a novel Gaussian process-
based inversion methodology to provide meaningful information where the hydrocarbon
potentially resides underneath the seabed. For the optimization procedure, this inverse
modeling utilized the gradient descent (GD) method to find the best estimate (i.e., hydrocar-
bon depth) based on the forward Gaussian process (GP) regression model. As mentioned
before, GP acts as the alternative forward modeling technique as it is capable of being a
surrogate model for the complicated mathematical model that requires high computational
time to solve [15]. Researchers in [16] also stated that GP is an elegant and simple approach,
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where it performs well in modeling nonlinear problems. Mean squared error (MSE) was
used as the objective function (i.e., loss function) in the optimization. The main focus of
this work was to find the depth of hydrocarbon of observational EM responses, whose
hydrocarbon layer was assumed to be present but with an unknown depth. This work
is novel in two ways. First, it presents the integration of a stochastic process (the GP
regression model acts as the EM forward model) and an indirect search algorithm (the
iterative GD method as the acquirer of minimizer) in one inversion methodological flow.
Second, applying this proposed inverse modeling for predicting the input parameter of the
potential high-resistive bodies (e.g., hydrocarbon depth) is a new procedure or approach in
SBL data processing. This attempt could be very beneficial to de-risk hydrocarbon explo-
ration in the offshore environment. Details of the GP and GD approaches are discussed in
the next section.

2. Mathematical Background

Gaussian process (GP) and gradient descent (GD) algorithms are commonly exploited
in machine learning (ML) problems. In order to seek the most favorable fairness between
the performance of the modeling and the need of low computational time, considering the
strengths and integrating these two mathematical approaches could be very advantageous
to any applications that struggle with the same concern. Here, Figure 2 shows the com-
mon ML process to predict outputs given a set of inputs, its corresponding outputs, and
desired/query inputs. It represents the general idea on which this work is focusing. The
proposed inversion methodology is believed capable of providing meaningful and useful
information to the SBL application with an acceptable accuracy and low computational
efforts. In this section, the background and examples from the literature of GP and GD
approaches are thoroughly discussed in Sections 2.1 and 2.2, respectively.

Figure 2. Machine learning (ML) process. ML utilizes sets of inputs, the corresponding outputs, and
interested inputs to yield the predictive outputs.

2.1. Gaussian Process

Mathematically, the Gaussian process (GP) can be defined as an infinite collection of
random variables where any of the finite subsets can be treated as Gaussian (i.e., normal)
distribution [17,18]. A GP model is fully expressed or specified by a mean function
m(x) in a vector and a covariance k(x, x′) in the form of a matrix. GP is a probabilistic
and nonparametric method for fitting any functional forms based on observations of the
domain. This method differs from most of the other black-box identification approaches.
GP does not try to approximate the model by trying to fit the parameters of the chosen
basis function, but it searches the relationship among the given knowledge or information.
This stochastic approach can provide predictive mean and variance. The mean represents
the most likely outputs, whereas the variance plays a role as the uncertainty’s quantifier.
The magnitude of variance is incorporated into the GP prediction and inference. It does
reflect the amount and quality of the data distribution, and it is an essential numerical
feature when it comes to differentiating the GP regression from any other computational
intelligence methods.

GP regression is a well-known technique and has been adopted in many scientific
and engineering fields, such as machine learning, computer experiments, geostatistics,
electronics, etc. Its convenient properties in modeling make GP successful in demonstrating
outstanding performances in numerous applications. Researchers in [19] employed GP
regression for predicting the concentration of ozone in an area of Bourgas, Bulgaria. The
prediction was based on the measurements of the concentration of ozone, phenol, sulphur
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dioxide, and benzene in the air (hourly). Researchers in [20] studied the capability of GP in
estimating load-bearing pile capacity. This research work compared the performance of GP
prediction with other approaches, and GP worked very well in predicting the pile capacity.
In a wireless networking application, researchers in [21] inferred that, besides resulting in
low-cost outcomes, GP was also capable of obtaining low complex proximity reports for a
received-signal-strength (RSS) threshold. Next, GP was also used by researchers in [22]
to explain the uncertainty in estimating the state of health (SOH) of lithium-ion batteries.
Additionally, according to researchers in [23], GP can successfully decrease the complexity
of the computer vision with a better performance of reconstructions.

In [24], GP was hybridized with particle swarm optimization (PSO) to do advanced
prediction of roadway broken road zone based on data collected in China. The study in-
ferred that the hybrid model showed the best performance with higher variance accounted
for (VAF), higher coefficient of determination (R2), and lower root mean squared error
(RMSE) compared to the other methods such as multiple linear regression (MLR) and
artificial neural network (ANN). For geophysics problems, researchers in [25] mentioned
that GP was able to yield reliable information of permeability and porosity in well analysis.
GP was also used by researchers in [26] to predict the presence of a thin hydrocarbon
layer by utilizing its predictive variance for quantifying the uncertainties of EM responses.
Furthermore, GP was exploited for seismic signal detection as well. According to [27], the
rate of detection when using GP was higher compared to other methods and the rate of
false alarm was lower especially for the weak seismic signals. Researchers in [28] proved
that GP was successfully capable of being exploited in processing EM responses by cali-
brating the stochastic and the computer experiment models for magnitude versus offset
(MVO) analysis.

2.2. Gradient Descent

Gradient descent (GD) is a popular iterative process used to update the model pa-
rameters of a function by minimizing the objective function (i.e., loss function) based
on a first-derivative (i.e., slope) basis. The derivative of a function is fully employed to
determine whether to increase or decrease the model parameters (i.e., direction to move).
Moreover, finding the slope can also tell how big of a step should be taken to reach the
optimal point. Conceptually, this approach optimizes the function by iteratively moving
in the negative direction of the gradient, also known as steepest descent. The smoothness
of the moving process to reach the minimum depends on the size of steps, which in the
GD method is called the learning rate, i.e., α. A higher learning rate can extend over a
larger function area, but there is a risk of overshooting the optimal point. Meanwhile,
a smaller learning rate is more precise since the slope is frequently re-calculated. How-
ever, if it is not wisely parameterized, the optimization needs more time to converge and
obtain the minima. Thus, choosing the suitable step size implies a high efficiency of the
optimization algorithm.

This well-known method has been employed and exercised in many scientific appli-
cations, mostly in optimization problems such as in machine learning [29]. Researchers
in [30] exploited GD to establish an operation model of nodes for the classification of heart
conditions based on a deep neural network. Furthermore, researchers in [31] adopted the
GD method to produce phase-only computer-generated holograms (CGHs). This study
inferred that the GD required low time to optimize the phase-only CGH distribution and
provided higher-precision images compared to the Gerchberg–Saxton (GS) algorithm. Next,
researchers in [32] used the GD method to optimize the vector centers of the consequent
layer functions and receptive field matrices in a neuro-fuzzy model based on the standard
criterion of mean square error. Furthermore, GD was also used by [33] for minimizing
the equation of error used in the study by updating the W1 and W2 matrices in order to
solve the predicting student performance (PSP) problem. Researchers in [34] also utilized
stochastic GD as one of the machine learning methods to be compared for the inversion of
a stochastic skin optical model. The researchers also used multi-layer perceptron (MLP),
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linear support vector regressor (SVR), convolutional neural network (CNN), and lasso
regressor in the comparative study.

3. Methodology

This work aimed to predict the depth of hydrocarbon in the seabed logging (SBL)
application by using a novel methodology, namely Gaussian process (GP)-based inverse
modeling. Here, four subsections are discussed: 3.1. Preprocessing computer outputs,
3.2. Evaluating electromagnetic (EM) profile using the GP, 3.3. Predicting depth of
hydrocarbon, and 3.4. Estimate and GP model validation.

3.1. Preprocessing Computer Outputs

Computer simulation technology (CST) software, which uses finite element (FE), is
exploited in this work to model and evaluate prior information of EM responses (e.g., mag-
nitudes of electric (E)-field) in the SBL for the proposed GP-based inversion methodology.
CST is part of SIMULIA, a Dassault Systèmes brand, sourced from Darmstadt, Germany.
According to [35], CST Studio Suite® exclusively uses the FE method as the EM simulation
solver for low-frequency application. Nine SBL models with the same input properties,
except the hydrocarbon depth, were simulated using the CST software. Details of the
SBL data acquisition are presented in Appendix A. For demonstration, one SBL model
replicated by the CST is depicted in Figure A1. The SBL models, known as target models,
were replicated with three background layers such as air, seawater, and sediment. The
nine different “tried” depths were between 200 m and 1000 m from the seafloor with an
increment of 100 m each. All the computer input properties and parameters used in the
SBL modeling are indicated in Table 1.

Table 1. Input properties and parameters of the seabed logging (SBL) models.

Input Property or Parameter Numerical Values in Unit

Electrical conductivity (Air) 1.0× 10−11 S/m
Electrical conductivity (Seawater) 1.63 S/m
Electrical conductivity (Sediment) 1.00 S/m

Electrical conductivity (Hydrocarbon) 2.0× 10−3 S/m
Thickness of layer (Air) 300 m

Thickness of layer (Seawater) 1000 m
Total thickness of layer (Sediment) 3500 m
Thickness of layer (Hydrocarbon) 200 m

Transmission frequency 0.125 Hz
Current strength 1250 A

Transmitter length 270 m
Depth of elevation (Transmitter) 30 m

Length of SBL models 20,000 m
Width of SBL models 20,000 m
Height of SBL models 5000 m

As discussed by researchers in [28], interpretation of the SBL data relies on an assump-
tion that the normalized magnitude versus offset (MVO) between the target responses
(i.e., with presence of hydrocarbon) and reference responses (i.e., without presence of
hydrocarbon) can pre-identify the presence of high-resistive bodies. The idea is that the
magnitudes of target response are divided by the magnitudes of reference response along
the offsets (i.e., source–receiver separation distances). Ratio of the normalization should be
greater than one, which is associated with the existence of the potential reservoirs. Thus,
all the generated CST outputs were preprocessed before being used for the forward GP
modeling. By considering the ratio measurements and the symmetrical property of the
developed SBL models, we chose nine different datasets with 73 datapoints per set, which
are from an approximate distance of 11,840.80 m to an approximate distance of 19,004.97 m,
for the data processing presented in the next subsection.
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3.2. Evaluating Electromagnetic Profile Using the Gaussian Process

This work uses Gaussian process machine learning (GPML) MATLAB codes for the
GP regression, previously written by Rasmussen and Nickisch, which can be found in [36].
Note that the MATLAB version used by this work is R2019b. As mentioned before, the
Gaussian process (GP) acts as the alternative approach to the numerical forward model-
ing in the SBL application for evaluating EM profiles at various “untried” hydrocarbon
depths. Suppose all nine CST datasets, D1,D2, . . . , D9 = {(xi, yi)}N

i=1, where N = 73, are
treated as the training datasets for the GP modeling. It is also possible to simply write the
d-dimensional input variable vector and its corresponding output, which is magnitude of
E-field vector, as xi ∈ X and yi ∈ Y, respectively. Generally, in this work, X is the N-by-d
matrix and Y is the N-by-1 column vector, where x ∈ Rd=2 and y ∈ Rd=1. In other words,
x = (s, h), where s and h represent the offset (i.e., source–receiver separation distance) and
the depth of hydrocarbon, respectively.

In order to evaluate or estimate the EM profiles at various “untried” depth inputs
conforming to the testing input, x∗ = (s∗, h∗), the posterior distribution of the testing
output y∗ is defined in Equation (1). This work’s interest was to predict the depth parameter
of hydrocarbon along the offsets from 11,840.80 m to 19,004.97 m. Thus, here, only the
testing input variable of hydrocarbon depth, h∗, is varied accordingly, while the s∗ remains
unchanged. Note that the interested hydrocarbon depths in the GP regression are from
200 m to 1000 m with an increment of 20 m each (including the “tried” depths).

(y∗|X, Y, x) ∼ G(m∗, κ∗), (1)

where the predictive mean, m∗, and the predictive variance, κ∗, are expressed in
Equations (2) and (3), respectively.

m∗ = K(X, x∗)
T
[
K(X, X) + σ2

N IN

]−1
Y, (2)

and
κ∗ = k(x∗, x∗)− K(X, x∗)

T
[
K(X, X) + σ2

N IN

]−1
K(X, x∗). (3)

Based on Equations (2) and (3), K(X, X) is the covariance matrix with a dimension of N-
by-N amongst the X, K(X, x∗) is the covariance matrix with a dimension of N-by-1 between
the X and x∗, k(x∗, x∗) is the covariance of the x∗, IN is an N-dimensional unit matrix,
and σ2

N IN is the noise covariance matrix. All these covariance matrices are composed of
squared exponential (SE) terms, where each element of the matrices is computed using
Equation (4) as follows:

k
(
x, x′

)
= σ2

f

[
exp

(
−|x− x′|2

2`2

)]
, (4)

where σf represents the signal variance and ` represents the isotropic length scale.These two

parameters are known as the hyperparameters of the SE covariance function, θ =
{

σf , `
}

.
SE is a very famous covariance function used in GP regression. According to [37], GP
with SE is infinitely differentiable. This feature is very important for the derivative-
based approach.

Here, it must be noted that all the computations of Equations (1)–(4) require the esti-
mate of θ. These hyperparameters are numerically estimated by minimizing the negative
log marginal likelihood (NLML) using a gradient-based optimizer. The NLML equation is
defined in Equation (5) as follows:

NLML = −log[p(Y|X, θ)] =
N log(2π)

2
+

log
∣∣K(X, X) + σ2

N IN
∣∣

2
+

YT[K(X, X) + σ2
N IN

]−1Y
2

. (5)
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In Equation (5), a logarithmic identifier is used to simplify the integral expression
involved in the marginal likelihood method [25]. Once the hyperparameters are success-
fully estimated, the estimation of the GP regression is then defined using Equations (2)
and (3). The m∗ is a mean value of the estimation that gives the best estimate of y∗ (i.e.,
magnitude of E-field at x∗), and the κ∗ is the predictive variance of the testing input in
terms of two standard deviations (95% confidence interval), which reflects the reliability of
the predictive mean. These two equations are the basis in the forward GP modeling.

3.3. Predicting Depth of Hydrocarbon

The fitted GP model is denoted as Yf it(s, h), where h here includes all “tried” and
“untried” depths. This means that, for every h (i.e., 200 m–1000 m with a gap of 20 m), the
GP gives estimates of the EM profile, Yf it(s, h), at distances from 11,840.80 m to 19,004.97 m.
Assume that the observational dataset Yobs(s,�) is observed at N = 73 distance points
and the hydrocarbon resides underneath the seabed but with “unknown” depth. To find
out the depth of hydrocarbon of the observational dataset Yobs, the least square criterion is
formed between the Yf it and Yobs. Mean squared error (MSE) is used as the loss function
in the optimization algorithm. In general, MSE measures the average amount of squared
differences between Yf it and Yobs. The loss function L

(
hj
)

is expressed in Equation (6)
as follows: {

L
(
hj
)}M

j=1 =
1
N

N

∑
i=1

[
Yf it

(
si, hj

)
−Yobs(si)

]2
, (6)

where L
(
hj
)∣∣j = 1, 2, . . . , M and M = 41.

Equation (6) is a function of h. The loss function is minimized over the h with the
minimizer serving as an estimate of the hydrocarbon depth. By using Equation (6), the
L
(
hj
)

between the Yf it and Yobs are calculated. Here, the least L
(
hj
)

is then identified. As
for now, the minimizer of the least L

(
hj
)

serves as the best estimate of hydrocarbon depth
for Yobs. Thus, in this work, the respective minimizer is treated as the initial guess of depth.
Then, the iteration index j is set as zero and the initial guess is denoted as h0.

Next, for the optimization using the GD method, the first-partial derivative of the
L
(
hj
)

with respect to hj is required. The partial derivative of the loss function is defined
in the equation below. The derivation of Equation (7) is provided in Appendix B (in
Equation (A1)):

L′
(
hj
)
=

2
N

(
N

∑
i=1

[
Yf it

(
si, hj

)
−Yobs(si)

])
·Y′ f it

(
si, hj

)
, (7)

where Y′ f it is the derivative of the GP using the SE covariance function with respect to hj.
It must be noted here that the forward GP model is defined by estimations composed by
the predictive mean as shown in Equation (2). To find out the Y′ f it, the predictive mean m∗
is differentiated with respect to hj as follows:

m′∗ = K′(X, x∗)
T
[
K(X, X) + σ2

N IN

]−1
Y, (8)

where K′(X, x∗) is the derivative of covariance function between X and x∗ with respect
to hj. As mentioned earlier, each element of the covariance matrix is computed using the
SE covariance function (Equation (4)). Thus, the derivative of SE between X and x∗ with
respect to hj is defined in order to find the K′(X, x∗), as expressed in Equation (9). Its
derivation is provided in Appendix B (in Equation (A2)):

k′(x, x∗) = σ2
f ·
(
|x− x∗|

`2

)
·exp

(
−|x− x∗|2

2`2

)
. (9)
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Next, the following step is finding the correction or update of hj. It is denoted as hj+1.
By referring to the GD algorithm, the equation of hj+1 is expressed as follows:

hj+1 = hj − α·L′
(
hj
)
, (10)

where α is the learning rate, which governs the step size of the optimization. Normally, as a
start, a geometric sequence with a common ratio of 10 is used to indicate which minimizer
can give a significant optimization.

After getting the hj+1, the EM profile at hj+1, denoted as Yf it
(
si, hj+1

)
, is then estimated

using the GP regression by defining the hj+1 as its testing input and the GP modeling steps
are repeated. Next, the new loss function for hj+1 between Yf it and Yobs is calculated using
Equation (11) as follows:

L
(
hj+1

)
=

1
N

N

∑
i=1

[
Yf it

(
si, hj+1

)
−Yobs(si)

]2
. (11)

The tolerance threshold ε, which acts as the stopping criterion for the iterations, is
defined for verifying the L

(
hj+1

)
before deciding the optimal hydrocarbon depth for the

Yobs. In the context of this work, it was decided that the changes between each subsequent
minimizer or depth had to be less than 0.05. As presented in Section 4, the specific limit
leads to acceptable results. Equation (12) shows the equation of relative percentage change
(RPC) used in this work:

RPCj+1 =

∣∣hj+1 − hj
∣∣∣∣hj

∣∣ × 100%. (12)

The next conditions used in this work are the following: the maximum number of iter-
ations is 100 and the loss function (i.e., MSE) must converge. In other words, L

(
hj+1

)
must

be always lower than L
(
hj
)
. Each iteration must satisfy these three threshold conditions.

The optimal depth of hydrocarbon for Yobs is believed to be successfully predicted if the
process does not meet the conditions. Otherwise, it is returned to the step of evaluating
the L′

(
hj
)

onwards by defining a new iteration index, j = j + 1. All the flows are repeated
until the ε is neglected, then the iterations stop. The methodological flow presented in this
section is shown in Figure 3.

3.4. Estimate and GP Model Validation

Error measurement is very important to determine the reliability of estimations. In
this work, for estimate validation, the percentage error between the computer input (i.e.,
hydrocarbon depth used in the computer simulation) and the depth predicted by the
GP-based inverse modeling was calculated using Equation (13). Meanwhile, for GP model
validation, three error validators were used in this work, namely mean absolute deviation
(MAD), mean absolute percentage error (MAPE), and root mean squared error (RMSE).
The errors of EM profiles provided by the GP model were calculated by assuming the
EM responses modeled by the FE (through the CST software) as the true EM values. All
equations of the MAD, MAPE, and RMSE are defined in Equations (14)–(16), respectively,
as follows:

Percentage Error =
∣∣∣∣htrue − hestimate

htrue

∣∣∣∣× 100%, (13)

MAD =
1
N ∑|yFE − yGP|, (14)

MAPE =
1
N ∑

|yFE − yGP|
|yFE|

× 100%, (15)

RMSE =

√
1
N ∑(yFE − yGP)

2, (16)
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where htrue is the CST depth input, hestimate is the depth estimated by the GP-based inverse
modeling, yFE is the EM response modeled by FE method, yGP is the EM response evaluated
by the forward GP modeling, and N is the total number of observations.

Figure 3. Methodological flow of Gaussian process (GP)-based inverse modeling. Note that all the
seabed logging (SBL) models replicated by the computer simulation technology (CST) software are
target models (i.e., with hydrocarbon layer). Hence, determining the presence of hydrocarbon is not
discussed in this work. HC stands for hydrocarbon and w.r.t. represents with respect to.

4. Results and Discussion

All prior electromagnetic (EM) responses were generated using the computer simula-
tion technology (CST) software. Nine seabed logging (SBL) models were parameterized
with the same input properties, except for its depth of hydrocarbon, which were 200 m–
1000 m with a gap of 100 m each. It must be noted that these EM responses were evaluated
using the finite element (FE) method, which was used exclusively by the CST software
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for the low-frequency applications. In this work, only magnitude of electric (E)-field was
considered as the corresponding output. Figure 4 shows the magnitude versus offset plot
for all nine SBL datasets.

Figure 4. Magnitude of electric (E-)-field versus offset for nine different depths of hydrocarbon from
200 m to 1000 m with an increment of 100 m each.

Based on Figure 4, the x-axis represents the offset distances from approximately
11,840.80 m to 19,004.97 m and the y-axis represents the magnitude of E-field with a
logarithmic scale. This figure reveals that the CST was capable of simulating the SBL
application in the deep marine environment. The generated EM responses behave similarly
to the real behavior of EM signals in media with various conductivities. The EM signals
travel through a high-resistive body with less attenuation. Thus, a model with higher
hydrocarbon depth generates a much smaller magnitude of E-field due to the factor of far
EM signal propagation. Next, these EM responses were fully utilized by the GP regression
in order to provide more EM profiles at “untried” depths. The contour plot of the two-
dimensional (2D) GP model is depicted in Figure 5.

Figure 5. Two-dimensional (2D) forward Gaussian process (GP) model with 41 different electromag-
netic (EM) datasets with depths from 200 m to 1000 m with an increment of 20 m.

Based on Figure 5, the x-axis is the offset distance and the y-axis is the 41 depths of
hydrocarbon from 200 m to 1000 m, while the magnitudes of the E-field are represented
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in color codes. This forward GP model is a combination of EM profiles at “tried” and
“untried” hydrocarbon depths. The purpose of this GP modeling was to evaluate as many
EM responses as possible at various depths of hydrocarbon for the inversion scheme,
for which generating all these EM responses using the CST software could take high
computational time. Simulating and generating all these 41 datasets using the CST could
require around 3 h and 30 min, whereas the GP modeling only took 45 min for the prior
knowledge acquisition and less than 1 min for developing the forward GP model and
evaluating 41 profiles.

In this work, three random observational datasets were generated separately using
the CST software where the depths of hydrocarbon were assumed to be “unknown”, i.e.,
350, 650, and 950 m. Here, the goal was to find the best estimates of hydrocarbon depths
of the observational datasets with the smallest MSE values. In other words, a small MSE
value indicates that the EM profile evaluated by the forward GP model gives the most
likely values for the observational dataset, thereby giving the best depth information. As
discussed before, the step size of the optimization was determined by the learning rate. For
this work, three different learning rates were used for every inversion scheme. The first
scheme (1st observational dataset) used 0.051 as its learning rate, whereas the second (2nd
observational dataset) and third (3rd observational dataset) schemes used 0.087 and 0.081,
respectively. Details of how this work determined the suitable learning rates are provided
in Appendix C. Plots of MSE versus learning rate and iteration number versus learning
rate for every observational dataset are depicted in Figures 2–6 and A1. After identifying
the learning rate, optimization using the gradient descent was executed. Thus, three MSE
versus hydrocarbon depth plots are plotted as shown in Figures 6–8.

By referring to Figures 6–8, the x-axis is the depth of hydrocarbon and the y-axis
is the misfit, which is the MSE. The blue points are the 41 MSE values between the GP
model from depths 200 m to 1000 m and the observational data. The red points indicate
the optimized MSEs with respect to the updated minimizers. Every optimization must
satisfy the convergence condition. Thus, in order to monitor the convergence status, this
work illustrates MSE versus number of iterations plots for every observational dataset,
which are depicted in Figures 9–11. In these figures, the x-axis and y-axis represent the
number of iterations and MSE, respectively. Based on these figures, even though the first
inversion scheme needed a higher number of iterations than the second and third ones, all
the iterations were smaller than the defined maximum number, which was 100. Moreover,
all the MSEs converged where the optimizations stopped at the lowest MSE values. To
make it easy to interpret, the main results are presented in Table 2.

Figure 6. Mean squared error (MSE) versus hydrocarbon depth plot (1st observational dataset).
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Figure 7. Mean squared error (MSE) versus hydrocarbon depth plot (2nd observational dataset).

Figure 8. Mean squared error (MSE) versus hydrocarbon depth plot (3rd observational dataset).

Figure 9. Convergence test (1st observational dataset).
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Figure 10. Convergence test (2nd observational dataset).

Figure 11. Convergence test (3rd observational dataset).

Table 2. The main Gaussian process (GP)-based inverse modeling results (all three observational datasets).

Dataset Index Iteration Number Estimate (m) MSE RPC (%)

1 h58 58 349.92 0.00000033 0.04977145
2 h34 34 650.20 0.00000039 0.04978711
3 h21 21 950.22 0.00000051 0.04991896

Based on Table 2, the first observational dataset required 58 iterations to yield the
best estimate of hydrocarbon depth, which was 349.92 m. The second observational
dataset needed 34 iterations to get its best estimate, which was 650.20 m. In contrast,
only 21 iterations were needed by the third observational dataset to produce the estimate
of 950.22 m. Moreover, only 114.047 s, 73.760 s, and 60.556 s were taken by the GP-
based inversion methodology to reach the estimates of 349.92 m, 650.20 m, and 950.22 m,
respectively. From the table, the calculated MSE values were also very small. This means
that the deviations between its true EM values and the predicted EM profiles were very
low. All the final RPCs were also lesser than 0.05 as compared to what was defined in the
methodology. In addition, in the context of this work, the reliability of the GP regression
in evaluating the EM profiles was investigated as well by considering data modeled by
the FE method as the true EM values. Thus, MADs, MAPEs, and RMSEs between the EM
responses modeled by FE and EM evaluated by the GP (at depths 200–1000 m with a gap
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of 100 m each) were calculated. The results are presented in Table 3. Furthermore, to find
out the accuracy and performance of the GP-based inverse modeling in predicting the
hydrocarbon depth, percentage errors between the true depths (i.e., computer input) and
the estimates were calculated as well. The percentage errors are indicated in Table 4.

Table 3. Validation of the Gaussian process (GP) model.

Hydrocarbon Depth (m) MAD MAPE (%) RMSE

200 1.39 × 10−9 0.0849 2.63 × 10−9

300 1.84 × 10−9 0.1027 4.25 × 10−9

400 1.48 × 10−9 0.1035 3.26 × 10−9

500 1.64 × 10−9 0.1144 3.49 × 10−9

600 1.68 × 10−9 0.1168 4.28 × 10−9

700 1.21 × 10−9 0.1270 2.33 × 10−9

800 1.37 × 10−9 0.1204 3.57 × 10−9

900 1.85 × 10−9 0.1346 5.79 × 10−9

1000 9.64 × 10−9 0.1212 1.81 × 10−9

Average 1.49 × 10−9 0.1140 3.49 × 10−9

Table 4. Percentage errors of hydrocarbon depth prediction.

True Depth (m) Estimate (m) Percentage Error (%)

350.0000 349.9172 0.0237
650.0000 650.2015 0.0310
950.0000 950.2225 0.0234

Based on Table 3, all the MADs, MAPEs, and RMSEs for depths 200 m to 1000 m
with 100 m gap each were very small, which were 1.49 × 10−9 (on average), 0.114% (on
average), and 3.49 × 10−9 (on average), respectively. As seen in Table 4, the percentage
errors were very low as well, which was 0.0260% on average. All the results revealed that
GP regression was capable of evaluating the EM profiles at various depths of hydrocarbon
accurately and with low time consumption. The main goal was also achieved in that
the GP-based inversion methodology can predict the depth of hydrocarbon in the SBL
application efficiently.

5. Conclusions

This work proposed Gaussian process (GP)-based inverse modeling to predict the
depth of hydrocarbon in the seabed logging (SBL) application. The capability of computa-
tional modeling and inversion of the SBL data with good accuracy and low computational
effort is one of the main concerns in electromagnetic (EM) problems. Thus, this work
used machine learning-based approaches, namely GP, as the forward modeling of EM
profiles and the gradient descent (GD) method as the optimizer for finding the input
parameter of the hydrocarbon (e.g., depth) in the SBL data processing. This work utilized
three datasets generated through the computer simulation technology (CST) software with
random “unknown” hydrocarbon depths as the observational responses. Based on the
results, GP regression can provide accurate EM profiles at various depths of hydrocarbon
with low computational time (45 min for the prior data acquisition) and less than 2 min for
the GP-based inversion methodology. We believed that if the forward modeling performed
by the GP could be done rapidly for the repeated use, the inverse modeling (by the GD)
would not significantly affect the total computational time of the inversion methodology.
Next, the resulting mean absolute deviations (MADs), mean absolute percentage errors
(MAPEs), and root mean squared errors (RMSEs) between the GP model and the data
modeled by finite element (FE) method were very small. Furthermore, the GP-based
inverse modeling could also predict the depth of hydrocarbon for each observation dataset
accurately. All the calculated percentage errors between the estimates (by the GP-based
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inversion methodology) and the true depth values (computer input) were very small as
well. Therefore, it can be concluded that the GP-based inverse modeling was successfully
developed to predict the depth of hydrocarbon in the SBL. This attempt could help marine
EM data processing, especially in order to de-risk hydrocarbon exploration in the deep
marine environment.
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Appendix A. Data Acquisition Using CST Software

Typical synthetic seabed logging (SBL) models were replicated using the computer
simulation technology (CST) software. The input parameters can be seen in Table 1. The
first layer was air, followed by seawater and sediment. Based on Figure A1, the isotropic
hydrocarbon layer was positioned in the sediment layer at 200 m from the seafloor (for
demonstration purposes, only one model is shown here). The source was placed at the
center of the model and elevated at 30 m from the seafloor (coordinate: x = 10,000 m,
y = 10,000 m, z = 1270 m), and inline receivers were located on the seafloor (i.e., static
source–receiver separation distances). All the generated electromagnetic (EM) responses
were symmetrical from the center to the left and right boundaries.

Figure A1. Setup of the seabed logging (SBL) model in the computer simulation technology (CST)
software. The depth of hydrocarbon is 200 m from the seafloor.

https://data.mendeley.com/datasets/bvwfy54j2d/1
https://data.mendeley.com/datasets/bvwfy54j2d/1
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Appendix B. Derivation of First-Partial Derivative

Equation (A1) shows the derivation of the first-partial derivative of the mean squared
error (MSE) with respect to hj.
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Equation (A2) shows the derivation of the derivative of the squared exponential (SE)
covariance function with respect to the testing point, x∗.
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Appendix C. Identifying Learning Rate (α) of Gradient Descent

Geometric sequences with a common ratio of 10 were tested first in order to indicate
which learning rates would give the significant optimization. From here, other values of
learning rate were examined as well to find the smallest mean squared error (MSE) that
could be optimized. Based on Figure 2, Figure 4, and Figure 6 3.30 × 10−7, 3.90 × 10−7,
and 5.10 × 10−7 were the smallest optimized MSEs for all observational data. Thus, based
on the MSEs, the size of the learning rates was narrowed down. Next, the number of
iterations was then considered as plotted in Figure 3, Figure 5, and Figure 7. From here,
learning rates that gave the smallest MSE with the lowest iteration number and followed
the relative percentage change (RPC) condition were chosen for the Gaussian process
(GP)-based inverse modeling.
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Figure 2. Bar plot of mean squared error (MSE) versus learning rate (1st observational dataset).

Figure 3. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (1st observational dataset).

Figure 4. Bar plot of mean squared error (MSE) versus learning rate (2nd observational dataset).
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Figure 5. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (2nd observational dataset).

Figure 6. Bar plot of mean squared error (MSE) versus learning rate (3rd observational dataset).

Figure 7. Bar plot of iteration number versus learning rate for the smallest mean squared error (MSE) (3rd observational dataset).
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