
applied
sciences

Article

GPU-Enabled Serverless Workflows for Efficient
Multimedia Processing

Sebastián Risco * and Germán Moltó

����������
�������

Citation: Risco, S.; Moltó, G.

GPU-Enabled Serverless Workflows

for Efficient Multimedia Processing.

Appl. Sci. 2021, 11, 1438. https://doi.

org/10.3390/app11041438

Academic Editor: Miguel García-Pineda

Received: 9 December 2020

Accepted: 2 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC—Universitat Politècnica de
València, Camino de Vera s/n, 46022 Valencia, Spain; gmolto@dsic.upv.es
* Correspondence: serisgal@i3m.upv.es

Abstract: Serverless computing has introduced scalable event-driven processing in Cloud infras-
tructures. However, it is not trivial for multimedia processing to benefit from the elastic capabilities
featured by serverless applications. To this aim, this paper introduces the evolution of a framework
to support the execution of customized runtime environments in AWS Lambda in order to accommo-
date workloads that do not satisfy its strict computational requirements: increased execution times
and the ability to use GPU-based resources. This has been achieved through the integration of AWS
Batch, a managed service to deploy virtual elastic clusters for the execution of containerized jobs. In
addition, a Functions Definition Language (FDL) is introduced for the description of data-driven
workflows of functions. These workflows can simultaneously leverage both AWS Lambda for the
highly-scalable execution of short jobs and AWS Batch, for the execution of compute-intensive jobs
that can profit from GPU-based computing. To assess the developed open-source framework, we
executed a case study for efficient serverless video processing. The workflow automatically generates
subtitles based on the audio and applies GPU-based object recognition to the video frames, thus
simultaneously harnessing different computing services. This allows for the creation of cost-effective
highly-parallel scale-to-zero serverless workflows in AWS.

Keywords: cloud computing; serverless computing; multimedia processing; workflows; batch
processing; containers

1. Introduction

The advent of Cloud Computing introduced the ability to customize the computing
infrastructure to the requirements of the applications through the use of virtualization.
This resulted in the widespread adoption of Cloud computing for academic, enterprise
and scientific workloads. However, migrating an application to a public Cloud required
significant expertise in order to adapt the application to the elastic capabilities of the
underlying services. In addition, the pay-per-use model typically resulted in a pay-per-
deployment, where provisioned Virtual Machines (VMs) are billed regardless of their
actual use.

To better accommodate short and spiky workloads, commonly found in microservices
architectures, serverless computing was introduced via flagship services such as AWS
Lambda [1]. This service allows the execution of user-defined functions coded in certain
programming languages supported by the cloud provider in response to certain well-
defined events (such as uploading a file to an S3 bucket, i.e., Amazon’s object storage
system [2] or invoking a REST API provided by API Gateway [3]). A fine-grained pricing
scheme billed on milliseconds of execution time resulted in real pay-per-use. In addition,
the ability to scale to zero allowed to deploy massively scalable services that can rapidly
scale up to 3000 concurrent invocations but incurring in zero cost when the function is not
being invoked.

Our previous work in the area is the open-source SCAR tool (SCAR: https://github.
com/grycap/scar (accessed on 26 November 2020)) [4] which creates highly-parallel event-

Appl. Sci. 2021, 11, 1438. https://doi.org/10.3390/app11041438 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7710-2182
https://orcid.org/0000-0002-8049-253X
https://doi.org/10.3390/app11041438
https://doi.org/10.3390/app11041438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/grycap/scar
https://github.com/grycap/scar
https://doi.org/10.3390/app11041438
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1438?type=check_update&version=3

Appl. Sci. 2021, 11, 1438 2 of 17

driven file-processing serverless applications that execute on customized runtime environ-
ments, defined as Docker images, in AWS Lambda. This tool was successfully adopted to
execute generic applications in AWS Lambda, support additional programming languages
and even execute deep learning frameworks. However, AWS Lambda, as it happens with
other Functions as a Service (FaaS) public services, imposes strict computing requirements.
AWS Lambda functions run on a constrained environment, where the execution time and
maximum RAM cannot exceed 15 min and 10,240 MB, respectively, the ephemeral disk
storage is limited to 512 MB and no GPU support is available.

The main scientific challenge addressed in this contribution is to provide event-driven
serverless workflows for data processing that simultaneously feature scale-to-zero, high
elasticity and the support for GPU-based resources. This is achieved through the integration
in SCAR of AWS Batch [5], a managed service to provision virtual clusters that can grow
and shrink depending on the number of jobs to be executed, packaged as Docker containers.

Indeed, multimedia processing applications are both resource-intensive and typically
require the definition of data-driven workflows in order to efficiently perform the execu-
tion of several phases. The large-scale parallelism of AWS Lambda can be exploited to
accommodate the execution of short jobs that can be executed in the restricted execution
environment provided by AWS Lambda, which limits the maximum execution time, the
allocated RAM and, finally, provides limited ephemeral disk storage, as described earlier.
Other more resource-demanding jobs should be executed in AWS Batch. To this aim, this
paper describes the evolution of SCAR to: (i) integrate AWS Batch as an additional com-
puting back-end for compute-intensive and GPU-based jobs and (ii) support a Functions
Definition Language that can simultaneously use both Lambda and Batch for the execution
of data-driven applications composed of multiple steps. This results in a tool that can foster
serverless computing adoption for multiple enterprise and scientific domains, supporting
any CLI-based file-processing application packaged as a container image. Potential scenar-
ios for exploiting the tool can be event-driven multimedia processing, AI-based inference
or large-scale software compilation.

After the introduction, the remainder of the paper is structured as follows. First,
Section 2 describes the related work in this area. Then, Section 3 introduces the architecture
of the system to support GPU-enabled serverless workflows for data processing. Next,
Section 4 describes a use case to assess the benefits of the platform by supporting a
serverless workflow for parallel audio and video processing. Later, Section 5 presents the
results obtained after the execution of the use case. Finally, Section 6 summarises the main
achievements of the paper pointing to future work.

2. Related Work

There are previous works in the literature that have adopted serverless for scientific
computing. Indeed, pioneers in this area started to adopt AWS Lambda as a general
computing platform aimed at scientific computing in order to take advantage of the
massive elasticity of this service. This is the case of Jonas et al. [6], by introducing PyWren
to execute distributed Python code across multiple Lambda function invocations to achieve
a virtualized supercomputer. In addition, the work by Alventosa et al. [7] used AWS
Lambda as the computing platform on which to execute MapReduce jobs for increased
elasticity without preprovisioning a Hadoop cluster.

The usage of serverless computing for the execution of workflows has initially started
to be explored. For example, the work by Malawski et al. [8] evaluates the aplicability of
serverless computing for compute and data intensive scientific workflows through the
creation of a prototype. This is in line with the work by Jiang et al. [9] which integrates
a combination of Functions as a Service (FaaS)/local clusters execution approach for
Montage-based workflows. The work by Skluzacek et al. [10] describes a service that
processes large collections of scientific files to extract metadata from diverse file types,
relying on Function as a Service models to enable scalability. Furthermore, the work by
Chard et al. [11] proposes funcX, a high-performance FaaS platform for flexible, efficient,

Appl. Sci. 2021, 11, 1438 3 of 17

and scalable, remote function execution on infrastructures such as clouds, clusters, and
supercomputers. The work by Akkus et al. [12] focuses on high-performance serverless
computing by introducing a serverless computing system with enhanced capabilities such
as application-level sandboxing and a hierarchical message bus in order to achieve better
resource usage and more efficient startup.

The adoption of cloud computing for multimedia processing is certainly another active
field of study. Indeed, the paper by Sethi et al. [13] already addressed the application of
scientific workflows for multimedia content processing, leveraging the Wings [14] frame-
work to efficiently analyse large-scale multimedia content across the Pegasus engine [15],
which operates over cloud infrastructures. Another example of the adoption of cloud
technologies in this area is the study conducted by Xu et al. [16], where they propose the
development of a workflow scheduling system for cloudlets based on Blockchain, ensuring
the QoS of multimedia applications in these small-scale data centres near the edge. Finally,
the study carried out by Zhang et al. [17] specifically focuses on cost-effective serverless
video processing. They quantify the influence of different implementation schemes on the
execution duration and economic cost from the perspective of the developer. Nonetheless,
support for GPU-based processing within the serverless computing paradigm is an open
issue nowadays.

The main contribution of this paper to the state of the art is the development of
an open-source tool to support serverless computing for mixed data-driven workflows
that involve disparate computing requirements for the different phases, being able to
simultaneously harness GPU and CPU computing and the highly elasticity provided by
AWS Lambda. To the best of the authors’ knowledge this has not been addressed in the past.

3. Architecture of the Serverless Processing Platform

This section outlines the details of the redesigned serverless platform in order to be
integrated with AWS Batch, highlighting the different cloud services involved and their
respective roles. Additionally, it addresses the implementation details required in SCAR to
support the definition of functions on the proposed platform, thus creating an updated
framework for the execution of data-driven serverless workflows for container-based
applications in the Cloud. As a result of this study, SCAR is now able to orchestrate all the
resources needed to run GPU-enabled file-processing workflows while maintaining zero
cost for the user when the platform is idle.

3.1. Components

SCAR allows to define functions, which are triggered in response to well-defined
events, to execute in AWS Lambda a user-defined script inside a container created out
of a Docker image. This job is in charge of performing the processing of the data that
triggered the event. SCAR supports a programming model to create highly-parallel event-
driven file-processing serverless applications, as described in the work by Pérez et al. [18].
The SCAR platform is built on several AWS services and these functions can be remotely
invoked through HTTP-based endpoints created by API Gateway or by uploading files to
Amazon S3 buckets, allowing the event-driven processing of files. Moreover, the platform
automatically stores the job execution logs in Amazon CloudWatch [19]. Docker container
images are usually fetched from publicly available container registries such as Docker
Hub [20]. However, it has been designed in such a way that the command line interface
is decoupled from the service provider’s client. Therefore, in future releases it could be
integrated with other public Cloud providers offering similar serverless services, such as
Google Cloud [21] or Microsoft Azure [22].

It is important to point out that AWS Lambda recently included the ability to use
certain Docker images as part of the runtime environment, in line with our previous
developments. However, this support precludes using arbitrary images from Docker Hub,
a widely used public repository for application delivery based on Docker images.

Appl. Sci. 2021, 11, 1438 4 of 17

Figure 1 illustrates the different services involved and their interaction to support
workloads that overcome the limits imposed by AWS Lambda and allow increased control
in the definition of computational resources. A more detailed description of the SCAR
architecture has been previously described in [4]. Therefore, the main goal of this contribu-
tion is to extend SCAR with the ability to deal with data-driven serverless workflows that
involve resource-intensive jobs that exceed the computing capabilities of AWS Lambda, by
integrating seamless support for AWS Batch.

Store logs

AWS Batch

Schedule
job

Job queue

Launch jobCompute
environment

Execute on
instance

Amazon ECS

Amazon EC2

Input/output

FaaS
Supervisor

Event
(async)

Input/output
Amazon S3

Amazon
CloudWatch

Store logs

Submit
job

AWS Lambda

FaaS
Supervisor

U
do
ck
erEvent

(sync)
Amazon API

Gateway
G

PU
Request

Upload/download
files

Get logs

Pull image

Pull image

Container
Registry

SCAR

Figure 1. Architecture of the SCAR platform integrated with AWS Batch in order to support long-running and GPU-
accelerated jobs.

AWS Batch runs Docker-based computational jobs on EC2 [23] instances. Compared
to AWS Lambda, the resource requirements of these jobs can be configured by the user in
terms of: an increased memory allocation, the assignment of the desired number of CPUs,
the instance types to be used and the assignment of GPU devices to containers, among
others. AWS Batch is composed by several modules that must be defined before the actual
execution of jobs:

• Compute environment: Computing resources on which the jobs will be executed, de-
scribed in terms of instance types together with the maximum and minimum number
of available nodes of the ECS [24] cluster that will be automatically created. The
cluster features elasticity so that additional nodes will be automatically added (up
to the maximum number of nodes) depending on the number of pending jobs to be
executed and will be automatically terminated when no longer required according to
a set of predefined policies enforced by AWS Batch.

• Job queue: Managed queues where the jobs are submitted and stored until the compute
environment they are assigned to is ready to perform the execution.

Appl. Sci. 2021, 11, 1438 5 of 17

• Job definition: The basic specification of a job, which includes the Docker image to
be used, the number of vCPUs and memory allocated, the request for GPUs, the
command to be executed and the environment variables. All jobs must be linked to a
job definition. However, jobs can add and modify certain parameters when they are
created. AWS Batch automatically executes the jobs that request GPU access with the
NVIDIA container runtime [25].

Although AWS Batch is a traditional batch processing system, it can scale-to-zero, that
is, terminate all the nodes in the cluster while maintaining at no extra cost the managed job
queues to receive subsequent job execution requests. This, together with the event-driven
execution mechanisms of AWS Lambda implemented by SCAR, allow one to submit jobs
automatically when new files are uploaded to a bucket. Hence, the AWS Batch service has
been integrated while maintaining the principles of serverless computing. However, the
boot time of the EC2 instances is substantially larger than the initialization time of AWS
Lambda functions, as it will be shown in Section 5.3. Furthermore, the pricing scheme
of AWS Batch uses per-second billing of the provisioned EC2 instances that compose the
cluster, instead of per millisecond, as it happens in AWS Lambda.

3.2. Integration of SCAR with AWS Batch

Introducing support for AWS Batch in SCAR required extending the framework in
order to create and configure the Batch resources employed depending on the execution
modes selected. The development used the AWS SDK for Python (Boto3) [26]. Furthermore,
it also required extending the faas-supervisor (FaaS Supervisor: https://github.com/grycap/
faas-supervisor (accessed on 26 November 2020)), an open-source library to manage the
execution of user scripts and containers in AWS Lambda and also in charge of managing
the input and output of data on the Amazon S3 storage back-end. This was redesigned
to delegate jobs to AWS Batch. To do this, the FaaS Supervisor, which runs in the AWS
Lambda runtime as a Layer, is able to identify the execution mode specified in the function
definition. When it must delegate the execution to AWS Batch, it will submit a new job to
the function’s job queue based on the job definition previously created by the SCAR client,
embedding the event in an environment variable. Thus, three execution modes are now
supported depending on the user’s preference regarding where the job will be executed:

• lambda: The jobs are ran as user-defined container images on AWS Lambda. The FaaS
Supervisor employs udocker [27] to pull the Docker image from a container registry
and execute it inside the AWS Lambda runtime.

• batch: AWS Lambda acts as a gateway for events but function invocations are trans-
lated into AWS Batch jobs. The event description is passed down to the job as an
environment variable, allowing the FaaS Supervisor, which runs on the EC2 instance,
to parse it to perform data stage in/out. When functions are defined in this mode, the
SCAR client is responsible for creating the required AWS Batch components (compute
environment, job queue and job definition).

• lambda-batch: Functions are first executed on AWS Lambda. If the execution fails or the
function timeout has almost been reached, the job is automatically delegated to AWS
Batch. This mode allows using AWS Lambda to effectively scale upon a large burst
of short jobs while ensuring that more demanding jobs will be eventually processed
whenever the AWS Lambda limits are exceeded.

The FaaS Supervisor runs on the AWS Batch jobs as a binary that is downloaded
during the startup of each EC2 instance belonging to the ECS cluster created by AWS
Batch. To do this, the SCAR client automatically creates a launch template containing the
download commands in the cloud-init [28] user data. Then, the path containing the FaaS
Supervisor is mounted automatically as a volume on the job containers.

https://github.com/grycap/faas-supervisor
https://github.com/grycap/faas-supervisor

Appl. Sci. 2021, 11, 1438 6 of 17

3.3. Functions Definition Language for Serverless Workflows

To facilitate the creation of data-driven serverless workflows from configuration files,
a Functions Definition Language (FDL) has been defined that, in contrast to previous
versions of SCAR, supports the definition of multiple functions from a single YAML
file. The processing of these files is possible due to the implementation of a completely
redesigned parser in the SCAR client.

This language focuses on the definition of the resources for each function (i.e., con-
tainer image, script to be executed, memory, CPUs, GPU access, etc.) and allows to set them
to use the aforementioned execution modes. This way, a performance preprofiling of the
multiple stages of a scientific workflow determines whether a certain function should be ex-
ecuted (i) exclusively in AWS Lambda, because it complies with its computing limitations,
(ii) exclusively in AWS Batch, because the application may require additional memory/ex-
ecution time beyond the maximum available in AWS Lambda or, finally, (iii) using the
lambda-batch execution mode to easily accommodate disparate computing requirements.

In contrast to the classic FaaS platforms, in the FDL a user script has to be defined for
each function, containing the commands to process the file that triggers the event. Hence,
previously developed multimedia applications are supported without the need to adapt
them to the Functions as a Service model.

The different functions are linked together through Amazon S3 buckets, which can be
defined within the input and output variables. This allows data-workflows to be easily
created, being the output bucket of one function the input of another, which will result in
a new event that will trigger it. As an enhancement, the FaaS Supervisor component has
also been improved to handle the new FDL, as well as to filter the output files according
to their names and/or extensions in a postprocessing stage. This stage allows the upload
of several files to different output buckets, thus allowing to split workflows into different
branches, as shown in the use case described in Section 4.

A detailed example of the FDL shown in Figure 2, together with a test video and
deployment manual are available in GitHub (av-workflow example: https://github.com/
grycap/scar/tree/master/examples/av-workflow (accessed on 26 November 2020)). This
corresponds to the serverless workflow used as a case of study in the following section,
for the sake of reproducibility of the results. As can be seen in the scar-av-workflow-yolov3
function, enabling GPU-accelerated computing is as simple as setting the enable_gpu
variable to true and choosing an instance type that has at least one graphics processing
unit. Of course, the application must support the execution on a GPU.

https://github.com/grycap/scar/tree/master/examples/av-workflow
https://github.com/grycap/scar/tree/master/examples/av-workflow

Appl. Sci. 2021, 11, 1438 7 of 17

functions:

aws:
- lambda:

name: scar -av -workflow -ffmpeg
container:

image: jrottenberg/ffmpeg :4.1- ubuntu
init_script: ffmpeg -script.sh
execution_mode: lambda -batch
memory: 1024
timeout: 900
input:
- storage_provider: s3

path: scar -av-workflow/start
output:
- storage_provider: s3

path: scar -av-workflow/video
suffix:
- avi

- storage_provider: s3
path: scar -av-workflow/audio
suffix:
- wav

- lambda:
name: scar -av -workflow -audio2srt
container:

image: grycap/audio2srt:mini
init_script: audio2srt -script.sh
execution_mode: lambda -batch
memory: 1024
timeout: 900
input:
- storage_provider: s3

path: scar -av-workflow/audio
output:
- storage_provider: s3

path: scar -av-workflow/result
- lambda:

name: scar -av -workflow -yolov3
container:

image: grycap/yolov3:opencv -cudnn
init_script: yolov3 -script.sh
execution_mode: batch
memory: 128
input:
- storage_provider: s3

path: scar -av-workflow/video
output:
- storage_provider: s3

path: scar -av-workflow/result
batch:

vcpus: 4
memory: 12288
enable_gpu: true
compute_resources:

max_v_cpus: 12
instance_types:
- g3s.xlarge

Figure 2. Functions Definition Language example.

4. Serverless Workflow for Multimedia Processing

In order to demonstrate the benefits and performance of the platform, a use case has
been defined that builds a serverless workflow to perform frame-level object detection
in video together with the inclusion of subtitles from the audio transcript, with potential
applications in surveillance. This demonstrates the ability of SCAR to provide an event-
driven service for multimedia processing, triggered by video uploads to an S3 bucket that
can automatically scale up to multiple function invocations and several EC2 instances to
cope with the workload and then automatically scale down to zero provisioned resources.

Appl. Sci. 2021, 11, 1438 8 of 17

Hence, the platform allows the deployment of a highly available multimedia file-processing
service with automated elasticity to support large workloads while maintaining zero cost
when it is not in use.

Figure 3 shows the different functions that compose the workflow, as well as the
folders in the S3 bucket used for input and output. These container-based functions use
the following open-source software:

• FFmpeg [29]. Used to preprocess the videos uploaded to the start folder, extracting and
converting the audio to the input format expected by the audio2srt function, as well as
converting the videos to a suitable format (if they are not) for the object detection stage
with YOLOv3. This function has been configured with the lambda-batch execution
mode, since, depending on the quality and duration of videos, it could not fit in the
Lambda execution environment. According to the new output postprocessing stage,
the function will upload the resulting files to the audio or video folder depending on
their extension (.avi or .wav).

• audio2srt [30]. A small application to generate subtitles from audio transcripts obtained
through CMUSphinx [31], which uses acoustic models for speech recognition. The
application, together with the models, has been packaged in a Docker container so
that it can be defined as a serverless function in SCAR. This function will be triggered
when the FFmpeg function uploads the extracted audio to the audio folder and, after
processing, will store the resulting subtitle file to the result folder.

• YOLOv3 [32,33]. A real-time object detection system that, using the Darknet [34]
neural network framework, can run on GPUs to accelerate the video inference process.
It has been compiled with CUDA [35] support and packaged as a container to be
executed in GPU-accelerated AWS Batch compute environments. GPU access has
been enabled in the definition of the function, which has also been configured to be
triggered when videos are uploaded to the S3 video folder and to store the result in the
result folder.

Upload
video

processed
video

.wav .avi

subtitles

AWS Batch

Invoke

start

Invoke

audio

Invoke

video

.wav .avi
Submit job
(if Lambda

timeout reached)

FFmpeg
function

Submit
job

YOLOv3
function

subtitles

Submit job
(if Lambda

timeout reached)

audio2srt
function

Download
processed video

and subtitles

result

Amazon S3
AWS Lambda
lambda-batch
execution mode

Figure 3. Simplified diagram of the multimedia processing workflow.

Appl. Sci. 2021, 11, 1438 9 of 17

Users will only have to download the files from the result folder through the SCAR
tool and open them in a multimedia player in order to watch the resulting video with
prediction boxes together with the automatically generated subtitles, as shown in Figure 4.

Figure 4. Snapshot of a video resulting from the object recognition function along with the automatically generated subtitles
after a workflow execution.

5. Results and Discussion

The experimentation carried out is divided into four differentiated stages. First,
Section 5.1 covers the lambda-batch execution mode and discusses how it affects the process-
ing of variable duration audio files in terms of time and cost. Next, Section 5.2 compares
different instance types to be used in the video object detection function with the aim of
choosing the most efficient one. Then, Section 5.3 analyses the time taken by the Batch
scheduler to scale the number of instances belonging to its compute environment, as well
as their boot time. Finally, Section 5.4 discusses the results of the execution of the serverless
workflow for processing several videos.

5.1. Analysis of the Lambda-Batch Execution Mode

A key contribution of this study has been the integration of SCAR with AWS Batch
to support functions that require more resources than those allowed by AWS Lambda,
including support for GPU-based processing. In addition, overcoming the limitation of
execution time to 15 min has been an important motivation for this development.

In the field of multimedia processing we can find different applications optimised to
support accelerated computing or that directly require a execution time longer than 15 min.
However, there may be uses in which the processing fits into AWS Lambda in most cases
but eventually exceeds the execution time limit. It is precisely with this possibility in mind
that the lambda-batch execution mode has been developed. The lambda-batch mode ensures
that the file to be processed is handled even if the AWS Lambda timeout is reached. For
this purpose, the faas-supervisor component has a timeout threshold that reserves a few
seconds of the execution time. Thus, if the processing exceeds the maximum execution
time, the faas-supervisor will have time to delegate the processing to AWS Batch.

In order to decide in which cases this execution mode is appropriate and to assess its
impact on execution time and cost, an analysis has been carried out on the audio2srt function

Appl. Sci. 2021, 11, 1438 10 of 17

of the workflow presented in the previous section. This analysis consists of processing
several waveform audio files of different lengths (i.e., 2, 4, 6, 8 and 10 min). 1 GB of RAM
has been allocated for the function in both services (Lambda and Batch). The m3.medium
instance type has been used in the AWS Batch compute environment, which has an Intel
Xeon E5-2670 processor and an hourly cost of $0.067, billed by the second. Furthermore,
the cost of the function in AWS Lambda is $0.0000000167 per millisecond.

Figure 5a shows the times obtained after five different executions of each audio file.
The execution time in AWS Lambda is depicted in purple, while the time taken to be
processed in AWS Batch has been divided into two categories: the time the job remains
in the job queue (green) and the actual run time (blue). It is important to mention that no
variations have been appreciated in the different executions of the analysis, apart from
the pending time of the jobs executed in AWS Batch, which will be discussed in detail in
Section 5.3. As can be seen, the audio files with lengths of 2, 4 and 6 min are performed
entirely on AWS Lambda. Out of the different files tested, the 6-min file is the last one
that could be processed completely on Lambda, with an average time of 753 s. Notice
that the executions of the audio files with corresponding lengths of 8 and 10 min did not
complete before reaching the 15 min execution timeout and, therefore, they were delegated
to AWS Batch. The total processing time in such cases increases considerably, since the AWS
Lambda timeout must first be reached and then the AWS Batch computing environment
needs to start the required instances in order to subsequently execute the job. The Batch
(pending) time shown in green has been calculated on average, since this time can vary
significantly, as it depends on the AWS Batch autoscaling scheduler, which is discussed
in Section 5.3. In addition, in the Batch (running) time shown in blue it can be seen that,
although the function has the same amount of memory on both platforms, the processing
time in Batch is lower due to the higher performance of the processor in the instances of
the computing environment. Figure 5b shows how the processing cost also increases in
these cases, since AWS Batch’s pricing is not as fine-grained (per second instead of per
millisecond) and, generally, the cost per hour of the instances used is also higher.

Therefore, the choice of this execution mode is worthwhile when dealing with appli-
cations whose execution time is close to the Lambda timeout or when the size of the files
to be processed is variable and the processing time is not a requirement. Consequently,
both the batch and the lambda-batch execution modes would not be suitable for real-time
processing due to the increased time to provision the underlying computing instances. This
is in contrast to the lambda execution mode, since the reduced start-up times provided by
AWS Lambda can benefit these kind of applications.

 0

 500

 1000

 1500

 2000

 2500

2 4 6 8 10

Ti
m

e
 (

se
co

n
d

s)

Audio duration (minutes)

Lambda
Batch (pending)
Batch (running)

(a) Average processing times
Figure 5. Cont.

Appl. Sci. 2021, 11, 1438 11 of 17

$0.000

$0.005

$0.010

$0.015

$0.020

$0.025

2 4 6 8 10

C
o
st

 (
U

S
D

)

Audio duration (minutes)

Lambda
Batch

(b) Average processing cost

Figure 5. Time and cost analysis of the audio2srt function for different audio durations.

5.2. GPU and CPU Comparison for Video Processing

Before the experimentation of the whole workflow, the video processing function was
evaluated in order to determine the instance type that would best suit the requirements of
the application in terms of execution time and cost. To demonstrate that GPU acceleration
is worthwhile in deep learning inference processes, a comparison was performed using
different EC2 instances to process the same 4-min video with a 1280 × 720 resolution,
consisting of a total of 6000 frames.

To test the execution time on CPU, the Batch compute environment was configured
to use m5.xlarge instances, which have four virtual CPUs of the Intel Xeon Platinum
(Skylake-SP) processor with a clock speed of up to 3.1 GHz, with 16 GB of RAM. The
on-demand cost of this instance type is $0.192 per hour. In order to take advantage of the
multiple vCPUs, Darknet was compiled with OpenMP support and jobs were configured
to simultaneously use all the four vCPUs.

The performance over GPUs was measured using two different instance types: p2.xlarge,
with 1 NVIDIA Tesla K80 GPU, 4 vCPUs, and 61 GB of RAM, which costs $0.9 USD per hour on
demand; and g3s.xlarge with 1 NVIDIA Tesla M60 GPU, 4 vCPUs, and 30.5 GB of memory,
with an on-demand cost of $0.75 USD per hour. To leverage GPU acceleration, Darknet was
compiled with CUDA.

Figure 6 shows the time and cost of an execution to process the same video using our
platform with different EC2 instances. A single execution has been deemed adequate as the
results show the considerable advantage of using GPU-based acceleration. As can be seen,
the reduced cost per hour of the m5.xlarge instance does not outweigh the long duration
spent for the execution. Therefore, it is highly recommended to accelerate via GPU such
applications, not only to improve the processing time but also to increase savings.

Appl. Sci. 2021, 11, 1438 12 of 17

0

5000

10,000

15,000

20,000

25,000

30,000

g3s.xlarge p2.xlarge m5.xlarge

Ti
m

e
 (

se
co

n
d

s)

(a) Total execution time

$0.00

$0.20

$0.40

$0.60

$0.80

$1.00

$1.20

$1.40

$1.60

g3s.xlarge p2.xlarge m5.xlarge

C
o
st

 (
U

S
D

)

(b) Total execution cost
Figure 6. Comparison between CPU and GPU instances for video object detection.

Among the analysed GPU instances, the best performer was the g3s.xlarge. This is
due to the fact that it has a lower end graphics card but of a later generation. This way, even
with fewer GPU memory, i.e., 8 GB instead of the 12 GB available in each NVIDIA Tesla K80
GPU, it is able to perform a higher amount of operations at the same time. Furthermore,
it has less RAM, which also affects its price. These reasons have led to the choice of the
g3s.xlarge instance in the compute environment used by the video processing function
of the workflow.

5.3. AWS Batch Auto Scaling

As mentioned above, AWS Batch compute environments are based on ECS cluster.
These clusters execute the jobs in autoscaled groups of EC2 instances whose size grows
and shrinks according to the workload. The main feature of this service is the scale to zero,
which allows a real pay-per-use model. However, the time taken by the scheduler to launch
and terminate instances is considerably longer than that of Functions as a Service platforms.
This is due to the usage of traditional virtual machines instead of the container-based

Appl. Sci. 2021, 11, 1438 13 of 17

microVMs used by AWS Lambda [36]. Furthermore, the boot and initialisation time of the
instances must also be considered.

Figure 7 shows the measured times after launching 20 jobs into empty job queues of
compute environment in AWS Batch. The first box displays the time taken by the scheduler
to launch an instance since a job is received. This time, which averages 166.8 s, indicates
that executions delegated to AWS Batch are likely to have a substantially longer start-up
time than on FaaS platforms. Depending on the requirements of the application to be
deployed, it could be advisable to adjust the compute environment to keep one instance up
and running, although this would have a negative impact on the deployment cost and the
main advantage of the serverless paradigm would be lost.

 0

 100

 200

 300

 400

 500

 600

 700

Launch Boot OS Terminate

Ti
m

e
 (

se
co

n
d

s)

Figure 7. Launch, boot OS and terminate time of instances on AWS Batch.

The second box shows the boot time of the EC2 instance’s operating system, which is
on average 129 s with low standard deviation. This happens because the vendor manages
compute environments that always run the same Amazon ECS-optimised AMI and only
handles the ECS container agent startup as well as the download of the FaaS Supervisor
component from the cloud-init user data.

Lastly, the time taken by the AWS Batch scheduler to scale down to zero the number
of instances when the job queue becomes empty is displayed in the third box. This time,
just like the launch one, depends on the internal operation of the scheduler and represents
an additional cost to the actual usage of the machines. However, managed services such as
AWS Batch represent a viable platform for sporadic executions of long-running, resource-
intensive accelerated jobs.

5.4. Workflow Execution

With the aim of testing the platform, the use case defined in Section 4 was deployed
on AWS. Both the FFmpeg and audio2srt functions were configured with the lambda-batch
execution mode in order to support videos of variable duration, since they could exceed
the maximum running time of AWS Lambda just as shown in Section 5.1. The instance
type chosen for their compute environments was m3.medium (the default in the SCAR
configuration) due to its reduced on-demand cost ($0.067 per hour) and the lack of need
for GPU acceleration. The memory allocated for both functions was 1024 MB as a result
of the analysis of the applications involved. Although it is true that the functions could
execute with less RAM, this amount was decided due to the Lambda linear allocation of
CPU proportional to the memory. The same amount of memory plus 1 vCPU was specified
for the job definition in AWS Batch.

Appl. Sci. 2021, 11, 1438 14 of 17

The YOLOv3 video processing function, however, was defined with the batch exe-
cution mode and the g3s.xlarge instance type, as indicated in Section 5.2. Since these
instances have a single GPU, several of them will be needed to process different videos in
parallel. Therefore, to test the scaling of multiple VMs without incurring excessive costs,
a maximum of three instances was determined for the compute environment. The job
definition specification associated to this function was adjusted to take up all the resources
of a g3s.xlarge instance (4 vCPU and 30.5 GB), considering that only one job can be
scheduled at a time. Notice that in the batch execution mode, AWS Lambda is used as the
entry point for events that are then delegated to AWS Batch. These intermediate functions
are therefore also priced according to the assigned memory and running time. In this case,
128 MB of memory was selected to avoid unnecessary cost. The average running time
obtained in these job-delegating functions was 1230ms, which can be considered negligible
in the total processing budget.

The experiment carried out consisted in processing ten four-minute videos with a
resolution of 1280 × 720. These videos were uploaded to the S3 start folder in order to
trigger the execution of the workloads. At the starting point, a single video is uploaded
and, after a minute, another one. Five minutes after the beginning, three videos are
uploaded simultaneously and, to finish, another five videos are uploaded at minute ten of
the test. A summary of the overall execution takes place in Figure 8. The FFmpeg (purple)
and audio2srt (green) functions have been completely processed on AWS Lambda, taking
advantage of their high parallelism for file processing. Furthermore, the visualisation of the
YOLOv3 function, which runs entirely on AWS Batch, has been divided into two categories:
the time that jobs remain pending in the job queue is shown in blue and, when they are
processed on an EC2 instance, in yellow. As shown in the figure, after the autoscaling,
up to three jobs are processed in parallel. This parallelism can be easily increased by
configuring the compute environment to host a larger number of instances, thus allowing
the platform to be customised according to the needs of the application preventing the user
from explicitly managing the underlying computing infrastructure.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

0

2

4

6

8

10

12

14

16

18

FFmpeg audio2srt YOLOv3 (pending) YOLOv3 (running)

Time (seconds)

Pa
ra

lle
l
in

v
o
ca

ti
o
n
s

Figure 8. Time chart for the processing of ten videos using the workflow. Parallel invocations of the functions appear
stacked. For the YOLOv3 function (running on AWS Batch) the pending and running states are distinguished.

Table 1 shows the running costs of the workflow for processing the first video, differ-
entiating between the costs generated by AWS Lambda and the EC2 instance launched by
AWS Batch. Amazon CloudWatch and S3 costs have been omitted since their low usage for
this case study is covered by the AWS Free Tier. Similarly, AWS Lambda offers 400,000 GB-
seconds of compute time per month, which would not incur costs if the platform does not
exceed that threshold. Furthermore, as mentioned in Section 5.2, the cost per processing on
GPU-enabled instances on AWS Batch is lower than if CPUs were used, since the processing

Appl. Sci. 2021, 11, 1438 15 of 17

time is reduced. As a result, the platform enables the deployment of serverless workflows
in a cost-effective manner under a pay-per-use model.

Table 1. Cost analysis of the first workflow execution distinguishing between the two AWS services
used for the processing.

AWS Lambda AWS Batch/EC2 Total

FFmpeg $0.00255510 - $0.00255510

audio2srt $0.00758180 - $0.00758180

YOLOv3 $0.00000258 $0.04687500 $0.04687758

Workflow $0.01013948 $0.04687500 $0.05701448

Notice that this framework allows to create GPU-enabled data-driven serverless
workflows that require no infrastructure preprovision and that are deployed at zero cost
when the service is not being used. This rapidly and automatically scales upon uploading
a file to the bucket, up to the limits defined by the workflow creator. This flexibility paves
the way for increased adoption of event-driven scalable computing for multimedia and
scientific applications.

6. Conclusions and Future Work

This paper has described the extension of the SCAR framework to support GPU-
enabled serverless workflows for efficient data processing across diverse computing in-
frastructures. By combining the use of both AWS Lambda, for the execution of a large
number of short jobs, and AWS Batch, for the execution of resource-intensive GPU-enabled
applications, an open-source event-driven managed platform has been developed to create
scale-to-zero serverless workflows. To test its performance, a case study has been defined
and deployed on AWS. The behaviour of the platform, along with an analysis of deep
learning inference applications running on GPUs and CPUs in the cloud has been exposed,
highlighting the contributions of this study. The developments have been released as an
open-source contribution to the SCAR tool, publicly available to reproduce the results
described in this paper.

Future works involve the integration of the developed platform with on-premises
serverless providers, as well as further extending the semantics of the Functions Defini-
tion Language (FDL) to accommodate additional workflow operators, thus allowing the
definition of enhanced hybrid serverless workflows. In order to avoid failed executions
of functions in AWS Lambda when applications reach the timeout and to find the most
suitable allocation of memory for the lambda and lambda-batch execution modes, we con-
sider integrating SCAR with a preprofiling tool such as AWS Lambda Power Tuning [37]. In
addition, we plan to incorporate external data sources for long-term persistence outside
AWS, such as the EGI DataHub [38].

Author Contributions: Conceptualisation, G.M.; methodology, S.R. and G.M.; software, S.R.; valida-
tion, S.R.; investigation, S.R.; resources, G.M.; data curation, S.R.; writing—original draft preparation,
S.R. and G.M.; writing—review and editing, S.R. and G.M.; visualisation, S.R.; supervision, G.M.;
project administration, G.M.; funding acquisition, G.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Spanish “Ministerio de Economía, Industria y Competi-
tividad” for the project “BigCLOE” with reference number TIN2016-79951-R.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 1438 16 of 17

References
1. Amazon Web Services. AWS Lambda. Available online: https://aws.amazon.com/lambda/ (accessed on 26 November 2020).
2. Amazon Web Services. Amazon Simple Storage Service (S3). Available online: https://aws.amazon.com/s3/ (accessed on

26 November 2020).
3. Amazon Web Services. Amazon API Gateway. Available online: https://aws.amazon.com/api-gateway/ (accessed on

26 November 2020).
4. Pérez, A.; Moltó, G.; Caballer, M.; Calatrava, A. Serverless computing for container-based architectures. Future Gener. Comput.

Syst. 2018, 83, 50–59. [CrossRef]
5. Amazon Web Services. AWS Batch. Available online: https://aws.amazon.com/batch/ (accessed on 26 November 2020).
6. Jonas, E.; Pu, Q.; Venkataraman, S.; Stoica, I.; Recht, B. Occupy the cloud: Distributed computing for the 99%. In Proceedings of

the 2017 Symposium on Cloud Computing—SoCC ’17, Santa Clara, CA, USA, 25–27 September 2017; ACM Press: New York, NY,
USA, 2017; pp. 445–451. [CrossRef]

7. Giménez-Alventosa, V.; Moltó, G.; Caballer, M. A framework and a performance assessment for serverless MapReduce on AWS
Lambda. Future Gener. Comput. Syst. 2019, 97, 259–274. [CrossRef]

8. Malawski, M.; Gajek, A.; Zima, A.; Balis, B.; Figiela, K. Serverless execution of scientific workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions. Future Gener. Comput. Syst. 2017. [CrossRef]

9. Jiang, Q.; Lee, Y.C.; Zomaya, A.Y. Serverless Execution Of Scientific Workflows; Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany,
2017; Volume 10601 LNCS, pp. 706–721. [CrossRef]

10. Skluzacek, T.J.; Chard, R.; Wong, R.; Li, Z.; Babuji, Y.N.; Ward, L.; Blaiszik, B.; Chard, K.; Foster, I. Serverless Workflows for
Indexing Large Scientific Data. In Proceedings of the 5th International Workshop on Serverless Computing (WOSC ’19), Davis,
CA, USA, 9–13 December 2019; Association for Computing Machinery (ACM): New York, NY, USA, 2019; pp. 43–48. [CrossRef]

11. Chard, R.; Skluzacek, T.J.; Li, Z.; Babuji, Y.N.; Woodard, A.; Blaiszik, B.; Tuecke, S.; Foster, I.T.; Chard, K. Serverless Supercomput-
ing: High Performance Function as a Service for Science. CoRR 2019, arXiv:1908.04907.

12. Akkus, I.E.; Chen, R.; Rimac, I.; Satzke, M.S.K.; Beck, A.; Aditya, P.; Hilt, V. SAND: Towards high-performance serverless
computing. In Proceedings of the 2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, 11–13 July
2018; pp. 923–935.

13. Sethi, R.J.; Gil, Y.; Jo, H.; Philpot, A. Large-Scale Multimedia Content Analysis Using Scientific Workflows. In Proceedings of the
21st ACM International Conference on Multimedia, Barcelona, Spain, 21–25 October 2013; Association for Computing Machinery:
New York, NY, USA, 2013; pp. 813–822. [CrossRef]

14. Gil, Y.; Ratnakar, V.; Kim, J.; Gonzalez-Calero, P.A.; Groth, P.; Moody, J.; Deelman, E. Wings: Intelligent Workflow-Based Design
of Computational Experiments. IEEE Intell. Syst. 2011, 26. [CrossRef]

15. Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Ferreira da Silva, R.; Livny,
M.; et al. Pegasus: A Workflow Management System for Science Automation. Future Gener. Comput. Syst. 2015, 46, 17–35.
[CrossRef]

16. Xu, X.; Chen, Y.; Yuan, Y.; Huang, T.; Zhang, X.; Qi, L. Blockchain-based cloudlet management for multimedia workflow in
mobile cloud computing. Multimed. Tools Appl. 2020, 79, 9819–9844. [CrossRef]

17. Zhang, M.; Zhu, Y.; Zhang, C.; Liu, J. Video processing with serverless computing. In Proceedings of the 29th ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video—NOSSDAV ’19, Amherst, MA, USA, 21 June 2019; ACM
Press: New York, NY, USA, 2019; pp. 61–66. [CrossRef]

18. Pérez, A.; Caballer, M.; Moltó, G.; Calatrava, A. A programming model and middleware for high throughput serverless
computing applications. In Proceedings of the ACM Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; Association
for Computing Machinery: New York, NY, USA, 2019; pp. 106–113. [CrossRef]

19. Amazon Web Services. Amazon CloudWatch. Available online: https://aws.amazon.com/cloudwatch/ (accessed on
26 November 2020).

20. Docker. Docker Hub. Available online: https://hub.docker.com/ (accessed on 26 November 2020).
21. Google Cloud. Cloud Computing Services. Available online: https://cloud.google.com/ (accessed on 26 November 2020).
22. Microsoft Azure. Cloud Computing Services. Available online: https://azure.microsoft.com/en-us/ (accessed on 26 November

2020).
23. Amazon Web Services. Amazon EC2. Available online: https://aws.amazon.com/ec2/ (accessed on 26 November 2020).
24. Amazon Web Services. Amazon ECS. Available online: https://aws.amazon.com/ecs/ (accessed on 26 November 2020).
25. NVIDIA. NVIDIA Container Runtime. Available online: https://github.com/NVIDIA/nvidia-container-runtime (accessed on

2 December 2020).
26. Amazon Web Services. AWS SDK for Python. Available online: https://aws.amazon.com/sdk-for-python/ (accessed on

26 November 2020).
27. Gomes, J.; Bagnaschi, E.; Campos, I.; David, M.; Alves, L.; Martins, J.; Pina, J.; López-García, A.; Orviz, P. Enabling rootless Linux

Containers in multi-user environments: The udocker tool. Comput. Phys. Commun. 2018, 232, 84–97. [CrossRef]
28. Canonical. Cloud-Init: The Standard for Customising Cloud Instances. Available online: https://cloud-init.io/ (accessed on

2 December 2020).

https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/api-gateway/
http://doi.org/10.1016/j.future.2018.01.022
https://aws.amazon.com/batch/
http://dx.doi.org/10.1145/3127479.3128601
http://dx.doi.org/10.1016/j.future.2019.02.057
http://dx.doi.org/10.1016/j.future.2017.10.029
http://dx.doi.org/10.1007/978-3-319-69035-3_51
http://dx.doi.org/10.1145/3366623.3368140
https://arxiv.org/abs/1908.04907
http://dx.doi.org/10.1145/2502081.2502082
http://dx.doi.org/10.1109/MIS.2010.9
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1007/s11042-019-07900-x
http://dx.doi.org/10.1145/3304112.3325608
http://dx.doi.org/10.1145/3297280.3297292
https://aws.amazon.com/cloudwatch/
https://hub.docker.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://github.com/NVIDIA/nvidia-container-runtime
https://aws.amazon.com/sdk-for-python/
http://dx.doi.org/10.1016/j.cpc.2018.05.021
https://cloud-init.io/

Appl. Sci. 2021, 11, 1438 17 of 17

29. FFmpeg. FFmpeg—A Complete, Cross-Platform Solution to Record, Convert and Stream Audio and Video. Available online:
https://www.ffmpeg.org/ (accessed on 26 November 2020).

30. RunasSudo. audio2srt. Available online: https://gitlab.com/RunasSudo/audio2srt (accessed on 26 November 2020).
31. Shmyrev, N. CMUSphinx Open Source Speech Recognition. Available online: http://cmusphinx.github.io/ (accessed on

26 November 2020).
32. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit. 2016, 2016, 779–788. [CrossRef]
33. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. CoRR 2018, arXiv:1804.02767.
34. Redmon, J. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet/ (accessed on

26 November 2020).
35. NVIDIA. CUDA Zone. Available online: https://developer.nvidia.com/cuda-zone (accessed on 26 November 2020).
36. Agache, A.; Brooker, M.; Iordache, A.; Liguori, A.; Neugebauer, R.; Piwonka, P.; Popa, D.M. Firecracker: Lightweight Virtualization

for Serverless Applications. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), Santa Clara, CA, USA, 2 January 2020; USENIX Association: Berkeley, CA, USA, 2020; pp. 419–434.

37. Casalboni, A. AWS Lambda Power Tuning. Available online: https://github.com/alexcasalboni/aws-lambda-power-tuning
(accessed on 26 January 2021).

38. Viljoen, M.; Dutka, Ł.; Kryza, B.; Chen, Y. Towards European Open Science Commons: The EGI Open Data Platform and the EGI
DataHub. Procedia Comput. Sci. 2016, 97, 148–152. [CrossRef]

https://www.ffmpeg.org/
https://gitlab.com/RunasSudo/audio2srt
http://cmusphinx.github.io/
http://dx.doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1804.02767
https://pjreddie.com/darknet/
https://developer.nvidia.com/cuda-zone
https://github.com/alexcasalboni/aws-lambda-power-tuning
http://dx.doi.org/10.1016/j.procs.2016.08.294

	Introduction
	Related Work
	Architecture of the Serverless Processing Platform
	Components
	Integration of SCAR with AWS Batch
	Functions Definition Language for Serverless Workflows

	Serverless Workflow for Multimedia Processing
	Results and Discussion
	Analysis of the Lambda-Batch Execution Mode
	GPU and CPU Comparison for Video Processing
	AWS Batch Auto Scaling
	Workflow Execution

	Conclusions and Future Work
	References

