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Abstract: Increasing demand for water and energy has emphasized the significance of energy-efficient
anaerobic wastewater treatment; however, anaerobic effluents still containing a large portion of the
total CH4 production are discharged to the environment without being utilized as a valuable energy
source. Recently, gas–liquid membrane contactors have been considered as a promising technology to
recover such dissolved methane from the effluent due to their attractive characteristics such as high
specific mass transfer area, no flooding at high flow rates, and low energy requirement. Nevertheless,
the development and further application of membrane contactors were still not fulfilled due to their
inherent issues such as membrane wetting and fouling, which lower the CH4 recovery efficiency and
thus net energy production. In this perspective, the topics in membrane contactors for dissolved
CH4 recovery are discussed in the following order: (1) operational principle, (2) potential as waste-
to-energy conversion system, and (3) technical challenges and recent efforts to address them. Then,
future efforts that should be devoted to advancing gas–liquid membrane contactors are suggested as
concluding remarks.

Keywords: membrane contactor; biomethane recovery; wastewater treatment; anaerobic effluents;
membrane modification

1. Introduction

Waste-to-energy conversion technologies have been extensively studied and devel-
oped in recent decades as a sustainable waste management solution while producing
additional energy. With this regard, the anaerobic digestion of wastewater has received
much attention owing to its compelling advantages such as potential energy recovery in
the form of biogas and low operation cost [1–4]. Of all benefits, methane (CH4) can be
recognized as the valuable energy source component in the biogas, having a heating value
of 55 MJ kg−1 that can be convertible to thermal and electrical energy [5]. Nevertheless, the
dissolution of the produced CH4 in the liquid effluent drives the anaerobic digestion of
wastewater to be less appealing than expected [6,7]. The theoretical estimation based on
the Henry’s Law revealed that around 45% of the produced CH4 can be dissolved in the
liquid effluent, even at 30 ◦C, and the portion in liquid further increases with decreasing
temperature [7–9]. The supersaturation of biogas in the liquid, which is often observed
when a mixing is not applied in the reactor, worsens this situation, causing a huge eco-
nomic loss as well as a safety concern. It was reported that the supersaturation values in
up flow anaerobic sludge blanket (UASB) reactors can be ranged in 1.3–6.9. However, in
anaerobic membrane bioreactors (AnMBR) that are operated under proper mixing, the
CH4 concentrations in the liquid are approximately at the saturation [8].
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Apart from theses energy and economic losses, releasing of gaseous CH4 to the envi-
ronment upon discharging the liquid effluent creates critical environment complications
such as global warming. Noticeably, around 9% of global environmental CH4 emissions
arises from the wastewater treatments and their related activities, which should be seriously
taken into account while discharging anaerobically treated liquid effluents [6]. Moreover,
the explosive nature of CH4 (lower and upper explosive limits are 4.6 and 15.8 vol % in air,
respectively) necessitates the safe handling of anaerobically treated wastewater effluent
in enclosed environments [10]. In general, the anaerobically treated wastewater effluent
contains 10–25 mg L−1 of dissolved CH4 (D-CH4), whereas to avoid explosions in closed
environments, the D-CH4 concentration should be lower than 0.14 mg L−1 [8,11]. Hence,
downstream processing of anaerobically treated wastewater effluent to recover the D-CH4
is of utmost importance for phasing out the potential environmental and safety hazards
while exploiting the economic gains in turn, thereby accomplishing a sustainable anaerobic
wastewater treatment process.

In this respect, harvesting CH4 from both gas and liquid phases is necessary to make
the process more attractive and efficient [7,9,12]. For instance, Crone et al. demonstrated
the potential feasibility of self-sustaining anaerobic processes based on the recovery of
the produced CH4 from both the headspace (gas phase) of the reactor and the D-CH4 in
effluents [8]. Previously, we also proposed a conceptual system of energy self-sufficient
anaerobic wastewater process enabled by employing a membrane contactor (MC), as shown
in Figure 1 [13]. The rationale behind Figure 1 is to maximize the recovery of produced CH4
in the gaseous form at the head space as well as dissolved form in the liquid effluent (i.e.,
recovery of D-CH4 using an MC) followed by the conversion of CH4 to electricity using a
micro turbine. The techno-economic feasibility of MC for CH4 recovery from anaerobic
liquid effluents is yet to be finely investigated, since to date, no sufficient studies have been
conducted at an industrial scale.
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Figure 1. Conceptual image of self-sufficient anaerobic digestion of wastewater coupled with mem-
brane contactor (MC) technology. Adapted from [13].

Herein, we critically investigate the recent advances in gas–liquid (G-L) MCs for
D-CH4 recovery from anaerobic effluents. The present report covers general opera-
tional principles of G-L MC, technical challenges, and recent progress with focus on
the efforts to address the technical challenges. Finally, future prospects are presented as
concluding remarks.
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2. Membrane Contactors for the Recovery of D-CH4 from Anaerobic Effluents
2.1. Comparison of MC with Conventional Gas–Liquid Separation Devices

Several gas–liquid contacting processes including aeration, gas stripping, and mem-
brane technology have been proposed for the removal of D-CH4 from effluents. The
aeration (i.e., bubble columns) and gas stripping (i.e., spray tower, packed tower, tray
tower, etc.) devices exploit the concept of direct contact mass transfer between liquid
and gas phases. In bubble columns, the stripping gas is bubbled through the liquid-filled
column, where the size and formation rate of bubbles govern the mass transfer. A high
D-CH4 recovery efficiency ranging from 90 to 100% was reported by Lindberg et al. in
bubble columns; however, foaming and difficulty in handling the liquids with solids were
the major drawbacks [14,15]. Meanwhile, in spray towers, the nozzles at the top of the
chamber generate liquid droplets from the feed, which are then directly contacted with
air. The droplet size, falling height, velocity, and the type of nozzle used determine the
mass transfer rate of the process [16,17]. Gloria et al. reported over 60% of D-CH4 recovery
efficiency in their study with a spray tower after optimizing operation parameters [16,17].
The back mixing of recovered gas with the liquid was found to be a major issue lowering
the mass transfer in the spray tower [18]. Furthermore, a high pressure is required for the
formation of fine liquid droplets, leading to a high energy penalty [19]. On the contrary
to spray towers, a packed tower is filled with packing materials that facilitate the mass
transfer by increasing the effective mass transfer area. The liquid is supplied through spray
nozzles from the top of the column, ensuring a uniform distribution over the cross-section.
Flooding, channeling, and wall flow are the major drawbacks in this type of mass transfer
devices, limiting the operation ranges of liquid and gas flows [20,21]. Scherer et al. reported
over 90% of D-CH4 removal efficiency in a packed tower fed with groundwater [22].

As compared to the aforementioned conventional G-L separation devices, the MC
technology has recently attracted much attention due to its alluring features such as high
mass transfer area, safe operation (no foaming, flooding, channeling, and wall flow), inde-
pendent control of gas and liquid flows, and compact design [23,24]. In an MC device, the
membrane acts as a physical barrier, providing a nondispersive contact between the gas and
liquid phases for mass transfer [25]. Here, the mass transfer area is well-defined at the G-L
interface, and it is maintained stably compared with conventional mass transfer devices. In
general, the separation effectiveness of conventional mass transfer devices is determined by
the height of transfer units (HTU). As the kx/y.a (i.e., kx/y: overall mass transfer coefficient
based on liquid or gas phase, a: mass transfer area per unit volume) increases, the HTU
deceases, resulting in the increase of separation effectiveness [26]. Typically, for MC devices,
the mass transfer area available per unit device volume ranges between 500 and 1000 ft−1,
whereas those for conventional tray or packed columns are in the range of 10–100 ft−1.
Hence, a significant improvement in separation efficiency can be achieved even though
the overall mass transfer coefficient is almost the same or slightly lower than those of
conventional G-L separation devices [23,27]. Indeed, in the CO2 absorption process, a
representative application of MC, the gas absorption flux per unit device volume of MC
was reported to be 2.7 times higher than that of the packed tower [28–30]. In addition,
an economic analysis conducted by Herzog et al. revealed that by switching the CO2
capturing technology from a conventional process to a membrane absorption, 30–40% of
installation and operational cost could be saved [30]. Thus, these examples imply that MC
is a promising technology in both economic and energy viewpoints. Table 1 summarizes
the advantages and disadvantages of MC over conventional technologies, which were
discussed above.
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Table 1. Advantages and disadvantages of membrane contactor (MC) over conventional separation devices [18,19,23,24,27,31–36].

Characteristics and Indicators Aeration Gas Stripping Membrane Contactors

Pros Simple
High mass transfer area

Scalable
Easy to operate

Modular,
High mass transfer area
Independent fluid flow

Low footprint

Cons

Scalability issue
Low CH4 concentration in a

gas outlet
Difficult to control the
quality of product gas

Low mass transfer area
Flooding/foaming

High gas/liquid flow ratio
required

Lack of optimized membranes
Fouling issues

Membrane lifespan

Energy requirement High High Low

Capital cost Similar

Operating cost High High Low

CH4 mass transfer coefficient
per unit volume Low Low High

Overall CH4 mass transfer
coefficient High High Low

2.2. Influensive Parameters of Hollow Fiber MCs for D-CH4 Recovery

In the operation of a hollow fiber MC, many parameters such as module configu-
ration, operational parameters, and membrane properties should be optimized. First of
all, different flow geometries (i.e., liquid in lumen or liquid in shell) are known to give
a significant impact on the mass transfer in MC. However, in D-CH4 recovery, the resid-
ual pollutants such as suspended solids and organics in the feed solution should also be
considered together during the selection of the flow configuration. For example, Cookney
et al., Henares et al., and Rongwong et al. supplied the liquid to the shell side for the high
organic content anaerobic effluents such as UASB and vice versa for low organic-containing
effluents such as AnMBR [13,37–39]. Even though the lumen side operational mode offers
the better CH4 recovery efficiency, a higher risk of membrane clogging limits such oper-
ation mode. To avoid the membrane clogging issue, Sethunga et al. adopted the lumen
side operation with a prefiltered UASB effluent by a filter cloth, thus achieving a higher
recovery efficiency [40]. Similarly, Sanchis-Perucho et al. filtered an AnMBR effluent with a
ultrafiltration membrane prior to feeding to a commercial hollow fiber MC module [41].

The conditions in the gas phase (Figure 2) are known to affect the purity of the
recovered gas stream. In the studies of Henares et al. and Cookney et al., the vacuum
mode (Figure 2a) promoted a greater driving force across membrane contactors, thus
enhancing the overall mass transfer coefficient [11,38,39] while acquiring the product with
a high CH4 concentration. However, when the MC comprises a microporous structure,
a gradual decline of overall mass transfer coefficient might be anticipated due to the
infiltration of water during prolonged MC operation under vacuum conditions. On the
contrary, air stripping mode (Figure 2b) has been proposed to save the energy for MC
operation as well as to mitigate membrane wetting. The idea is based on the fact that
the biomethane recovered is burnt in the presence of air in the power generation process.
Hence, if biomethane is consumed to produce electricity without a long-distance transport,
this strategy would be highly beneficial. Indeed, Rongwong et al. employed a combined
mild vacuum and air-stripping to maximize net energy recovery [42].
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The most common findings in D-CH4 recovery by hollow fiber MCs are a gradual
increase in overall mass transfer coefficient with an increase in liquid flowrate (L) and a
negligible impact of gas flowrate (G) on the mass transfer. This is due to the dominant effect
of liquid phase resistance on the overall mass transfer [44]. Nevertheless, Mc Leod et al.
showed that when the G/L ratio is below a certain value, the gas phase mass transfer can
play the major role in overall mass transfer [45]. The same observation was confirmed by a
theoretical investigation by Sethunga et al., and they further revealed that the maximum
outlet gas purity can be obtained with a lower G/L ratio reached by adjusting L rather
than G [43]. Apart from the G/L ratio, it was found that the membrane inner diameter,
which can change the linear velocity at a fixed G/L ratio, gives a direct impact on the CH4
transport when the liquid is fed to the lumen side [46]. When the membrane inner diameter
becomes smaller, the D-CH4 recovery flux can be increased due to an increase of liquid
velocity. However, a smaller membrane diameter not only causes a higher pumping energy
requirement but also increases the liquid pressure, which in turn causes a larger pressure
drop along the membrane. Therefore, the MC designer should wisely select the membrane
diameters and recommend the operating G and L.

The membrane mass transfer coefficient is closely related to membrane morphology
(i.e., porous, dense, or thin film composite) and the type of fluid inside the pores (i.e., gas
or liquid). Even though porous membranes can minimize the mass transfer resistance,
dense or composite membranes can also be utilized in MC applications with an aim of
restricting membrane wetting and/or fouling. The mass transfer correlations for all three
membrane morphologies are summarized in Table 2. However, it should be noted that these
correlations may be modified based on the flow geometry and the module design [47,48].

The gas transport mechanism in a porous MC membrane is either Knudsen diffusion
or viscous diffusion. Such classification is based on the dimensionless Knudsen number
(Kn), which is the ratio between the mean pore radius (rp) of the membrane and the mean
free path (λ) of the gas molecule. When Kn < 1 (i.e., λ > rp), the gas transport mechanism
is Knudsen diffusion or viscous if otherwise [51]. Meanwhile, in a dense membrane, the
mass transport mechanism is governed by the solution–diffusion model, such that the
permeability coefficient becomes dominant in the mass transfer coefficient calculation.
The mass transfer properties of both dense and porous membranes must be considered
together for composite membranes. In particular, Cookney et al. and Henares et al.
investigated the applicability of dense and porous membranes for D-CH4 recovery from
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anaerobic reactor effluents. They ended up with the same conclusions: (1) the performance
of a microporous membrane in terms of CH4 flux and recovery is better than that of a
dense membrane, (2) the pore wetting limits the operation of a microporous membrane,
and (3) the membrane mass transfer coefficient dominates the overall mass transfer in
a dense membrane whereas the liquid phase mass transfer coefficient is dominant in
microporous membranes [39,52]. Later, Cookney et al. also compared the performance
of polydimethylsiloxane (PDMS) and microporous polypropylene (PP) membranes in
D-CH4 recovery [39]. The rates of recovery were recorded as 92.6% and 98.9% for the
nonporous and microporous membranes, respectively. In a subsequent study, Henares
et al. demonstrated the limitation of the microporous membranes due to membrane
fouling and wetting during a prolonged operation and thus recommended intermittent
cleaning [37]. Accordingly, several studies have proposed the membrane post treatments
or surface modifications to whittle down the wetting and fouling [40]. A key in the surface
modification is to maintain the porosity of the membrane to keep a high CH4 flux while
improving its wetting and fouling resistances. The details are discussed in the next section.

Table 2. Individual mass transfer correlations for counter-current flow [11,49,50].

Mass Transfer Coefficient Parameter

Shell side mass transfer coefficient
ks = Dβ

(1−ϕ)
Z

(
devρ
µZ

)0.6( µ
ρD

)0.33

For 0 < Re < 500 and 0.04 < ϕ < 400

ks = 8D (1−ϕ)
Z

(
devρ
µZ

)(
µ

ρD

)0.33

For 0.5 < Re < 500 and ϕ = 0.03

ks = 1.25D (1−ϕ)
Z

(
devρ
µZ

)0.93( µ
ρD

)0.33

ks : shell side mass transfer coefficient
(
m s−1)

kT : lumen side mass transfer coefficient
(
m s−1)

kM : membrane mass transfer coefficient
(
m s−1)

Re : Reynold’s number
Gz : Gratz number
D : diffusion coefficient

(
m2 s−1)

DM,e f f : effective diffusion coefficient of the membrane
(
m2 s−1)

Z : effective module length (m)
de : hydraulic diameter (m)
v : velocity of the fluid

(
m s−1)

β : constant (i.e., 5.8, 6.1 for hydrophobic and
hydrophilic membrane, respectively)
µ : dynamic visocity of the fluid (Pa s)
ρ : liquid density

(
kg m−3

)
ϕ : packing density
ε : membrane porosity
τ : tortuosity
δ : membrane thickness (m)

Lumen side mass transfer coefficient
kT = 1.62 D

d

(
d2v
ZD

)0.33

for Gz > 4

Porous membranes
kM =

DM,e f f ε
τδ

Dense membranes
kM =

Permeability×Partial Pressure
Membrane Thickness

3. Technical Challenges and Recent Efforts to Address Them

Despite their great potential aforementioned, MC devices have their inherent con-
straints, such as membrane wetting and fouling, which limits their applicability in practical
operations. More importantly, although membrane wetting and fouling seem to be two
separate issues that can be possibly dealt with one by one, those two are mostly related to
each other. For example, highly hydrophobic membranes that are capable of preventing
pore wetting are generally vulnerable to membrane fouling [13]. Thus, many researchers
have studied to mitigate or eliminate such problems to increase the overall productivity
in MCs for the biomethane recovery. In this section, we enumerate recent progress on
anti-wetting and anti-fouling modifications on the hollow fiber MCs.

3.1. Membrane Wetting

Membrane wetting is one of the most crucial challenges related to MC operation.
Liquid intrusion into membrane pores causes pore wetting in microporous membranes.
Membrane wetting, which may be either a partial or full liquid penetration, drastically
affects the mass transport property in MCs. In fact, the intruded liquid forms a stagnant
layer, a passive boundary inside the membrane pores, resulting in additional mass transfer
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resistance between the liquid and gas phases. Wang et al. reported that a 20% increase in
the overall mass transfer resistance could be induced merely by 5% of pore wetting [53].
In general, membrane wetting can be triggered by a liquid pressure exceeding the critical
entry pressure of a membrane (Figure 3a) and/or the capillary condensation (Figure 3b).
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∆P =
2γ cos θ

r
(1)

The Laplace–Young equation in Equation (1) adequately describes the wettability
of a membrane [54]. According to this equation, the liquid entry pressure (LEP; ∆P) is
influenced by the liquid surface tension (γ), the membrane pore radius (r), and the contact
angle (θ). Thus, the factors that foster membrane wetting are membrane-related (i.e.,
hydrophobicity, membrane pore size, pore geometry, and microstructure), liquid-related
(i.e., surface tension), or operation-related (i.e., liquid flow rate, vacuum pressure). Hence,
one should be very careful in controlling those factors to prevent the pore wetting while
operating MC systems. Several strategies have been proposed and investigated to mitigate
pore wetting by improving membrane-related factors.

Several researchers have tried to make superhydrophobic membrane surfaces using
fluorinated inorganic nanomaterials such as SiO2 [55–62], TiO2 [55,63–65], Al2O3, and
ZrO2 [65]. For instance, Wongchitphimon et al. successfully fabricated a highly hydropho-
bic Matrimid®-fluorinated silica composite membranes exhibiting high water contact
angles (WCA) ranging in 122–124◦, leading to an enhanced wetting resistance [59]. The
field emission scanning electron microscope (FESEM) images of the membrane surface
before and after modification are shown in Figure 4a,b, respectively. The fluorinated silica
nanoparticles located on the outer surface of the membrane are clearly visible. The compos-
ite membranes demonstrated a stable D-CH4 recovery flux over 300 h along with a very
high CH4 flux as compared to that of a commercial PP degassing membrane. The surface
modification of PVDF-HFP (Poly(vinylidene fluoride-co-hexafluoropropylene)) hollow
fiber membrane with a mixture solution comprising perfluoropolyether (Fluorolink S10)
and tetraethoxysilane (TEOS) was also reported [62]. The PVDF-HFP surface was firstly
treated by an alkaline solution for dehydrofluorination, after which the hydroxyl groups
(-OH) newly formed on the membrane surface react with TEOS and Fluorolink S10. After
the surface modification, the WCA of the membrane increased from 95.5◦ to 127.8◦ with a
slight decrease in pore size. In a following study, the hydrophobic modification parameters
were further optimized [66]. The CH4 flux of the resulting PVDF membrane was found
to be two times greater than that of the commercial PP membrane. In addition, PVDF
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membranes displayed a stable performance for 8 days under a test with a real anaerobic
effluent owing to its excellent resistance to pore wetting.
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On the other hand, the hydrophobic modification via chemical grafting and spray-
coating on a surface of polymeric membranes has been reported as viable chemical ap-
proaches to enhance the wetting resistance. For instance, Zhang et al. reported the chemi-
cal hydrophobic modification of polymeric hollow fiber membranes, which have imide
groups [67]. The ring-opening of imide groups in poly(amideimide) followed by the reac-
tion with octadecylamine could create hydrophobic side chains, which inhibit the liquid
entrance to membrane pores. The similar strategy was used to poly(etherimide), allowing
the increases in both WCA and LEPw. For the case of PVDF membranes, Zhang et al.
modified the membrane by a dip-coating of amorphous perfluoropolymer (Hyflon AD)
on the surface [68]. Hyflon AD/PVDF composite membranes exhibited a significantly
enhanced wetting resistance, along with an increased WCA. Meanwhile, polydimethylsilox-
ane (PDMS) has been employed as a coating material because of its hydrophobic property
as well as high gas permeability. Sethunga et al. prepared two types of PDMS-coated PVDF
membranes, namely lumen-modified and bulk-modified membranes and evaluated the



Appl. Sci. 2021, 11, 1372 9 of 16

D-CH4 recovery performance of them [69]. Lumen modified PDMS-PVDF (Figure 4c,d)
membranes exhibited two times higher CH4 recovery flux than that of a commercial PP
degassing membrane. According to the mass transfer analysis, the membrane resistance
was only about 15% of total mass transfer resistance due to the highly porous nature of
the PVDF substrate. Similarly, Li et al. modified a hydrophobic polytetrafluoroethylene
(PTFE) membrane with silica nanoparticle and PDMS by a spray deposition [70]. The
PDMS/silica-coated PTFE membrane exhibited a strong pore wetting resistance together
with a high WCA of 158.4◦. Furthermore, the PDMS/silica skin layer on the surface did
not increase the mass transfer resistance significantly, owing to the high gas permeability
of PDMS material.

3.2. Membrane Fouling

Membrane fouling, which is the deposition of unwanted particles, colloids, and
various macromolecules on the membrane surface or inside the pores of a membrane [71],
creates an additional mass transfer barrier on the membrane surface, thus lowering the
CH4 permeation flux. For instance, Henare et al. observed severe membrane fouling and
consequent CH4 recovery flux decline of 40% after 175-h operation of a PDMS membrane
module [38]. Rongwong et al. analyzed the fouling layers deposited on hydrophobically
modified PVDF membrane surfaces after the operation of MC with two types of anaerobic
effluents, namely AnMBR and UASB [72]. The overall mass transfer coefficient gradually
decreased with time due to membrane fouling, with UASB effluent causing more severe
fouling than AnMBR effluent (Figure 5a). The fouling layer analysis revealed that the
soluble microbial products such as proteins and polysaccharides form the cake layer on
the membrane surface (Figure 5b), which is also typically found in the operation of MBRs.
When the fouling progresses, the cake layer becomes thickened and eventually blocks the
pore mouths, resulting in a gradual decrease in the overall mass transfer.
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Although the fouling is an important issue that must be resolved for the practical ap-
plication of MC in D-CH4 recovery, only a limited number of studies have been conducted
to mitigate membrane fouling involving organic-, inorganic-, and biofouling. Nevertheless,
the most common approach utilized so far is developing anti-fouling membranes. Herein,
we report several recent progresses on the anti-fouling modifications of membranes that
can mitigate the fouling effects during the long-term operation of G-L MC.

Introducing hydrophilicity on the membrane surface can reduce membrane fouling
by decreasing an adhesion force of hydrophobic organic particles on the membrane surface.
To this end, developing composite membranes coated with a thin hydrophilic layer on top
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of a hydrophobic membrane substrate was suggested by Rongwong et al. [13]. In their re-
view, the possible candidates proposed for the hydrophilic layer were poly(2-hydroxyethyl
methacrylate) and poly(ether block amide) [73,74]. Later, the same group successfully real-
ized this idea by creating an anti-fouling layer on PDMS–PVDF composite membrane [40].
Prior to the surface modification, the WCA and surface streaming potential, which can
be utilized as essential implications for anticipating biofouling propensity [75,76], were
120.4◦ and –12.8 mV respectively for the PDMS-PVDF membrane. However, after the
coating with a PDMS-based amphiphilic copolymer comprising polyethylene glycol (PEG)-
like segments, those values were determined as 14◦ and −4.1 mV [40]. Interestingly, the
surface-modified membrane showed better performance during MC operation in terms
of both fouling resistance and D-CH4 recovery efficiency probably due to a lower steric
hindrance from the short-chain PDMS-based copolymer compared to that of the original
PDMS. Consequently, the post-treatment using the amphiphilic copolymer tremendously
improved the anti-fouling property of the PDMS–PVDF membrane as evidenced by the
successive 7-day operation while maintaining a stable CH4 recovery flux. A similar obser-
vation was also reported by Soteropulos et al. when the membrane surface was modified
with a short-chain PEG [77].

Introducing various patterns on the surface of membranes is also an effective method
to prevent membrane fouling by creating turbulent hydrodynamics that imposes a high
shear stress near the liquid–membrane surface [13]. Although this strategy has not yet
been implemented in MC for D-CH4 recovery, herein, we want to introduce some recent
examples from relevant membrane technology. The primary advantage of patterning on the
membrane surface is that the fouling resistance is created without introducing additional
layers on top of the membrane surface [78]. Ding et al. showed that surface patterning
using nanoimprint lithography (NIL) on flat-sheet ultrafiltration (UF), microfiltration
(MF), and thin-film composite membranes could induce antifouling characteristics on
the membranes [79]. By comparing both patterned and unpatterned membranes, it was
confirmed that the presence of the surface patterning increased shear stress at the membrane
surface, thus mitigating the accumulation of colloids and protein-like macromolecules.
Furthermore, Xie et al. found that fabricating a line-shape nanostructure on the surface of
the membrane not only minimized the water flux decline but also reduced the deposition
of foulants in membrane distillation (MD) [80]. Comprehensive analysis revealed that
the patterned membrane exhibited a much lower adhesion force between the membrane
surface and protein foulants as compared to the pristine membrane. Won et al. also
suggested that mitigating fouling propensity can be achieved by introducing patterned
morphology on the membrane surface [81]. The patterned morphology such as prism
and pyramid on a cross-flow MF system enhanced hydraulic resistance on the membrane
surface, inducing a local turbulence that inhibits biofouling on the membrane surfaces.

Apart from all these efforts to fabricate anti-fouling membranes, the low fouling
could also be achieved by designing novel MC systems. As shown in Figure 6, Li et al.
proposed a novel approach to recover D-CH4 from a model anaerobic effluent by using
an omniphobic membrane [82]. Unlike conventional membrane contactor systems, a
non-polar (highly methane soluble), non-volatile organic solvent was utilized instead of
sweeping gas or vacuum to create the driving force for MC operation. The difference
of methane solubility in between the feed solution and the solvent drives the transport
D-CH4 from the feed, achieving over 90% of methane recovery at a temperature range of
15–35 ◦C. In the later work, AnMBR effluent was used as the feed solution to evaluate D-
CH4 recovery performance of the solvent-based membrane contactor (SMC) under realistic
conditions [83]. The solvent-derived transfer of methane via the omniphobic membrane
contactor showed over 90% methane recovery during the 24-h operation. More importantly,
the absence of water flux across the membrane could prevent any accumulation of organic
foulants on the membrane surface.
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Once a membrane is fouled, despite all the efforts for anti-fouling, the cleaning should
be conducted to restore the original membrane performance. Although the most primitive
and effective method of removing membrane fouling is chemical cleaning, it should be
considered as the last option, since the cleaning chemicals can alter the membrane surface
properties. However, physical cleaning such as back washing or flushing with water can
be recommended. The physical cleaning is known to be most effective when the foulants
are weakly bound to the membrane surface. To this end, the aforementioned hydrophilic
anti-fouling coating on the membrane surface is once again a very effective strategy in
controlling membrane fouling. Indeed, Sethunga et al. demonstrated that the membrane
coated with a hydrophilic anti-fouling layer could be readily cleaned by a flushing with
tap water, after which the D-CH4 flux was returned back to the original flux of fresh
membrane [40].

It is worth noting that all membranes have a certain lifetime after which a replacement
with a new one is inevitable. Owing to the growing concern on the generation of solid
waste from used membranes, biodegradable membranes have also been developed in
recent years. Such membranes were successfully fabricated by utilizing cellulose nanofiber
composite [84], chitosan [85], and polycaprolactone [86]. Accordingly, in the future, mem-
brane contactors with high performance and sufficient biodegradability should be targeted
for the sustainable management of the overall system.

4. Net Energy Production in MCs

Maximizing the biomethane recovery from anaerobic effluents and thus harvesting
the useful energy is the major goal of utilizing membrane contactors. As mentioned in the
previous sections, the biomethane recovery efficiency heavily depends on both membrane
inherent parameters and operating parameters. A number of studies have reported the
methane recovery efficiencies of hollow fiber MCs to demonstrate the potential benefits of
the processes. More importantly, economic analysis in terms of net energy production has
also been conducted in some studies by considering the cost and energy required for the
operation of MCs. For example, Rongwong et al. conducted economic analysis based on
the modelling data of a MC comprising hydrophobic hollow fiber membranes [42]. They
predicted positive net energy production values (ENET), which can be further increased by
optimizing the operation conditions. Later, Sethunga et al. analyzed the percent methane
recoveries from AnMBR and UASB effluents for a MC employing a surface-modified
PDMS–PVDF membrane [40]. The membrane performance was maintained for 7 days
with a mild fouling propensity when the liquid velocity was fixed at 0.06 m s−1 under
vacuum operation. In addition to the methane recovery efficiency, they also carried out
the economic analysis and provide ENET values as summarized in Table 3. Although
the methane recovery performance of the PDMS-only membrane was found to be the
greatest among the four candidates, the recovery efficiency of the PDMS-only membrane
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was significantly degraded due to the membrane fouling after 3 days. Eventually, the
membrane with anti-fouling layer (PDMS-co-P1) could extract 3% more energy than the
PDMS-only membrane, implying that the control of membrane fouling is highly important
to secure the net energy production. It is noteworthy that such difference in net energy
production would become greater and more evident during the long-term operations.

Table 3. Comparison of the membranes tested.

Membrane
RM

a

(s m−1)
ENet

b

(MJ m−3)

Long-Term Operation
Reference

AnMBR UASB

Modified PVDF
(PHM-PVDF) 4518.0 0.112 Stable flux for 8 days Wetting after 3 days [46]

PDMS-PVDF
LM-5.0 6225.0 0.135 Stable flux for 8 days 25% flux drop within 10 days [69]

PDMS-co-P1 c 6528.9 0.115 - Stable flux for 5 days, then
10% drop [40]

Commercial PP 9512.6 0.102 10% flux drop within 8 days 40% flux drop within 3 days [40]

Commercial PDMS 12668 0.077 - 25% flux drop within 10 days [40]
a The membrane resistance was obtained from the Wilson plot method. b The ENET was calculated at the liquid velocity of 0.06 m s−1.
c PDMS–PVDF membranes were utilized for the post-modification (fouling-resistant coating) with PDMS copolymers (polydimethylsiloxane-
co-3-(2-(2-hydroxyethoxy)ethoxy)propylmethylsiloxane) and termed as PDMS-co-P1.

5. Future Directions

Even though the G-L MC system is a promising technology to recover D-CH4 from
anaerobic effluents and thus produce useful energy from wastes, technical challenges
have limited its large-scale practical applications. To capitalize the potential benefits of
MC systems in practical applications, the following aspects should be investigated and
improved in future studies.

• The development of anti-wetting and anti-fouling membranes is an essential compo-
nent of the utilization and application of membrane contactors. Membrane contactors
without fouling and wetting resistances require frequent membrane cleaning and
membrane replacements, which eventually lower the economic feasibility of the pro-
cess. Thus far, many studies have been carried out by using commercially available
MC membranes such as PP and PDMS membranes, and the membrane fouling was
not the major focus in most of studies. Noticeably, the biofouling that occurred in the
D-CH4 recovery process would be hard to tackle, as microorganisms in anaerobic ef-
fluents can even foul the surface of the hydrophilic layer at a prolonged operation [13].
In addition, the anti-wetting property of the membrane should be addressed properly,
considering the realistic conditions, including the fouling effect. For example, the
surface property of the membrane can be altered by the deposition of a fouling layer,
although a hydrophobic membrane surface was successfully created. Accordingly, it is
recommended to develop high-performance membranes possessing both anti-wetting
and anti-fouling properties together.

• Switching lab-scale to large-scale testing is needed to acquire more reliable data. Both
membrane and operation parameters should be optimized together to maximize the
net energy production in large-scale MC operation. Especially, the membrane module
should be effectively designed in such a way that both liquid and gas streams are
uniformly distributed inside the module, since ineffective flow stream often limits
the overall performance of large-scale hollow fiber module. It is worth noting that
a success in a lab-scale test using a few pieces of lab-made hollow fibers cannot
guarantee the success in a large-scale practical operation. The operation parameters
that are effective in a large-scale system would also be different from those found in a
lab-scale system.
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• More rigorous economic analysis is required based on data from large-scale operations
under realistic conditions to provide more convincing evidence to potential users. In
such analysis, practical parameters that must be involved in a long-term operation
at real conditions, such as any pretreatments required for membrane fouling control,
periodic membrane cleaning, and membrane replacement, must be taken into account.
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