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Abstract: The separation process between 5-hydroxymethylfurfural (HMF) and trace glucose in
glucose conversion is important in the biphasic system (aqueous–organic phase), due to the partial
solubility property of HMF in water. In addition, the yield of HMF via the dehydration reaction of
glucose in water is low (under 50%) with the use of Brønsted acid as a catalyst. Therefore, this study
was conducted to optimize the production and separation of products by using a new hydrophobic
ionic liquid (IL), which is more selective than water. The new IL (1,3-dibutyl-2-(2-butoxyphenyl)-
4,5-diphenyl imidazolium iodide) [DBDIm]I was used as a solvent and was optimized for the
dehydration reaction of glucose to make a more selective separation of HMF, levulinic acid (LA), and
formic acid (FA). [DBDIm]I showed high performance as a solvent for glucose conversion at 100 ◦C
for 120 min, with a yield of 82.2% HMF, 14.9% LA, and 2.9% FA in the presence of sulfuric acid as the
Brønsted acid catalyst.

Keywords: imidazolium-based IL; glucose conversion; hydroxymethylfurfural (HMF); levulinic acid
(LA); formic acid (FA)

1. Introduction

The production of fuels, fine chemicals, and polymer precursors from biomass can
decrease the current dependence on non-renewable energy sources [1–3]. Furan derivative
compounds are frequently used as raw materials for new products to replace the oil-based
chemicals and create a new set of biomass-based economies for the production of high-
value chemical compounds [1,4,5]. 5-Hydroxymethylfurfural (HMF) is a furan derivative
compound and it is one of the products from biomass, glucose, and fructose conversion
reactions. In recent years, HMF has been considered as the potential renewable chemical
platform to produce liquid fuels, intermediates of polymers, pharmaceutical products, fine
chemicals, and other organic derivatives [1,4,6].

Despite many multifunctional applications of HMF, HMF is still not yet produced on
an industrial scale due to its high production cost [6–8]. HMF production can be achieved
by the dehydration reaction of carbohydrate derivatives such as fructose, glucose, sucrose,
or cellulose in water, by adding an acidic catalyst [9]. In general, HMF is typically pro-
duced from glucose with low yields, attributed to the stable pyranoside ring structure of
glucose [6,10]. Glucose is the most abundant monosaccharide, considered as the preferred
raw material to produce HMF [10,11]. However, glucose conversion to HMF, levulinic
acid (LA), and formic acid (FA) is more complicated than fructose as substrates [6,12].
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Current technologies use an additional isomerization step of glucose to fructose because
dehydration of fructose to HMF occurs with better selectivity and higher rates [11,13].
The use of solid catalysts (hydrotalcite, zeolites, and different metal oxides), enzymes, or
an aqueous base is renowned in the isomerization step of monosaccharide dehydration
[2,6,8,13,14]. However, the high processing cost and the relatively low HMF yields (approx-
imately 20.0–70.0%) are some of the disadvantages in those processes [2,6,8,13,14].

The reviewed literature results showed that HMF production from biomass, glu-
cose, and fructose in an organic solvent as media and metal catalysts still needs more
development. The previous studies showed that the glucose conversion to HMF in N,N-
dimethylacetamide with a chromium salt catalyst yielded approximately 50.0% HMF at
100 ◦C for 5 h [15–17]. Corn and pine sawdust conversion to HMF in N,N-dimethylacetamide
in the presence of a LiCl catalyst at 140 ◦C for 2 h produced approximately 15.0–40.0%
HMF [18]. In 2015, a study reported that the glucose transformation into HMF in DMF,
DMA, DMSO, or n-butyl alcohol as solvents and CrCl3 as a catalyst at 120 ◦C, with 10–
90 min reaction times, was adept at producing HMF, with the yields ranging from 10.0
to 40.0% [19]. However, the use of a metal salt catalyst for glucose conversion has some
disadvantages, such as a high cost, potential toxicity, and the environmental concerns of
chromium metal for significant commercial application [18,20,21]. There are many disad-
vantages of using organic solvents as media for glucose conversion. These include high
flammability, low vapor pressure, high toxicity, and high cost of operation [19]. Further-
more, the yield of HMF is relatively low when using organic solvents as media and it is
also challenging to regenerate and recycle organic solvents [12,19,22]. The difficulties in the
separation of HMF from other side products due to low solubility in the aqueous phase also
lead to a decrease in HMF yield [6,23,24]. Therefore, several new technologies are required
to improve the glucose dehydration and separation processes, for example, the use of ionic
liquid (IL)-based processes or combining IL and membrane separation technology [25–29].

IL is an organic or inorganic salt with a low melting point (under 100 ◦C), high ther-
mal stability, chemical stability, low vapor pressure, and environmentally friendly as a
solvent and catalyst [30–33]. Several notable applications of ILs include the use as a sol-
vent or media in biomass conversion, as a catalyst for reaction, as corrosion inhibitors,
and as a supporting material in membrane separation [3,14,25–27,30]. IL can act as a
green solvent, with a wide range of solubility, and as a catalyst to increase the HMF
yield [3,25–27,34]. [BMIm]Cl-based IL and hydroxyl apatite-supported chromium chlo-
ride were used for glucose conversion and produced HMF with a yield of 40.0% [15,35].
In 2007, [EMIm]Cl (1-ethyl-3-methylimidazolium chloride) and CrCl2 were applied for
glucose dehydration, producing a nearly 70.0% HMF yield [16]. In previous studies, Hsu
et al. [36] used imidazolium-based IL, namely, [EMIm]Cl and [Epyr]Cl, in glucose dehy-
dration. Both ILs demonstrated better recoverability, recyclability, and ability to perform
as double agents (solvent and catalyst) than conventional organic solvents [33,36–38].
Stahlberg et al. [38] investigated IL’s usage with lanthanide as catalysts in glucose con-
version, obtaining an approximately 24.0% HMF yield [39]. The literature review results
showed that IL acted as a more powerful solvent and Lewis acid catalyst in biomass
conversion [3,6,14,23,25,27,28,40,41]. However, several ILs still have drawbacks in the
hydrolysis process of biomass, glucose, and fructose due to the incompatible chemical
structures of the ILs, resulting in a low HMF yield. The chemical structures of ILs play
an essential role in glucose conversion [3,18,23,30,39]. An adequate and suitable chemical
structure of ILs (more hydrophobic as main priority) is required as a medium and catalyst
to assist the dehydration reaction, accelerate the glucose conversion process to HMF, and
increase the yield of HMF. Therefore, it is important to find more hydrophobic ILs and
study their potential as media or solvents in glucose conversion.

We selected a 1,3-dibutyl-2-(2-butoxyphenyl)-4,5-diphenylimidazolium iodide
([DBDim]I)–based IL as a medium in glucose conversion due to its highly hydropho-
bic structure, good thermal resistance, and ability to dissolve a wide range of solutes [30].
The main objective of this study was to evaluate the performance of [DBDIm]I as a hy-
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drophobic solvent for glucose conversion to HMF, LA, and FA under various temperatures
and reaction times. The results showed that [DBDIm]I is a potential medium for glucose
conversion to several biofuel precursors.

2. Materials and Methods
2.1. Materials

Glucose and sulfuric acid were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The IL ([DBDIm]I) was synthesized in the laboratory using the MAOS (Microwave-Assisted
Organic Synthesis) method, according to the previously reported method developed by the
authors [25]. A total of 201 mmol of 1-iodobutane and 67 mmol of 2-(2-hydroxyphenyl)-4,5-
diphenylimidazole were reacted in a CEM microwave reactor at a temperature of 190 ◦C
for 2 h. The course of the synthesis reaction of [DBDIm]I was monitored by thin-layer
chromatography using ethyl acetate:methanol (3:7 (v/v)) as eluents. The crude product
was purified by liquid–liquid extraction method using n-hexane. The [DBDIm]I was dried
in a vacuum oven for 4 h. The chemical structure of [DBDIm]I was confirmed using FTIR,
NMR, HR-ESI-MS spectroscopy, and elemental analysis, as previously reported by the
authors [25,30].

2.2. Glucose Conversion

The optimization of glucose conversion was performed at various operating con-
ditions, which include temperatures and reaction times. The glucose conversion was
carried out at different reaction times, ranging from 20 to 120 min. The optimum tem-
perature of the glucose conversion was observed at the range of 80–105 ◦C, as reported
previously [15,36,42].

Glucose was reacted in an oven in a 7 mL-ampoule tube. Each of the nine 7 mL
ampoules was filled with 0.5 g of glucose and 1 g of [DBDIm]I. Three of the ampoules were
filled with 0.5 g of glucose, 1 g of [DBDIm]I, and 0.5 mL demineralized water. The other
three ampoules were mixed with 0.5 mL of water and 0.5 mL of 1 M H2SO4. In a control
system, three ampoules were provided with 0.5 g of glucose in water. To study the Brønsted
acid’s effect, H2SO4 was added to three ampoules with glucose, water, and 1 M H2SO4.
The total volume of the mixture in each ampoule was approximately 2–3 mL. All ampoules
were incubated in an oven at pre-set temperatures. After completion of the reaction,
conversion products were analyzed.

2.3. Analytical Methods

The glucose conversion products in the water phase were analyzed using HPLC (High-
Performance Liquid Chromatography). The %mole yield of each conversion product was
calculated based on the peak area of the HPLC chromatograms. The calculation methods
were adopted from previously published reports based on the number of carbon atoms in
the products [16,43].

Based on the HPLC chromatograms analysis, the concentration of each conversion
product was determined and the exact concentration of each product was calculated
by multiplying the obtained concentration with the dilution factor. Percentages of con-
version products were further calculated based on the peak area of the HPLC chro-
matograms obtained by entering the actual concentration data to the Equations (1)–(4) given
below [16,42]. The calculation was defined based on the number of the C atoms present in
the conversion products; for example, HMF has 6 C atoms, LA has 5 C atoms, and FA has
one atom C. Therefore, the calculation was formulated as follows:

mole% yield of product =

amount o f Catom
Cproduct

Wsample
×100% (1)

mole% yield of LA =
5

CLA

Wsample
×100% (2)
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mole% yield of HMF =
6

CHMF

Wsample
×100% (3)

mole% yield of FA =
1

CFA

Wsample
×100% (4)

where,

CLA = real concentration of LA produced (mole);
CHMF = real concentration of HMF produced (mole);
CFA = real concentration of FA produced (mole);
Wsample = weight of sample (gram).

The details of this method are given in our recently published work [29]. The HPLC re-
tention time data (in minutes) of the standards used were as follows: glucose: 10.26; formic
acid (FA): 15.39; acetic acid: 16.67; levulinic acid (LA): 17.49; and hydroxymethylfurfural:
33.38–35.86—as shown in the Supplementary Materials.

2.4. Statistical Analysis

The optimization studies were conducted with five replications, as per the methods de-
scribed previously [41,42]. All the results of the glucose conversion at optimum conditions
showed standard deviations under 2%. The reusability studies of [DBDIm]I as a solvent
in glucose conversion were also conducted with five replications, and the experimental
results had standard deviations below 2%.

3. Results and Discussion
3.1. Determination of Optimum Conditions for Glucose Conversion

Glucose conversion was conducted in [DBDIm]I-based IL, which has high hydropho-
bic properties due to its three butyl chains and three aromatic rings in its structure, as
shown in Figure 1. The effects of [DBDIm]I as a solvent (also as a Lewis acid) and H2SO4
(Brønsted acid) in glucose conversion were observed at a temperature of 80 ◦C, with a
reaction time ranging from 20 to 120 min. The results showed that a longer reaction time is
essential for a better glucose conversion in [DBDIm]I (Figure 2a). The optimum reaction
time of glucose conversion in [DBDIm]I supported by 1M H2SO4 was 120 min, which
showed a yield of 76.3% HMF. The results also indicated that the glucose conversion in
only water as a solvent without an acid catalyst at the same reaction conditions did not
produce HMF. It is hard to dehydrate glucose in the presence of water; thus, it is also not
feasible to form HMF in the absence of a dehydrating agent, such as Lewis acid or Brønsted
acid catalysts. Nevertheless, the increase in temperature affected the HMF production,
even in the system containing only glucose and water (Figure 2b). It was apparent that the
higher temperature would promote the dehydration of glucose due to the vaporization of
water.

The combination of a Lewis acid of [DBDIm]I and Brønsted acid of H2SO4 showed
better glucose conversion than the Lewis acid or Brønsted acid alone. This study developed
a strategy for integrating the sequential catalytic process for biomass transformation in
a single-step reaction. The effect of temperature on glucose conversion was studied.
The temperatures studied were with 5 ◦C increments from 80 to 105 ◦C, and the results
are shown in Figure 2b. The % yield of HMF increased with increasing temperature.
A high temperature was usually needed to promote the dehydration reaction of glucose;
however, at the highest temperature tested, the HMF yield slightly decreased due to HMF
transformation into LA and FA, as reported by others [8,34,41,45,46]. We conclude from
this study that the optimum temperature for glucose conversion to HMF in [DBDIm]I with
or without H2SO4 was 100 ◦C. The best glucose conversion conditions were the operating
temperature of 100 ◦C and the reaction time of 120 min in [DBDIm]I as both the solvent and
Lewis acid, and H2SO4 as a Brønsted acid catalyst. These conditions produced 82.2% HMF.
Wang et al. [46] reported that the optimum temperature to convert lignocelluloses to HMF
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was 160◦. Zhang et al. [41] reported the optimum temperature to convert lignocelluloses
into HMF was 100 ◦C. This study showed notable improvement in the HMF yield compared
to previously reported studies.

Figure 1. Structure of [DBDIm]I.

Figure 2. (a) HMF percentage yield from glucose conversion in water or [DBDIm]I as a solvent, with
or without H2SO4 at 80 ◦C; and (b) effect of temperature on glucose conversion.

There were few reports available on the sugar conversion to HMF. Fructose conversion
to HMF supported by metal halides as a Lewis acid within 3 h gave a 70.0% HMF yield [16].
HMF from cellulose conversion reported by Xiao et al. [24] produced a yield of 54.9%
within 9 h at 150 ◦C in [BMIm]Cl-based IL. Cellulose conversion in [BMIm]Cl supported
by TiOSO4 catalyst at 100 ◦C for 3 h produced 38.0% HMF [28,44–46]. Wang et al. [46]
reported a yield of 43.7% HMF from cellulose in the presence of tetrabutylammonium-
chloride (TBAC) and chromium(III) trichloride (CrCl3·6H2O) catalyst at a 140 ◦C and
90 min reaction time. These reports showed lower HMF yields with relatively longer
reaction times at higher temperatures compared to our study. The other glucose conversion
products in [DBDIm]I or water at 80 ◦C with and without the addition of H2SO4 were LA
and FA, as presented in Figure 3. The highest %mole yield of LA and FA were 13.8% and
2.7%, respectively. The results showed that the rehydration of HMF to LA and FA was also
possible.
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Figure 3. HMF rehydration at 80 ◦C to LA (a) and FA (b) in [DBDIm]I or water, with or without H2SO4.

3.2. Performance of [DBDIm]I as a Solvent for Glucose Conversion

The performance of [DBDIm]I as a solvent in glucose conversion was studied further
at optimum conditions. All products of glucose conversion were analyzed using HPLC.
High glucose conversion to HMF (82.2%) was observed in the system with [DBDIm]I
and 1M H2SO4. A low yield of HMF (5.2%) from glucose was observed in the control
system with only glucose and water. The addition of H2SO4 in the control has improved
the glucose conversion to HMF, with a yield of 49.1%. The glucose conversion results in
[DBDIm]I or water, with or without H2SO4 at optimum conditions, are shown in Table 1.

Table 1. Results of glucose conversion at optimum conditions (100 ◦C for 2 h) *.

Solvent Catalyst
%Mole Yield of Product

Remark
HMF Levulinic

Acid Formic Acid

[DBDIm]I Non
Catalyst

52.1 ± 1.0 9.6 ± 0.3 1.9 ± 0.1 [DBDIm]I gives better performance as a
solventH2O 4.3 ± 0.1 0.8 ± 0.1 0.2 ± 0.1

[DBDIm]I H2SO4
82.2 ± 2.1 14.9 ± 0.4 2.9 ± 0.1 [DBDIm]I performance as a solvent

increased with the addition of H2SO4H2O 49.1 ± 1.4 8.9 ± 0.4 1.8 ± 0.1

* The results are the average of five replications with SD.

The main product in glucose conversion was HMF. However, LA and FA were also
formed as side products after the decomposition reaction due to the more reactive glucose
in the presence of [DBDIm]I as both solvent and Lewis acid catalyst. According to many
reported studies, the acidic catalyst promotes water formation in the glucose dehydration
process [7,11,20,26,47–49]. [DBDIm]I increased the –OH group’s reactivity in glucose
(stretch out the –OH bonding) for the easier release of water molecules and produced HMF.
The use of [DBDIm]I as a solvent in glucose dehydration increased the HMF production
in the acid catalyst due to the synergistic effect between the [DBDIm]+ cation of IL and
H+ to make a more selective reaction. Furthermore, [DBDIm]I made an easier separation
of HMF and side products from the trace glucose and impurities due to its property as a
surfactant. The use of water as a solvent system without a catalyst showed its incapability
to produce any products. These results supported the ability of [DBMIm]I to catalyze
the glucose dehydration reaction, as well as being the better medium compared to water.
The hydrophobicity of [DBDIm]I supported the selectivity of HMF capturing in the biphasic
system (aqueous–organic (IL)) after completion of the reaction; thus, the separation of the
product became easier. All of the glucose conversion products can be separated easily from
IL due to the hydrophilic nature of HMF, LA, and FA. The IL can be recycled in the process.
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The proposed mechanism of glucose dehydration in [DBDIm]I is shown in Figure 4.
In the first step, the pyranose-ring-opening of glucose occurred to form the first interme-
diate molecule (b). The protonation of the anomeric –OH group within the intermediate
molecule (b) by Brønsted acid led to the next intermediate species (c). The I− anion of the
IL deprotonated the –OH group of the intermediate species (c) to form a furanose ring
(d). This intermediate was further oxidized assisted by the [DBDIm]+ cation to produce
the following molecule (e). At the last step, HMF (f) production occurred through the
second dehydration supported by [DBDIm]I at 100 ◦C. Kassaye et al. [23] reported that
the chloride (Cl−) ion size has a small effect on the hydrolysis process. At the same time,
[Bmim]Cl has the potential for cellulose degradation assisted by metal catalysts (sulfated
zirconia), with a maximum HMF yield of 57.0% [23]. Tyagi et al. [3] reported a maximum
HMF yield of 69.9% in 2 h using [Bmim]Cl as solvent. The iodide anion’s role is relatively
significant in increasing glucose dehydration. The I− anion is larger and more polarized
than Cl−, which enhances the hydrolysis and pyranose-ring-opening of glucose.

Figure 4. Proposed mechanism of glucose dehydration in [DBDIm]I as a solvent in the presence
of a Brønsted acid catalyst. Note: (a) hydrolyze glucose with acid; (b) ring opening of glucose
(dehydration); (c) closing pentacyclic; (d) de-carbanion; (e) oxidation of anomeric carbon; (f) HMF.

3.3. Recovery and Reusability of [DBDIm]I in Glucose Conversion

The HMF, LA, and FA were easily separated from the aqueous phase due to their
difference in polarity, which is significantly different from [DBDIm]I. The efficient extraction
of HMF requires a suitable solvent that should have low miscibility with water and lead to
a high partition coefficient for each compound [24,43,46,50]. Therefore, [DBDIm]I can be
used as a potential solvent. The conversion products in the [DBDIm]I phase can be easily
separated by extracting in demineralized water. This advantage has led to the recycling
and reuse of [DBDIm]I several times. Thus, the recovered [DBDIm]I can be reapplied for
the next glucose conversion to the HMF process. The extraction of products was carried out
using the mixtures of toluene and water (4:1, v/v) by liquid–liquid extraction to separate
the HMF from LA and FA. After washing twice, the recycled [DBDIm]I was further used in
the conversion process of 0.5 g of glucose with or without the addition of 0.5 mL 1 M H2SO4
at 100 ◦C for 2 h in an oven, for up to five cycles. The results are shown in Figure 5. The
%mole yield trend of the glucose conversion products (HMF, LA, and FA) in the presence
of H2SO4 decreased in each subsequent cycle, resulting in lower yields of products after
the fifth cycle: 77.2% HMF, 14.0% LA, and 2.8% FA. Similarly, the use of recycled IL for
glucose conversion in the absence of H2SO4 produced a lower %mole yield of HMF, LA,
and FA, which were 48.2%, 8.8%, and 1.7%, respectively.
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Figure 5. Results of glucose conversion in recycled [DBDIm]I at 100 ◦C for 2 h with H2SO4 (a) and
without H2SO4 (b).

This study showed that [DBDIm]I has potential as a solvent and catalyst for glucose
conversion. The yields of HMF, LA, and FA decreased during each cycle because [DBDIm]I
was consumed during the reaction. The recycled [DBDIm]I supported by H2SO4 presented
a relatively good performance, with an HMF yield higher than 70.0%, for up to five cycles,
as shown in Figure 5. Zhao et al. [16] showed that the HMF from fructose conversion
supported by metal halides as a Lewis acid was under 70.0% when reacted for 3 h. Leng
et al. [14] used [BMIm]Cl and CrCl3–AlCl3 as catalysts in glucose conversion for 2 h at
120 ◦C, producing approximately 54.7% HMF. Zhang et al. [15] also reported the yield of
31.2% HMF when cellulose was used as a substrate with [EMIm]Cl and ATP–SO3H–Cr(III)
as catalysts. Our study showed that [DBDIm]I is a more effective medium due to its
recyclability and its capability to retain its catalytic property in glucose conversion up to
the five cycles.

The use of imidazolium-based IL, such as [DBDIm], has some advantages, such as
being environmentally friendly, non-toxic, and easy to be produced on an industrial
scale [25,51–53]. Other reports showed the use of [BMIm]Cl and [HMIm]HSO4 as eco-
friendly Lewis acid imidazolium-based ILs in cellulose conversion, with the addition of
a metal ion catalyst, was more effective and efficient compared to other methods [3,40].
Wang et al. [45] reported that the tetrabutylammonium-chloride (TBAC) and chromium(III)
trichloride (CrCl3·6H2O) catalysts have significantly accelerated the conversion process
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of cellulose to HMF. However, this ammonium-based IL is more toxic to the environment
than the imidazolium-based IL [25,51–53]. The present study showed the versatility of
[DBDIm]I, which acts as a catalyst and as a solvent, in improving the glucose dehydration
to HMF.

4. Conclusions

A [DBDIm]I-based IL has successfully converted glucose to HMF, LA, and FA, with
high yields at 100 ◦C for 120 min, supported by H2SO4 as a Brønsted acid catalyst; these
yields were 82.2% HMF, 14.9% LA, and 2.9% FA. [DBDIm] has potential as both a solvent
and catalyst for glucose conversion. It can be recycled and reused in glucose conversion
until the fifth cycle, with yields of 70.0% HMF, 10.0% LA, and 2.0% FA.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/3/989/s1. Supplement File contains HPLC chromatograms.
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