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Abstract: The complex response characterizing elastomeric isolation bearings is reproduced by
employing a novel uniaxial hysteretic model that has been recently formulated and successfully
implemented in OpenSees. Such a novel OpenSees material model offers several advantages with
respect to differential models typically available in commercial software products for structural
analysis, such as 3D-BASIS and CSi programs. Firstly, it is based on a set of only five model parameters
that have a clear mechanical significance; such a property not only allows one to drastically simplify
the parameters identification process, but it also allows the model to be used in practice. In addition,
the model does not require numerical methods for the evaluation of the restoring force since the
latter is computed by solving an algebraic equation. To encourage researchers and designers to adopt
the proposed model for research and practical purposes, we demonstrate its accuracy by performing
some numerical tests in OpenSees. In particular, we first employ the recently implemented model to
compute the nonlinear dynamic response of a seismically base-isolated structure with elastomeric
bearings and, subsequently, we compare the results with those obtained by modeling the seismic
isolators with the OpenSees BoucWen uniaxial material model, that is one of the most popular and
accurate hysteretic models currently available in OpenSees.

Keywords: base isolation; hysteretic model; nonlinear dynamic analysis; OpenSees; seismic isolator

1. Introduction

Seismic isolation represents one of the most efficient techniques currently available
to protect structures from earthquake excitations [1–4]. Such a technique is based on the
use of seismic isolation bearings which are special devices characterized by flexibility and
energy dissipation capacity along their transverse directions and a large stiffness along the
axial one [5].

Basically, elastomeric and sliding bearings are commonly used in seismic isolation.
The first ones are constituted by alternating layers of rubber and thin reinforcing ele-
ments [6], whereas the second ones are made up of a metal slider that moves on a sliding
metal surface [7].

Under the effect of a constant axial compressive load, deformation of both types
of isolators, along their transverse directions, is characterized by a complex hysteretic
behavior. Some examples of their typical restoring force-displacement hysteresis loops are
described in [8–11].

Due to the hysteretic nature of the isolators’ behavior, a realistic prediction of the
actual response of seismically base-isolated structures can only be achieved by performing
nonlinear dynamic analyses. As shown by Vaiana et al. [12] and Greco et al. [13], the accu-
racy and computational efficiency of such sophisticated analyses are strongly related to a
suitable combination of the time integration method, required to solve the nonlinear equi-
librium equations, and the phenomenological models adopted to describe the hysteretic
behavior of the seismic devices.
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Among existing computer programs of structural analysis, 3D-BASIS, ETABS and
SAP2000 are typically used in practice to perform nonlinear time history analyses of base-
isolated structures. On the contrary, other commercially available computer programs,
such as ANSYS and ABAQUS, that are also capable of modeling the behavior of seismic
isolators, are rarely used for this purpose since they are not suitable for building analysis.

In 3D-BASIS, the nonlinear equilibrium equations are numerically solved by using the
Newmark’s constant average acceleration method adopted in conjunction with the pseudo-
force iterative procedure [14]. As regards the available hysteretic models, such a computer
program offers the possibility of using accurate differential models that have been derived
by modifying the celebrated Bouc–Wen model [15,16] to allow for the simulation of the
complex response characterizing elastomeric and sliding bearings [9,14].

In CSi programs, namely ETABS and SAP2000, the nonlinear equilibrium equa-
tions can be solved by employing the computationally efficient Fast Nonlinear Analysis
method [17], in which stiffness and mass orthogonal load dependent Ritz vectors of the
linear elastic base-isolated structure are used to reduce the size of the nonlinear system
to be solved. As for 3D-BASIS, in CSi programs the behavior of elastomeric and sliding
bearings can be simulated by adopting accurate differential models that represent modified
versions of the Bouc–Wen model [15,16].

The hysteretic models implemented in the above-described computer programs,
though capable of accurately simulating the response of seismic isolation devices, are
based on parameters lacking a clear mechanical significance, so that their calibration
and use in practical applications is troublesome. In addition, sophisticated numerical
techniques, such as multi-steps [18] or Runge–Kutta methods [19], are exploited to solve,
at each time step of a nonlinear time history analysis, the differential equation defining
such models.

To overcome such limitations, a class of uniaxial phenomenological models has been
formulated in [20,21]; subsequently, it has been specialized to derive two models which
are respectively suitable for elastomeric and sliding bearings [22,23]. In particular, the one
developed for elastomeric bearings, that is of particular interest in this work, exploits just
five parameters, directly derivable from the experimental hysteresis loop, and requires a
straightforward computer implementation. Such a model has been denominated Algebraic
Model since the output variable, namely the bearing restoring force, is computed by solving
an algebraic equation in closed form.

To allow designers and researchers to adopt the Algebraic Model and fully exploit its
appealing features, we have recently developed a computationally efficient identification
algorithm capable of calibrating the five model parameters from experimental or numerical
tests [24]. In addition, such a model has been implemented in the Open System for Earth-
quake Engineering Simulation (OpenSees), that is a powerful object-oriented, open source
software currently adopted by many researchers in the field of structural engineering [25].

In this work, we employ, for the first time, a novel OpenSees material object, called
HystereticPoly material model, to perform some nonlinear time history analyses on a seis-
mically base-isolated structure with elastomeric bearings. In particular, the numerical
accuracy of the proposed hysteretic material model is verified by comparing the results of
several nonlinear analyses with the ones obtained by modeling each elastomeric bearing
by means of the OpenSees Bouc–Wen material model.

The present paper is organized into three parts. The typical transverse hysteretic
behavior displayed by elastomeric and sliding bearings, under an axial compressive load,
is illustrated in the first part (Section 2).

In the second part (Section 3), the formulation of the Algebraic Model is summarized
and the related OpenSees hysteretic material object is illustrated.

Finally, in the third part (Section 4), the accuracy of the HystereticPoly material model
is validated by means of numerical simulations.
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2. Seismically Base-Isolated Structures

A typical seismically base-isolated structure is composed by two substructures, as shown
in Figure 1: the superstructure, that is designed by assuming a linear elastic behavior, and the
base isolation system, that is designed in order to allow the superstructure to deform within
its linear elastic range.

The base isolation system consists of special devices, called seismic isolators, and a
full diaphragm, above the seismic isolation bearings, which is generally introduced to
distribute the transverse loads uniformly among them [26].

There exist two main types of seismic isolation devices: elastomeric and sliding bearings.
Both of them are characterized by a complex hysteretic behavior which allows the designers
to employ one of the two existing seismic isolation strategies, denominated period elongation
strategy and force limitation strategy, respectively.

In the former, the isolation bearings are employed to increase the fundamental period
of the structure thus making its value conveniently different from the dominant period
of the earthquake excitation; conversely, in the latter, the seismic isolators are adopted to
control the maximum value of the transverse force acting at the base of each superstruc-
ture column.

In the next two subsections, we briefly describe the above-mentioned types of seismic
isolators and we illustrate the typical force-displacement hysteresis loops characterizing
their transverse response.

Figure 1. A typical seismically base-isolated structure.

2.1. Elastomeric Bearings

Elastomeric bearings are designed as a stacking sequence of rubber sheets and thin
reinforcing layers. The former guarantee flexibility and energy dissipation along the
transverse directions, whereas the latter comply with two basic technical requirements.
First, they prevent transverse bulging of the elastomer when axial compressive loads are
applied on the bearing; second, reinforcing elements supply an axial stiffness by far greater,
say at least several hundred times, than the transverse one.

Typically, reinforcing elements are made of thin steel plates [6] in the case of Steel
Reinforced Elastomeric Bearings (SREBs) and thin layers of fiber fabric to produce Fiber
Reinforced Elastomeric Bearings (FREBs) [27–29].

Figure 2a,b shows the sectional view of a typical SREB (FREB) in a deformed configu-
ration and the shape of the related restoring force-displacement hysteresis loop.
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(a)

(b)

Figure 2. Typical SREB (a) and FREB (b): sectional view in deformed configuration (left) and
hysteresis loop shape (right).

2.2. Sliding Bearings

Sliding bearings are made of a slider that moves on a sliding surface. Such devices,
having an axial stiffness that is very much greater than the transverse one, display an energy
dissipation capacity due to the friction damping occurring at the sliding interface [5].

According to the type of sliding surface, sliding bearings can be classified into two
main categories, namely Flat Surface Sliding Bearings (FSSBs) and Curved Surface Sliding
Bearings (CSSBs) [7].

Figure 3a,b illustrates the sectional view of a typical FSSB (CSSB) in a deformed config-
uration together with the shape of the related restoring force-displacement hysteresis loop.

(a)

(b)

Figure 3. Typical FSSB (a) and CSSB (b): sectional view in deformed configuration (left) and
hysteresis loop shape (right).
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3. Modeling of Elastomeric Bearings

Several uniaxial phenomenological models have been developed by researchers to
reproduce the complex transverse hysteretic behavior of isolation bearings under the effect
of a constant axial compressive load [9,14,30].

In this section, we focus on the modeling of elastomeric bearings, whereas the aspects
related to the modeling of sliding bearings will be the objective of future papers. In par-
ticular, we first summarize the formulation of a hysteretic model recently developed by
Vaiana et al. [22] and, subsequently, we illustrate the related material object that has been
implemented in OpenSees [25].

The above-mentioned model, denominated Algebraic Model (AM) since the output
variable is evaluated by solving an algebraic equation, is capable of simulating the typical
hysteresis loops of both SREBs and FREBs by using a set of only 5 parameters (ka, kb, α, β1,
β2) having a clear mechanical meaning.

3.1. Algebraic Model Formulation

In the Algebraic Model, u ( f ) represents the bearing transverse displacement (restoring
force) whereas u̇ is the bearing transverse velocity.

The typical restoring force-displacement hysteresis loop characterizing such a model
may be limited by two parallel straight lines (curves), as shown in Figure 5a,b of Ref. [22].
In particular, the restoring force, during the generic loading case (u̇ > 0), is evaluated as:

f
(

u, u+
j

)
=


c+
(

u, u+
j

)
u ∈

[
u+

j − 2u0, u+
j

]
(1a)

cu(u) u ∈
[
u+

j , ∞
)

, (1b)

whereas, during the generic unloading case (u̇ < 0), it is computed as:

f
(

u, u−j
)
=


c−
(

u, u−j
)

u ∈
[
u−j , u−j + 2u0

]
(2a)

cl(u) u ∈
(
−∞, u−j

]
. (2b)

In Equations (1) and (2), c+ and c− represent, respectively, the generic loading and
unloading curves:

c+
(

u, u+
j

)
= β1u3 + β2u5 + kbu + (ka − kb)


(

1 + u− u+
j + 2u0

)(1−α)

1− α
− (1 + 2u0)

(1−α)

1− α

+ f0, (3)

c−
(

u, u−j
)
= β1u3 + β2u5 + kbu + (ka − kb)


(

1− u + u−j + 2u0

)(1−α)

α− 1
− (1 + 2u0)

(1−α)

α− 1

− f0, (4)

whereas cu and cl are, respectively, the upper and lower limiting curves:

cu(u) = β1u3 + β2u5 + kbu + f0, (5)

cl(u) = β1u3 + β2u5 + kbu− f0. (6)

The internal variable u+
j (u−j ), representing the displacement where the generic loading

(unloading) curve intersects the upper (lower) limiting curve, is given by:

u+
j = +1 + uP + 2u0 −

{
1− α

ka − kb

[
fP − β1u3

P − β2u5
P − kbuP − f0 + (ka − kb)

(1 + 2u0)
(1−α)

1− α

]}( 1
1−α )

, (7)

u−j = −1 + uP − 2u0 +

{
α− 1

ka − kb

[
fP − β1u3

P − β2u5
P − kbuP + f0 + (ka − kb)

(1 + 2u0)
(1−α)

α− 1

]}( 1
1−α )

, (8)
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in which uP and fP are the coordinates of a generic point P belonging to c+ or c−, as shown
in Figure 7 of Ref. [22] for a typical hysteresis loop limited by two parallel curves.

Finally, the internal parameters f0 and u0, representing, respectively, the half of
the force difference between the upper and lower limiting curves, and the half of the
displacement difference between the starting and ending points of a generic loading or
unloading curve, are evaluated as:

f0 =
ka − kb

2

[
(1 + 2u0)

(1−α) − 1
1− α

]
, (9)

u0 =
1
2

[(
ka − kb

δk

) 1
α

− 1

]
, (10)

where δk is a numerical parameter set equal to 10−20, whereas ka, kb, and α, together with
β1 and β2, represent the five model parameters to be calibrated from experimental or
numerical data [24]. Specifically, ka > kb, ka > 0, α > 0, α 6= 1, whereas β1 and β2 are reals.

3.2. OpenSees Uniaxial Model

The Algebraic Model described in Section 3.1 has been implemented in OpenSees v.
3.0, an open source, object-oriented framework for finite element analysis [25] whose core
has been developed at the Pacific Earthquake Engineering Research Center headquartered
at the University of California at Berkeley.

A version of such a framework with the implemented hysteretic material can be freely
downloaded at the following link [31].

The command line of the model, belonging to the subclass uniaxialMaterial, is:

uniaxialMaterial HystereticPoly $matTag $ka $kb $a $b1 $b2 $tol

where $matTag is the progressive tag of the uniaxial material object, $ka,$kb,$a,$b1,$b2
represent, respectively, the five model parameters ka, kb, α, β1, β2, whereas $tol is the
model numerical parameter δk which can be set equal to 10−20 [22].

As already explained in Section 3.1, the uniaxial material parameters need to satisfy
the following conditions: $ka > $kb, $ka > 0, $a > 0, $a 6= 1, whereas $b1 and $b2
are reals.

Figure 4 shows the four types of hysteresis loop shapes obtained for a sinusoidal
transverse displacement when:

(a) $b1 = $b2 = 0;
(b) $b1/$b2 > 0 with $b1 > 0 and $b2 > 0;
(c) $b1/$b2 > 0 with $b1 < 0 and $b2 < 0;
(d) $b1/$b2 < 0 with $b1 < $b2.

We note that the hysteresis loop of Figure 4a,c is the typical restoring force-displacement
hysteresis loop displayed by a SREB (FREB) at relatively large (γ ≤ 100–150%) shear strains,
whereas the one illustrated in Figure 4b,d represents the typical hysteresis loop of a SREB
(FREB) at large (γ > 100–150%) shear strains.
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u

f
$b1 = $b2 = 0

(a)

u

f
$b1=$b2 > 0 with
$b1 > 0 and $b2 > 0

(b)

u

f
$b1=$b2 > 0 with
$b1 < 0 and $b2 < 0

(c)

u

f
$b1=$b2 < 0 with
$b1 < $b2

(d)

Figure 4. Types of hysteresis loop shapes that can be simulated with the OpenSees uniaxial
HystereticPoly material model.

4. Nonlinear Time History Analyses in OpenSees

In this section, we present the results of several Nonlinear Time History Analyses
(NLTHAs) carried out on a seismically base-isolated structure, subjected to bidirectional
earthquake excitation, in order to investigate the accuracy of the novel OpenSees uniaxial
material object described in Section 3.2.

In particular, such a model is employed to reproduce the decoupled biaxial hysteretic
behavior of each elastomeric bearing adopted in the base isolation system of the analyzed
structure. Due to its uniaxial nature, this model is not able to take into account the
bidirectional interaction typically displayed by the restoring force components of each
bearing along two generic orthogonal transverse directions. The implementation of a
biaxial version of such a model, already formulated by Vaiana et al. [32], will be the
objective of future works.

In order to demonstrate the accuracy properties of the proposed uniaxial material,
the NLTHAs results are compared with those obtained by employing the OpenSees
BoucWen material object. Such a model, originally formulated by Bouc and Wen [15,16],
has been subsequently proposed by Nagarajaiah et al. [14] to simulate the complex response
of elastomeric bearings.

In this work, the Newmark’s constant average acceleration method is adopted to
numerically solve the nonlinear equilibrium equations of the analyzed structure since such
a numerical time integration method is both accurate and unconditionally stable [33,34].
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4.1. Base-Isolated Structure Properties

Figure 5a presents the three-dimensional (3D) structural model of the analyzed seismi-
cally base-isolated structure whose geometry is defined in a global, right-handed Cartesian
coordinate system (O, X, Y, Z). In addition, Figure 5b shows the related extruded view to
better illustrate the properties of beams and columns.
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Figure 5. 3D structural model (a) of the analyzed base-isolated structure and related extruded
view (b).
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Figure 6. SN (a) and SP (b) components of the ground acceleration recorded at the Jensen Filter Plant
station during the Northridge earthquake of 17 January 1994.

The superstructure is a three-story reinforced concrete structure with both horizontal
and vertical geometric irregularities. The superstructure beams and columns have a linear
elastic behavior and the floor diaphragms are rigid. The total mass of the superstructure is
312.25 kNs2m−1, the first three natural periods are Ts1 = 0.48 s, Ts2 = 0.45 s, and Ts3 = 0.30
s, respectively, whereas the damping ratio of such three fundamental modes is equal to 5%.

Eleven lead rubber bearings, respectively placed under each column of the superstruc-
ture, and a rigid diaphragm above the base floor beams, these last ones assumed to have
a linear elastic behavior, represent the main elements of the base isolation system, whose
total mass is equal to 115.33 kNs2m−1. It has been designed in order to provide an effective
isolation period Te f f = 3.00 s and an effective viscous damping ratio ζe f f = 0.30 at the
design displacement Dd = 0.40 m. The design details are here omitted for brevity.

4.2. Applied Bidirectional Earthquake Excitation

The NLTHAs are carried out by imposing, along the X-axis (Y-axis), the component
SN (SP) of the 1994 Northridge motion, illustrated in Figure 6a,b, and by adopting a ground
acceleration record time step of 0.001 s.
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4.3. Hysteretic Material Models Parameters

The adopted lead rubber bearings exhibit the restoring force-displacement hysteresis
loop of Figure 7a when subjected to a sinusoidal transverse displacement having amplitude
Dd = 0.40 m and unit frequency, as the one illustrated in Figure 7b. Such a hysteresis loop is
characterized by an effective (or secant) stiffness and an equivalent viscous damping ratio
that allow the analyzed base-isolated structure to have a Te f f = 3.00 s and a ζe f f = 0.30 at
Dd = 0.40 m.
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Figure 7. Restoring force-displacement hysteresis loop (a) obtained by applying a harmonic trans-
verse displacement (b) to each lead rubber bearing.

To perform the NLTHAs in OpenSees, each elastomeric bearing is modeled by insert-
ing, under each superstructure column, two truss elements parallel to the X and Y axes,
respectively. In particular, the axial hysteretic behavior of such elements is simulated by
using both the HystereticPoly material model, presented in Section 3, and the widely used
OpenSees BoucWen material model whose command line is:

uniaxialMaterial BoucWen $matTag $alpha $ko $n $gamma $beta $Ao $deltaA
$deltaNu $deltaEta

where $matTag is the progressive tag of the uniaxial material object, whereas $alpha,
$ko, $n, $gamma, $beta, $Ao, $deltaA, $deltaNu, $deltaEta represent the model parame-
ters [35].

Specifically, the parameters adopted in the Algebraic Model (AM) and in the Bouc–
Wen Model (BWM), selected to reproduce the hysteresis loop illustrated in Figure 7a, are
listed in Table 1.
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Table 1. Parameters of the OpenSees hysteretic material models.

BWM
$alpha $ko

[
kNm−1] $n $gamma $beta $Ao $deltaA, $deltaNu, $deltaEta

0.10 857.47 1 0 23 1 0, 0, 0

AM
$ka

[
kNm−1] $kb

[
kNm−1] $a $b1

[
kNm−3] $b2

[
kNm−5]

1714.95 85.74 25 0 0

We note that the AM parameters have a clear mechanical significance which may
allow such a model to be easily employed in actual applications. Indeed, when $b1 =
$b2 = 0, $ka ($kb) represents the value of the tangent stiffness at the beginning (end) of
the generic loading or unloading curve, whereas $a defines the rate of variation of the
tangent stiffness from $ka to $kb. Conversely, the interpretation of the BWM parameters is
not straightforward.

The current OpenSees library offers other four material objects suitable for the simula-
tion of the uniaxial transverse response of elastomeric bearings: (1) Hysteretic material, (2)
MultiLinear material, (3) KikuchiAikenHDR material, and (4) KikuchiAikenLRB material.

The first two models are characterized by a lower level of accuracy compared to
the Bouc–Wen one since, differently from the latter, they are not smooth models and,
for such a reason, their typical hysteresis loops are made of a series of straight lines instead
of continuous curves. In addition, since the first derivative of their output variable is
a noncontinuous function, the convergence of the nonlinear dynamic analyses may be
drastically compromised [35].

The last two models are as accurate as the Bouc–Wen one but require more parameters
which can be calibrated only by performing complicated and expensive experimental tests,
as explained in [36].

For all those reasons, the numerical accuracy of the proposed OpenSees material
object is demonstrated by comparing the results with those obtained by employing the
Bouc–Wen material.

4.4. Numerical Results

The results of the analyses carried out on the 3D structural model of Figure 5 are
shown in Table 2. Such results refer to two reference nodes, that is, the base isolation
system reference node (RNb) and the superstructure third story reference node (RN3), both
highlight in red in Figure 5a.

Table 2. Nonlinear time history analyses results.

u(RNb)
x [m] u(RNb)

y [m] ü(RN3)
x

[
ms−2] ü(RN3)

y
[
ms−2]

max min max min max min max min

BWM 0.1637 −0.2695 0.1577 −0.1792 2.1143 −1.8308 2.8804 −2.4071
AM 0.1596 −0.2684 0.1585 −0.1773 2.1101 −1.8415 2.8953 −2.4074

Looking at Table 2, we may observe that the accuracy of the HystereticPoly material
model is very satisfactory since the maximum and minimum values of the RNb displace-
ment along the X (Y) direction, namely u(RNb)

x (u(RNb)
y ), as well as the ones of the RN3 total

acceleration along the X (Y) direction, namely ü(RN3)
x (ü(RN3)

y ), are numerically quite close
to those predicted by using the celebrated Bouc–Wen material model.

Figures 8a,b and 9a,b show, respectively, the time histories of the RNb displacement
and RN3 total acceleration along the X (Y) direction, whereas Figure 10a,b illustrates the
restoring force-displacement hysteresis loops, displayed along the X (Y) direction, by the
reference isolator (RI) highlight in blue in Figure 5a. Generally speaking, the comparison
between the responses of the analyzed structure obtained with the AM and the BWM
shows a very good agreement.
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Figure 8. Time histories of the RNb displacement along the X (a) and Y (b) directions.
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Figure 9. Time histories of the RN3 total acceleration along the X (a) and Y (b) directions.
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Figure 10. Restoring force-displacement hysteresis loops of the RI along the X (a) and Y (b) directions.

5. Conclusions

The uniaxial hysteretic model formulated in [22] has been implemented in the OpenSees
HystereticPoly material model and employed, for the first time, to simulate the behavior of
elastomeric bearings typically adopted for the seismic protection of buildings and bridges.
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The novel hysteretic material object requires the calibration of only five parameters
that have a clear mechanical meaning, as shown in Section 3.2; for this reason, it can be
easily calibrated and used for practical applications. In addition, this material model allows
for the evaluation of the bearing restoring force by solving an algebraic equation thus
avoiding convergence problems typical of differential hysteretic models.

In order to verify the numerical accuracy of the proposed material object, it has been
used to analyze a base-isolated structure subjected to bidirectional earthquake excitation;
subsequently, the results of the nonlinear time history analysis have been compared with
those obtained by modeling the seismic isolators with the OpenSees Bouc–Wen uniaxial ma-
terial. Such a comparison has shown a very good match between the results computed with
the two different models thus demonstrating the numerical accuracy of the proposed one.

A comparative study among the proposed hysteretic material model and the other
ones available in OpenSees, such as MultiLinear and KikuchiAiken materials, will be the
topic of a future paper.
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