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Featured Application: The proposed multistage centrifugal pump design can be applied to sat-
isfy the high head and high flow rate requirements in chemical processing industries.

Abstract: A multistage centrifugal pump is designed for pumping low-viscosity, highly volatile
and flammable chemicals, including hydrocarbons, for high head requirements. The five-stage
centrifugal pump consists of a double-suction impeller at the first stage followed by a twin volute.
The impellers for stages two through five are single-suction impellers followed by diffuser vanes
and return channel vanes. The analytical performance is calculated initially in the design stage
by applying similarity laws to an existing scaled-down pump model designed for low flow rate
applications. The proposed pump design is investigated using computational fluid dynamics tools to
study its performance in design and off-design conditions for water as the base fluid. The design
feasibility of the centrifugal pump is tested for other fluids, such as water at a high temperature and
pressure, diesel and debutanized diesel. The pump design is found to be suitable for a variety of
fluids and operating ranges. The losses in the pump are analyzed in each stage at the best efficiency
point. The losses in efficiency and head are observed to be higher in the second stage than in other
stages. The detailed flow behavior at the second stage is studied to identify the root cause of the losses.
Design modifications are recommended to diminish the losses and improve the overall performance
of the pump.

Keywords: multistage centrifugal pump; double-suction impeller; twin volute; computational fluid
dynamics; design feasibility study

1. Introduction

One of the most commonly used turbomachines in chemical and petroleum industries
is the multistage centrifugal pump. In the construction of potential infrastructure for
chemical processing, multistage centrifugal pumps still play an important role. They are
usually employed for high-head applications, such as in boilers and power plants. They
are capable of handling low-viscous, volatile and flammable fluids and can operate in
temperature ranges from −120 ◦C to 370 ◦C [1]. Here, low-viscous fluids refer to fluids
having viscosities lower than normal water. Compared to single-stage pumps, the efficiency,
reliability and performance of these pumps are substantially more important because of
the extreme operating conditions. Consequently, it is necessary to be aware of the turbulent
fluid flow behavior inside the pump in the design stage itself. This can be achieved by
careful consideration of all the stages in the planning, design and testing in both design
and off-design conditions. Manufacturers turn to computational methods to test design
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features, decrease the number of experimental tests conducted and identify undesirable
design features at an early stage to save resources and time.

Computational fluid dynamics (CFD) tools are used by turbomachinery designers to
design pumps that function more efficiently. Modern pumps are first designed theoretically,
tested using CFD tools and then by laboratory experiments. The laboratory-tested pumps
are again studied using CFD simulations, and optimization strategies are applied for
improving the pump’s performance before manufacturing. Samad et. al. [2–4] used CFD
simulations to design, test and optimize centrifugal pumps for pumping multiple fluids
used in the oil and gas industries. Hamid et al. [5–7] tested centrifugal pumps used for
pumping water and light crude oil through experimental analysis and optimizing them
using CFD tools. Watanabe et al. [8,9] studied the forces in a three-stage centrifugal pump at
design and off-design conditions using CFD simulations. Pumps are designed to withstand
high temperatures and pressures, and they are able to pump fluids of different densities
and viscosities.

Several multistage centrifugal pump designs are available on the market for the
transportation of chemicals [10,11], although a new pump design is required for pumping
perilous chemicals with high head and high flow rate requirements in petrochemical
refineries. The proposed pump design consists of a double-suction impeller and a twin
volute at the first stage. A single-suction impeller with a diffuser and return vanes are
added to Stages 2–4. Stage 5 consists of an impeller followed by diffuser blades and an
outlet volute.

A double-suction impeller design is chosen for the first stage due to the back-to-back
arrangement of the two impellers. This arrangement provides a zero average axial force [12].
Double-suction impellers are used in centrifugal pumps for obtaining large flow rates,
improving suction performance, reducing axial thrust on the bearings and cutting down
capital cost [13]. The fluid enters independently into the two suctions and flows into the
impellers. The fluid leaves the impellers together into the volute. Although the axial force of
the double-suction impeller is theoretically balanced, it is not possible to overlook the radial
forces. Two strategies can be used to decrease the impeller radial force of the double-suction
stage. One is using a staggered impeller that has been studied previously [14,15] while the
other is to use a twin-volute casing. Kang et al. [16] studied the effects of a twin volute in a
submersible centrifugal pump and obtained a uniform distribution of high absolute velocity
in the volute, homogeneously distributed flow structures and a flat high-velocity profile at
the volute throat. Mina et al. [17] used a triple-volute casing design to reduce the radial
thrusts in a single-stage centrifugal pump. Although a more uniform pressure distribution
is offered by three volutes, the design is not feasible in multistage centrifugal pumps.
Suzuki et al. [18] studied the performance of a five-stage, high-pressure volute pump
having a twin volute with crossovers between stages. The long crossovers, in addition to
the twin volute, caused fluid pre-rotation opposite to the impeller’s rotational direction.
Teesink et al. [19] optimized the twin-volute crossover design to improve efficiency by 3%.
The optimization resulted in a decrease of the pre-swirl replacing the suction splitters. The
design recommendations from these works encouraged the development of a twin-volute
design staggered by 180◦ without the use of long crossovers. The high-speed fluid from
the impeller enters the twin volute and passes the fluid onto the second stage. The twin
volute design offsets the radial forces to each other [20].

The design feasibility study of a multistage pump designed for pumping hazardous
fluids in petrochemical refineries with high head and high flow rate requirements is
presented in this paper. The operability of the pump is tested for multiple fluids using
CFD simulation techniques. The loss analysis of the proposed design is carried out for
individual stages and, accordingly, design modifications are recommended.

2. Description of the Pump Model

Multistage pumps are used when a high discharge pressure is required, but it is
beyond the duty range of single-stage pumps. There are several factors to consider while
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choosing the number of stages required for the pump model. The number of stages is
determined by the head requirement, the Net Positive Suction Head Required (NPSHr),
the minimum flow requirement and the performance curve. The more stages a pump has,
the higher the final discharge pressure. The proposed multistage pump is designed in
such a manner that the number of stages can be increased or decreased, depending on
the requirements. A five-stage pump is chosen here to meet the high head and flow rate
requirements of several units in the petrochemical refinery.

The five-stage centrifugal pump model consists of a double-suction impeller and a
twin volute staggered at 180◦ in the first stage. The suction chamber has a semispherical
shape, with baffle plates installed near the inlet of the double-suction impeller to reduce
any possible swirling action toward the impeller inlet. The second stage consists of an
impeller, diffuser and return vane. Stages three and four are the repetition of the second
stage. An impeller, diffuser and outlet volute are installed in the fifth stage. The impeller
is designed to attain a high head with optimum efficiency, while the diffuser is intended
to maximize the pressure in the diffuser vanes and minimize the pressure gradient in the
return vanes. The pump design indicating each component is shown in Figure 1. The
preliminary design of the pump model was obtained from a dynamically similar existing
pump provided by the manufacturer. The existing pump was a scaled-down model used
for non-hazardous fluids in low flow rate applications. The proposed pump is specifically
scaled-up for handling hazardous fluids at a high flow rate and high head operation. The
design is extracted using pump affinity laws as shown below:

Q1

Q2
=

(
n1

n2

)
;

H1

H2
=

(
n1

n2

)2
;

P1

P2
=

(
n1

n2

)3
(1)

where the quantities denoted by subscriptions 1 and 2 refer to the model and the prototype.
The quantities n, Q, H and P correspond to the rotational velocity, flow rate, head and input
power, respectively.
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The impeller blade, diffuser vanes and return vanes were designed using BladeGen
software. BladeGen is a comprehensive blade design tool commonly used by turbomachin-
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ery designers for the design and control of a blade’s properties, including but not limited
to the meridional shape, blade angles, thickness and cut-offs [21]. The meridional view
of the blades is shown in Figure 2. The design specification of the multistage centrifugal
pump is given in Table 1.
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Table 1. Pump specification.

Parameter Value Parameter Value

Number of stages 5 Initial working fluid Water
Flow coefficient (∅) 0.01 Impeller diameter (Stage 1) D
Head coefficient (ψ) 0.67 Impeller diameter (Stage 2–5) 1.2 D

The head coefficient and the flow coefficient are calculated using the following rela-
tions [22]:

ψ =
gH

n2D2 (2)

ϕ =
Q

nD3 (3)

where ψ is the head coefficient, ϕ is the flow coefficient, D is the impeller diameter and g is
the acceleration due to gravity.

The pump performance is calculated theoretically using the parameters obtained from
Equation (1), and the efficiency is calculated using Equation (4):

η =
ρQgH

P
(4)

Figure 3 shows the pump performance curve obtained by theoretical calculations. The
preliminary design was tested for water, as the affinity laws were guaranteed for water or
pure liquids with kinematic viscosities less than 10 cS [23]. The efficiency, dimensionless
groups and head and flow coefficients were normalized using the values associated with
the design point of the pump, which corresponded to the best efficiency point (BEP) of
the pump. The Hmax and Hmin correspond to the head of the maximum and minimum
impeller diameters, respectively. The head obtained by the actual pump operation must be
between these values.
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3. Numerical Model

The flow phenomena inside the pump were modeled by solving 3D mass and mo-
mentum equations in a commercial CFD code. The analysis was based on the steady,
incompressible Reynolds-averaged Navier–Stokes (RANS) equations along with the k–ω
based shear stress transport (SST) turbulence model, using a finite-volume solver provided
in the commercial code ANSYS CFX 19.1. The SST model uses an integrated function to
switch from the standard k–ω model near the wall region to a high Reynolds number form
of the k–ε model away from the boundary layer [24]. The turbulence model was chosen
based on similar studies by the authors for a three-stage centrifugal pump [25,26]. The
mass conservation equation and the momentum conservation equation of the RANS can
be written as

∂vi
∂xi

= 0 (5)

ρ
∂vi
∂t

+ ρ
(vivj)

∂xj
= − ∂P

∂xi
+

∂

∂xj
[µ(

∂vi
∂xj

+
∂vj

∂xj
)− ρ(vivj)] (6)

where, ρ, P, µ and vij represent the density, pressure, dynamic viscosity and velocity
components, respectively. The overbar (−) denotes the average quantity.

The entire fluid domain in the computational model included the inlet domain, double-
suction impeller, twin volute, single-suction second stage impeller, diffuser vanes, return
channel vanes, Stage 3 and 4 domains, fifth stage impeller, diffuser and outlet domain. The
impeller domains were rotating domains, while all other domains remained stationary.
The impeller, diffuser and return channel domains were chosen as a single passage because
of the periodically repeating nature of the domains. The periodic boundary condition
saved the computational time required for a converged solution without compromising the
accuracy of the results [27]. The outlet domain was extended to avoid any possible backflow
phenomena at the pump outlet. The ambient pressure inlet and mass flow outlet were
chosen for the boundary conditions. The interfaces between the rotating and stationary
domains were taken as a stage (mixing-plane) model for the steady-state calculations due
to the high pitch ratio between the domains. The interfaces between the stationary domains
were chosen as a general connection with the general grid interface (GGI) mesh connection.

The numerical meshes for the fluid domains were generated using ANSYS meshing
module for the stationary domains. The rotating impeller domain meshes are created using
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Turbogrid software which provides high-quality hexagonal meshes with boundary layer
control. To resolve the boundary layers, multiple layers of boundary meshes are installed
along the blade suction and pressure side surfaces to keep the y+ value below 30. Similar
boundary layer meshes were also given for diffuser and return channel vanes.

The generated meshes were tested for grid independency to obtain the optimum mesh
and reduce the influence of the grid density on the flow field. The tests were carried out
for the design point using water as the initial fluid. The grid independence study was
carried out for Stages 1 and 2 separately to find the optimum grid for the first and second
stage impellers. Determining the optimum grid for the first and second stage was deemed
adequate for the entire pump model, since the third, fourth and fifth stage geometries
were a repetition of the second stage. The mesh of the outlet domain in the fifth stage
was generated in a similar way to the inlet domain in the first stage. Figure 4 shows the
grid independency test results for Stages 1 and 2 plotted against efficiency. The optimum
meshes thus obtained were used to create the entire domain, and the total number of
meshes generated for the full stage was 6.25 million nodes. The final mesh of the entire
domain, the double-suction impeller and the twin-volute meshes are shown in Figure 5.
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4. Pump Performance

The theoretical performance of the pump design was shown in the previous section.
The pump performance obtained from the CFD simulations is presented here. The head co-
efficient and efficiency curves were compared with the theoretical calculation for the initial
validation of the CFD results. Figure 6 shows the pump characteristic curve comparison
for the analytical and CFD studies. The efficiency curve was in good agreement with the
analytical estimation. The higher efficiency obtained by the CFD simulations was due to
the unaccounted losses in the simulations, such as the hydraulic and mechanical losses and
the losses within the input and output sections of the pipe. The head obtained from the
CFD results was within the range between the maximum and minimum head, as calculated
theoretically for all flow rates. Thus, the efficiency and head curves obtained from the CFD
simulations had an error percentage of less than 8%. Since this is a preliminary design
feasibility study before manufacturing the pump for experimental analysis, the obtained
CFD results are acceptable for further analysis.
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tions.

The pump feasibility was tested for its operability with different chemicals used in
chemical processing industries. Since normal water was used in the initial study, the pump
was tested for water at a high temperature (116 ◦C) and pressure (1.73 bar). The viscosity of
the water was reduced to 0.25 cP to imitate the conditions of a high-pressure boiler water
pump. The centrifugal pump was also tested for hydrocarbons such as diesel (C10H22l) and
debutanized diesel (C8H18l), which are common fluids pumped in petrochemical refineries.
The material properties of the fluids were extracted at the fluid temperature obtained from
the real site data where the pump would be installed. The dynamic viscosity, density and
other fluid properties at the aforementioned particular temperature were applied to the
CFD model. The simulations were carried out at an isothermal temperature and, hence, the
conservation of energy equation was not solved [28,29]. The most relevant fluid properties
are given in Table 2.
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Table 2. Fluid properties.

Fluid Properties Water High-Temperature
Water

Diesel
(C10H22l) C8H18l

Molar Mass [Kg/kmol] 18.02 18.02 142.285 114.231
Density [kg/m3] 997 946.41 726.53 698.27
Temperature [◦C] 25 116 240 177

Dynamic viscosity [cP] 1 0.25 0.22 0.125

The pump operating conditions were kept similar to the previous study for compara-
bility. The head coefficient curves and efficiency curves for the different fluids are plotted
in Figure 7. The flow coefficient was normalized by the design point of the reference
fluid (water) such that ϕ/ϕd = 1 indicated the BEP of water. The efficiency curves of
the low-viscous fluids had the same trend as that of the reference fluid. This means that
the chemical pump could be operated in the same operating range with different fluids.
However, the BEP of the low-viscous fluids shifted away from the BEP of water. The BEPs
of the high-temperature water, diesel and C8H18 were shifted by +1%, −3.2% and +3.43%,
respectively, compared with their water equivalent. The change in the BEP was associated
with the change in density and viscosity of the fluid. It should be noted that the efficiency
change for the different fluids was less than 1% at the BEPs of different fluids. Therefore,
the pump performance did not degrade with the fluid change, but the operating point was
shifted marginally. In other words, the system must be operated at lower flow rates in case
of low-viscous fluids, in comparison with water, to ensure optimum performance.
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The head curve also exhibited a similar trend for the fluids and fell within the theoreti-
cal head range. Compared to the reference fluid, the maximum deviation in the head curve
was 2.7%, 0.45% and 5.4% for the high-temperature water, diesel and C8H18, respectively,
at the low flow rate, which was an acceptable consequence. At the BEP, the head decreased
by 17 m, 10 m and 38 m compared with the head at the BEP of water. This can be argued
to be the result of the simultaneous effects of the viscosity on the efficiency and head of
the pump. The overall operating point was slightly shifted toward the low flow rate for
low-viscous fluids.

The circumferential area-averaged axial velocity along the pump impellers is plotted
at the mid-span in Figure 8. The difference between the meridional velocity component
and the radial velocity component implies a change in the axial velocity component. The
magnitude of the axial velocity decreased from the leading edge to the trailing edge as
the pressure gradient increased. The order of magnitude of the axial velocity was almost
the same, relative to the mean radial velocity of 4.5 m/s at the mid-span of the impeller.
A sudden spike in the axial velocity at the second stage impeller was observed at two
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locations, indicating large recirculation in the area. This is discussed in the next section. The
axial velocity component had the same magnitude for the low-viscosity fluids compared
to water. This means that the pump was capable of handling low-viscous fluids without
any large influence by the viscosity on the flow velocities. Therefore, it can be said that
the proposed multistage pump design is feasible for the specific application which it is
designed for in petrochemical processing plants.

Appl. Sci. 2021, 11, x 10 of 17 
 

 
Figure 8. Axial velocity comparison along the impeller mid-span for Stages 2–5. 

The design feasibility study using the CFD model only provided the initial hydraulic 
performance of the pump prior to the experimental studies. A laboratory-scale experi-
mental analysis is required to investigate the actual performance of the pump using wa-
ter and other chemicals. 

5. Evaluation of Hydraulic Losses 
The proposed multistage centrifugal pump was tested for its operability with mul-

tiple fluids of lower viscosities, and it was proven to be feasible. However, the design 
feasibility test of the pump could not be concluded without the loss analysis at each 
stage. To determine the head loss and efficiency loss, the normalized efficiency and head 
coefficient curves are plotted against the flow coefficient at each stage of the pump for 
water in Figure 9. 

 
(a) (b) 

Figure 9. (a) Efficiency and (b) head coefficient curve of the individual stages for water. 

A significant decline was observed in the second stage for both the efficiency and 
head at higher flow rates. The efficiency obtained at 0.5 φ/φd was almost similar at all 
stages. As the flow rate increased, the efficiency followed a similar trend for Stages 1, 3, 4 
and 5, while the efficiency at Stage 2 dropped significantly. The head also decreased at 
Stage 2, indicating huge pressure loss at this stage. The reason for the losses at the second 

Figure 8. Axial velocity comparison along the impeller mid-span for Stages 2–5.

The design feasibility study using the CFD model only provided the initial hydraulic
performance of the pump prior to the experimental studies. A laboratory-scale experimen-
tal analysis is required to investigate the actual performance of the pump using water and
other chemicals.

5. Evaluation of Hydraulic Losses

The proposed multistage centrifugal pump was tested for its operability with multiple
fluids of lower viscosities, and it was proven to be feasible. However, the design feasibility
test of the pump could not be concluded without the loss analysis at each stage. To
determine the head loss and efficiency loss, the normalized efficiency and head coefficient
curves are plotted against the flow coefficient at each stage of the pump for water in
Figure 9.

A significant decline was observed in the second stage for both the efficiency and head
at higher flow rates. The efficiency obtained at 0.5 ϕ/ϕd was almost similar at all stages.
As the flow rate increased, the efficiency followed a similar trend for Stages 1, 3, 4 and 5,
while the efficiency at Stage 2 dropped significantly. The head also decreased at Stage 2,
indicating huge pressure loss at this stage. The reason for the losses at the second stage
needed to be investigated in-depth and design modifications must be advocated before
manufacturing the pump.

The pump operating at the design point with water as the fluid was selected for the
in-depth loss analysis. A trend graph is plotted at the impeller mid-span at each stage along
the streamwise direction to identify the amount of losses in head and efficiency in Figure 10.
The head and efficiency were divided by their maximum values for normalization. Stage
1 had two spikes due to the dual suction impeller design. It can be seen that the head
dropped at the beginning of the second stage by 67% before rising again at the end of
the stage. There was no drop in head observed in the rest of the stages. The maximum
head was obtained at the end of the fifth stage impeller, which also corresponded to the
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cumulative head of the entire pump. A similar drop in the efficiency curve was witnessed
at the second stage. The dive in the efficiency curve at the beginning of each stage was
due to the sudden change in the pressure gradient as the fluid moved from one stage to
another. Although the efficiency dove at the leading edge of each impeller, it climbed back
up immediately and rose sharply at the trailing edge. This was not the case with the second
stage, where the efficiency remained the lowest throughout the blade streamwise. The
elimination of losses at the second stage can improve the overall performance of the pump.
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Figure 10. (a) Head and (b) efficiency trend graphs, plotted at the mid-span of the impellers for water
at Qd.

The blade loading curves for the impellers at Stages 2, 3, 4 and 5 are plotted in
Figure 11. The normalized pressure was plotted along the streamwise direction at the
design point for water. A pressure drop was observed at the leading edge of the second
stage impeller, which recovered toward the trailing edge. The huge dive in the absolute
pressure at the leading edge may succumb to cavitation in the long run. It is necessary
to identify the source of the loss at the second stage. A drop in pressure at the pressure
side of the impeller was observed at the 20% streamwise location, as marked in Figure
11. A severe pressure drop at this location indicates an obstruction to the flow at the
pressure side. The pressure and velocity contours at the meridional plane of the blade
are shown in Figure 12. A low-pressure region could be found at approximately the 20%
streamwise location, and the corresponding low-velocity region confirmed the formation
of a stagnation zone, causing blockage to the flow.
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Figure 12. Contours at the meridional plane of the second stage impeller for (a) pressure and (b)
velocity in a stationary frame.

The velocity streamlines at the mid-span from a blade-to-blade view of the impellers
at each stage is shown in Figure 13. The fluid flowed along the blade angle for all stages
except for Stage 2. The fluid incidence angle was found to be larger than 90◦ to the second
stage impeller blade angle. The fluid exhibited chaotic behavior in the impeller region,
which accounts for the losses discovered earlier. The turbulent behavior of the fluid at
the second stage impeller was, however, not carried over to the next stage. The diffuser
and return vane at the second stage corrected the flow instabilities and prepared the fluid
incidence angle tangent to the next stage blade angle.
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The disparity between the fluid incidence angle and the blade angle at the second
stage impeller was due to the incoming flow from the volute. The fluid entering the volute
from the first stage impeller split into the two arms of the 180◦ staggered twin volute,
flowed along the volute surfaces and rejoined toward the volute exit. The fluid at the
volute exit was observed to have a larger radial force than the axial force and, as a result,
created a pre-swirl at the inlet of the second stage impeller. This pre-swirl of the fluid was
responsible for the imbalance in the flow angles and the losses associated with it.

The velocity triangle diagram of the flow at the inlet of the impellers is shown in
Figure 14. Theoretically, at the design flow rate, the fluid reached the impeller radially
without any swirl. The absolute fluid velocity at the inlet creates an angle of α = 90◦ with
the direction of the blade rotation in an ideal case. However, these assumptions are not
likely to conform to an actual centrifugal pump [30]. The absolute flow angle decreased
sharply to 12.68◦, and the relative flow angle increased to form an obtuse angle of 121.6◦ at
the second stage impeller. This was due to the high absolute velocity at the impeller inlet
caused by the large circumferential velocity component of the flow exiting the volute.
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Figure 15 shows the 3D velocity streamlines at the volute–impeller interface, indicating
a significant shift in the flow direction. As mentioned above, it can be seen that the
circumferential velocity increased excessively due to the outlet shape of the first stage
volute. The absolute flow angle at the inlet of the Stage 3 impeller was 25% lower than the
ideal case due to the swirl velocity observed at the inlet, which was formed by the return
vanes of the second stage. Here, the second stage return vanes acted as an inlet guide vane
to the third stage impeller. The velocity triangle diagrams of Stage 4 and 5 impellers are
similar to the Stage 3 impeller.
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Figure 15. 3D velocity streamlines at the volute–impeller interface (Stage 1–Stage 2 interface).

The cause of the losses at the second stage was identified as the sudden change in the
flow angle at the volute–impeller interface due to a high radial force from the volute. The
effect of this was visualized by identifying the vortex core region formed inside the impeller.
The velocity streamlines and the vortex core with a swirling strength of 0.004 are shown in
Figure 16. The majority of the vortices were formed at the pressure side of the impeller,
causing blockage to the incoming flow. They were formed due to the flow separation at the
leading edge. These vortices could be suppressed by regulating the incoming flow from
the volute.
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To address the losses at the second stage, we provide certain design recommendations
to pump manufacturers:

1. The pre-swirl observed at the volute exit must be suppressed by reducing the large
radial forces of the fluid flowing through the twin volute. This may be possible with
the installation of a baffle plate at the exit of the twin volute, similar to the baffle
plates installed in the suction chamber before the inlet of the first-stage impeller.
In engineering practice, to eliminate the pre-swirl component, baffles are typically
inserted in the channels between the stages of multistage pumps, thus reducing
incidence losses for the next stage impeller [31]. Baffles can de-swirl the incoming
flow at the second-stage inlet. A similar anti-swirl device was used by Schoot et al. [32]
to decrease the pre-swirl from a twin-volute crossover section;

2. The disparity between the flow angle and the impeller incidence angle must be
corrected to obtain a uniform flow through the impeller. An additional stationary
guide vane installation is recommended between the first-stage volute and the second-
stage impeller, whose exit angle is tangent to the impeller blade angle. Several guide
vane designs were tested at the inlet of single-stage centrifugal pumps and were
found to be effective in regulating the pre-swirl [33–35]. Similar guide vane designs
can be incorporated ahead of the second-stage impeller. Numerical optimization is
required to find the optimum guide vane design that regulates the pre-swirl without
performance degradation of the pump.

6. Conclusions

A five-stage centrifugal pump with a double-suction impeller and a twin volute
was designed for application in chemical industries. A CFD model of the pump was
created for the design feasibility test of the pump. The pump characteristics were studied
theoretically and compared with CFD simulations for initial validation of the CFD model.
The operability of the pump to handle hazardous and low-viscous fluids was tested using
this model. A loss analysis at the design point was conducted to find the losses associated
with the proposed pump design. The head and efficiency losses at the second stage were
found to be higher than in the other stages. The incidence angle of the incoming flow at the
second-stage impeller was not tangential to the blade angle, which was responsible for the
losses at the second stage. The incoming flow from the twin volute had large radial forces,
which caused a pre-swirl at the interface between the first and second stage. This pre-swirl
caused divergence in the flow angle at the impeller inlet. Vortices were formed as a result
of the flow separation at the leading edge. This led to a pressure drop at the pressure
side of the impeller, giving rise to flow blockages. The in-depth flow physics of fluid
behavior is explained in this paper. Design recommendations to diminish the losses and
improve the overall performance of the pump are provided. The implementation of these
recommendations will be the subject of future works of this study. The improved pump
design would be tested using the experimental set-up on a laboratory scale. The design
parameters of the impeller, diffuser, return vane and the twin volute can be subjected to
optimization studies for a performance upgrade. This study benefits pump manufacturers
and designers for effectively designing multistage centrifugal pumps intended for pumping
low-viscous, volatile and flammable fluids with high head and flow rate requirements in
the chemical processing industry.
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