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Abstract: The present study examined the effect of ultrasonic pretreatment at three time the levels of
10, 20 and 30 min on some thermodynamic (effective moisture diffusivity coefficient(Deff), drying
time, specific energy consumption (SEC), energy efficiency, drying efficiency, and thermal efficiency)
and physical (color and shrinkage) properties of kiwifruit under hybrid hot air-infrared(HAI) dryer
at different temperatures (50, 60 and 70 ◦C) and different thicknesses (4, 6 and 8 mm). A total of 11
mathematical models were applied to represent the moisture ratio (MR) during the drying of kiwifruit.
The fitting of MR mathematical models to experimental data demonstrated that the logistic model
can satisfactorily describe the MR curve of dried kiwifruit with a correlation coefficient (R2) of 0.9997,
root mean square error (RMSE) of 0.0177 and chi-square (χ2) of 0.0007. The observed Deff of dried
samples ranged from 3.09 × 10−10 to 2.26 × 10−9 m2/s. The lowest SEC, color changes and shrinkage
were obtained as 36.57 kWh/kg, 13.29 and 25.25%, respectively. The highest drying efficiency, energy
efficiency, and thermal efficiency were determined as 11.09%, 7.69% and 10.58%, respectively. The
results revealed that increasing the temperature and ultrasonic pretreatment time and decreasing the
sample thickness led to a significant increase (p < 0.05) in drying efficiency, thermal efficiency, and
energy efficiency, while drying time, SEC and shrinkage significantly decreased (p < 0.05).

Keywords: dry; efficiency; energy; kiwifruit; quality; ultrasound

1. Introduction

Kiwifruit with the scientific name of Actinidia deliciosa is a subtropical fruit belonging
to the Actinidiaceae family. This fruit is rich in vitamins E and C, phenolic substances,
flavonoids, various pigments, and antioxidants [1]. According to the research by the Food
and Agriculture Organization (FAO) of the United Nations, kiwifruit is the fourth most
popular fruit in the world after banana, citrus fruits, and apple [2].

Fruits and vegetables with a moisture content (MC) of about 80% are classified as
highly perishable materials. The high-potential drying is one of the most common methods
to preserve and increase the productivity of food [3]. The most common method for drying
food is to use hot air flow, which requires hot air to provide a simultaneous transfer of heat
and moisture between hot air and food to evaporate water and to bring the moisture to
the desired level [4]. In addition to having advantages, such as the possibility of accurate
temperature control regardless of the size and shape of the product and not needing direct
contact, the drying with hot air also has some disadvantages. These disadvantages include
the long time and high temperature for drying the product during the period of descending
speed. In addition, high temperatures reduce the nutritional value and increase energy
consumption [5]. The infrared dryers have been commonly used in recent years and have
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received more attention in developing countries due to the low cost, simple equipment,
and low price. Infrared drying is the process in which wet materials are heated by infrared
radiation. Infrared radiation is a type of electromagnetic radiation with a wavelength
between 0.76 and 400 µm [6]. In the hybrid method, the use of hot air and infrared waves
coincide in all stages of product drying. The reports show that the hybrid method at mild
air speeds can improve energy consumption and drying time while increasing product
quality [7]. The application of the pretreatments that reduce the initial moisture of the food
and also modify the food texture to accelerate the transfer of moisture and reduce drying
time will be very useful.

Ultrasonic pretreatment is performed by immersing the fruit in water and applying
ultrasound waves. Ultrasonic waves cause a series of rapid, intermittent contractions
and expansions of the cell wall (sponge effect), which creates microscopic channels in the
structure of the material and increases the possibility of moisture transfer. As a result, an
ultrasound can be used as a pretreatment in drying heat-sensitive food products without
adversely affecting the qualitative characteristics of the food, since it improves the speed
and decreases the temperature required for drying [8].

Mierzwa et al. examined the effect of ultrasonic pretreatment with two types of
microwaves and hot air dryers on some drying parameters (kinetics, shrinkage, specific
energy consumption, and rehydration ratio) of raspberry, and stated that the use of ultra-
sonic pretreatment reduced specific energy consumption and shrinkage in both types of
dryers [9]. Abbaspour et al. investigated the drying kinetics, SEC, color, shrinkage, and
rehydration of carrots using three types of hot air, microwave and infrared dryers with
ultrasonic pretreatment [10]. They reported that the use of ultrasonic pretreatment reduced
the drying time of the sample compared to the control treatment. The use of ultrasonic
pretreatment in all three types of hot air, microwave and infrared dryers also increased the
Deff and reduced the SEC, color changes, and shrinkage. Dehghannya et al. studied the
effect of using ultrasonic pretreatment on the drying of potato slices in hot air microwave
dryers and measured the MC, Deff, SEC, rehydration percentage, and shrinkage [11]. They
stated that the application of ultrasonic waves reduced the drying time. Additionally,
the samples under ultrasonic pretreatment had lower shrinkage and SEC and a higher
moisture diffusivity coefficient and rehydration percentage than the control sample. Ghan-
barian et al. dried peppermint using the hot air dryer (at three temperature levels) with
ultrasonic pretreatment (four levels of ultrasonic power) [12]. They examined MC, drying
time, SEC, and energy efficiency of peppermint. The results showed that the use of ultra-
sonic pretreatment reduced the drying time and SEC and increased the energy efficiency of
peppermint. Thus far, various studies have been conducted on the drying of kiwifruit using
hot air dryer [13,14], hot air dryer with recirculation under heat pump [15], microwave [16],
infrared-vacuum dryer [17], vacuum-hot air dryer [18], hot air, vacuum, freezer, hot air-
microwave-vacuum [19], hot air, microwave and freezer [20], HAI [21], freezer [22], and
short and medium-wave infrared radiation with/without osmotic dehydration [23].

Due to the importance of kiwifruit in the human diet and the effect of the drying
process on the maintenance of this product with high qualitative properties and low energy
consumption, and given the lack of a comprehensive study on the effect of ultrasound on
the qualitative and thermodynamic properties of kiwifruit, this research aimed to evaluate
the effect of ultrasonic pretreatment on the changes in Deff, SEC, energy efficiency, drying
efficiency, color, shrinkage, and drying time of kiwifruit slices during drying with the
hybrid HAI dryer.

2. Materials and Methods

Fresh Hayward kiwifruit was bought from the local market of ParsAbad, Ardabil
province, Iran and stored at 4 ◦C. One hour before the test, the samples were removed
from the refrigerator and kept at 24 ◦C. Using an electric slicer (Celme GE300, Montebello
Vicentino, Italy), kiwifruits were cut into 4, 6 and 8 mm thick slices and the slices were then
cut into 24 mm discs by a circular slicer. The initial MC of kiwifruit samples was obtained
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in an oven at 105 ◦C for 24 h. The initial MC of kiwifruit (6.85% (d.b.)) was determined and
the drying continued until reaching an MC of 0.2% (d.b.).

2.1. Ultrasonic

The kiwifruit samples selected for ultrasonic pretreatment were transferred to an
ultrasonic bath. All samples were placed in a 6 Lultrasonic bath (Parsonic 7500S, Tehran,
Iran), which was filled with distilled water at an ambient temperature of 25 ◦C in a ratio
of 1:4. The samples were then exposed to ultrasonic waves for 0, 10, 20 and 30 min. The
frequency and power of this test were 28 kHz and 70 W, respectively.

2.2. Hybrid Hot Air-Infrared (HAI) Dryer

A hybrid HAI dryer (GC 400, Grouc, Tehran, Iran) was used for the experiments. The
dryer consisted of two infrared lamps (Philips, Flemish, Belgium), each with a rated power
of 250 W (500 W in total), which was installed in the upper part of the drying chamber at a
height of 30 cm. The flow rate of the air entering the dryer was set to 1 m/s. The kiwifruits
under study were placed in the middle of the channel on the containers made from wire
mesh on digital scales (AND, GF–6000, A&D Company Ltd, Tokyo, Japan) with a precision
of 0.01 g embedded below and outside the channel. The drying of kiwifruit was performed
at three air temperature levels of 50, 60 and 70 ◦C. To start the test, the machine was put
into operation for 15 min to fix the temperature and flow rate of the dryer’s air. In each
experiment, 55 g of kiwifruit was placed in a single layer on a drying tray. During the
drying experiments, the mean range of changes in ambient temperature and the relative
humidity were 20 ± 4 ◦C and 15 ± 5%, respectively.

2.3. Moisture Ratio (MR) and Mathematical Modeling

To model the drying process, the MR parameter during the kiwifruit drying was
obtained using the following Equation (1) [24]:

MR =
Mt − Me

Mo − Me
(1)

MR: moisture ratio (dimensionless), Mt: MC of samples at any given time on dry basis
(d.b.), Me: equilibrium moisture content (d.b.), and Mo: initial moisture of samples (d.b.).
According to Equation (1), the moisture ratio depends on the initial moisture, balanced
moisture, and moisture of samples at any time during the drying. For long drying times,
the Me values are very small compared to the Mo and Mt values. Therefore, the equation of
MR during the drying can be simplified, as in Equation (2), and to calculate the MR, it is
not necessary to measure the balanced moisture [25].

MR =
Mt

Mo
(2)

2.4. Modeling

In this study, a number of experimental and proposed models were used to model
the drying kinetics (fitting of MR versus drying time) of green kiwifruit samples (Table 1).
To select the most appropriate model to describe the drying kinetics of green kiwifruit,
the criteria of determination coefficient (R2), root mean square error (RMSE), and chi-
square (χ2) were calculated by each model and compared with other models. The higher
the R2 value and the lower the RMSE and χ2 values, the better the model fitting to the
experimental data and it is chosen as the best model. The R2, RMSE and χ2 values were
calculated according to Equations (3)–(5):
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R2 =

N
∑

i=1
(MRexp,i − MRpre,i)

2

N
∑

i=1


N
∑

i=1
MRpre,i

N − MRpre,i


2 (3)

χ2 =

N
∑

i=1
(MRexp,i − MRpre,i)

2

N − z
(4)

RMSE =

[
1
N

N

∑
i=1

(MRpre,i − MRexp,i)
2

] 1
2

(5)

N, z, MRpre,i and MRexp,i are the number of observations, number of dryer constants,
predicted MRi, and experimental MRi, respectively [20].

Table 1. Applied models to fit the experimental data MR = 1 + at + bt2.

References Equations Models

Two-term MR = a exp(−kt0) + b exp(−k1t) [24]

Two-term exponential MR = a exp(−kt) + (1 − a) exp(−kat) [20]

Verma MR = a exp(−kt) + (1 − a) exp(−gt) [17]

Demir et al. MR = a exp (−kt)n + b [26]

Midilli et al. MR = a exp(−ktn) + bt [19]

Newton (Lewis) MR = a exp(−kt) [27]

Page MR = a exp(−ktn) [28]

Wang and Singh MR = 1 + at + bt2 [13]

Henderson and Pabis MR = a exp(−kt) [16]

Logistic MR = a/(1 + b exp(kt)) [29]
a, b, c, k, k0, k1 and n are drying constants.

2.5. Determination of Effective Moisture Diffusivity Coefficient (Deff)

The number of moisture transfer mechanisms is extensive and often complex. Transfer
phenomena are usually classified into pressure diffusion, forced diffusion, and ordinary
diffusion (net transfer of matter without fluid motion). According to Equation (6), the Fick’s
second law for unstable conditions can describe the transfer of moisture in the descending
stage of the drying process [29,30]:

∂X
∂t

= De f f
∂2X
∂2x

(6)

where X is the local MC on dry basis, t is the time and x is the spatial index. The study of the
Fick’s second law of diffusion indicates the mass transfer during the period of the declining
drying rate of agricultural products [26]. To apply Fick’s law, it is assumed that the food
product is one-dimensional, the initial MC is uniform, and it has an internal movement of
moisture such as the major resistance to moisture transfer. The Fick’s equation for a plane
sheet is solved as follows [31,32]:

MR =
8

π2

∞

∑
n=1

1
(2n + 1)

exp

(
−De f f (2n + 1)2π2t

4L2

)
(7)
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From 1 to infinity, t is the drying time (s), and Deff is the effective diffusivity coeffi-
cient (m2/s). The effective diffusivity coefficient is obtained by calculating the slope in
Equation (8) [11]:

MR =
8

π2 exp

(
−De f f π2t

4L2

)
(8)

The diffusivity coefficient is usually determined by plotting the experimental drying
data versus LnMR over time. When plotting the LnMR value over time, place the resulting
line slope in Equation (9) to obtain the Deff:

K =

(
De f f π2

4L2

)
(9)

where K is the line slope.

2.6. Calculation of Some Thermodynamic Parameters
2.6.1. Energy Consumption

The thermal energy consumed by the hybrid HAI dryer for drying kiwifruit at infrared
temperature and power at constant air flow rate is obtained using Equation (10) [33]:

EUter = A.v.ρa.Ca.∆t.t + K.t (10)

where EUter is the total thermal energy consumption per drying period (kWh), A is the area
of the container in which the test sample is placed (m2), v is the wind speed (m/s), ρa is
the air density (kg/m3), t is the total drying time of each sample (h), ∆T is the temperature
difference (◦C), and Ca is the specific heat (KJ/kg ◦C).

The mechanical energy consumed by the blower in the dryer during the drying process
is obtained from Equation (11) [34]:

EUmec = ∆P.Wair.t (11)

EUmec is the total mechanical energy consumption per period (kJ), ∆P is the pressure
drop (Pa), and Wair is the airflow rate (m3/s).

The energy consumption for ultrasonic pretreatment can be obtained using the follow-
ing equation [10]:

EUult = UI cos Φ (12)

where EUult is the ultrasonic power (kw), U (V) and I (A) are the input voltage and current
in the ultrasonic machine, respectively, and cosΦ is the power factor equal to 0.8.

The energy consumption required for 1 kg of moisture to be removed from the drying
product is calculated by Equation (13):

SECtotal =
EU(mec+ter+ult)

MW
(13)

where SEC is the specific energy consumption (kWh/kg), EU(mec+ter+ult) is the total energy
consumption during the drying process (kWh), and Mw is the amount of moisture removed
from the product (kg).

2.6.2. Drying Efficiency

Drying efficiency is the division of the total energy required to heat the drying product
and the energy required to evaporate moisture by the total energy consumption during the
drying process (De):

De =

(Eevap + Eheating

SEC

)
(14)
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where De is the drying efficiency (%), Eheating is the energy required to increase the tempera-
ture of the dried product (kJ), Eevap is the energy needed to evaporate moisture (kJ), and
SEC is the total energy consumption (kJ).

2.6.3. Energy Efficiency

Energy efficiency is obtained by dividing the energy required to evaporate moisture
from the drying product by the total energy SEC during the drying process.

ηe =

(
Eevap

SEC

)
× 100 (15)

where ηe is the energy efficiency and Eeva is the energy required to evaporate moisture (kJ).

2.6.4. Thermal Efficiency

Thermal efficiency is the division of the moisture evaporated from the product by the
heat used to dry the product, which can be calculated from Equation (16):

TE =
Mevap

Htotal
(16)

where TE is the thermal efficiency (kg/kJ), Mevap is the weight of moisture evaporated from
the product (kg), and Htotal is the total heat consumption (kg).

2.6.5. Energy Required to Evaporate Moisture from Product

The energy required to evaporate moisture from the product during the kiwifruit
drying process in the hybrid HAI dryer with ultrasonic pretreatment is calculated from
Equation (17):

Qw = h f .g.Mw (17)

where Qw is the energy required to evaporate moisture (kJ), hfg is the latent heat of vapor-
ization (kJ/kg), and Mw is the moisture evaporated from the product (kg).

The latent heat of vaporization can be obtained from Equation (18):

h f .g = (7.33 × 106 − 16T2
abs)

0.5

273.16 ≤ Tabs ≤ 338.72

h f .g = 2.503 × 103 − 2.386(Tabs − 273.16)

337.72 ≤ Tabs ≤ 533.16

(18)

2.6.6. Energy Required to Increase Product Temperature

The energy required to increase the product temperature from the initial tempera-
ture (temperature before entering the drying chamber) to the latent temperature (highest
product temperature) can be calculated from Equations (19)–(21):

Eheating = WdCm(T2 − T1) (19)

Cm = 1465 + 3560(
MP

1 + MP
) (20)

MP =
Ww − Wd

Wd
(21)

where Eheating is the energy required to increase the product temperature (kJ), Wd is the dry
matter weight (kg), Cm is the specific heat of the product (kJ/kg K), T1 is the initial product
temperature (K), T2 is the latent product temperature (K), Mp is the MC of the product on
dry basis (kg water/kg solid), and Mw is the initial weight of the product (kg).
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2.7. Shrinkage

Shrinkage is the ratio between the initial volume of fresh kiwifruit and the final volume
of dried kiwifruit, which is expressed by the following equation:

Sv = 1 − Vt

Vo
× 100 (22)

where Sv is the percentage of shrinkage (dimensionless), Vt is the volume at the desired
time (cm3) and V is the initial sample volume (cm3). The sample volume is obtained by the
toluene displacement method according to Dehghannya et al. [11].

2.8. Color

The color of the samples prior to and following the drying was measured by a color
meter (Portable colorimeter, HP–200, China). To describe the color changes during the
drying, the ∆E index (color difference of total dried samples from fresh samples) was used.
This index is defined by Equation (8) where L represents the brightness, b represents the
yellow-blue color and a indicates the red-green color [25,35]:

∆E =
√
(L∗ − L∗

0)
2 + (a∗ − a∗0)

2 + (b∗ − b∗0)
2 (23)

2.9. Data Analysis

In this study, the factorial experiment was used in a completely randomized design.
The treatments were considered at three drying temperatures (50, 60 and 70 ◦C), three
levels of thickness (4, 6 and 8 mm) and three levels of ultrasonic radiation time (10, 20
and 30 min). Additionally, the effect of treatments on the qualitative (color changes and
shrinkage) and thermodynamic parameters (Deff, SEC, thermal efficiency, energy efficiency,
and drying efficiency) was investigated for the drying of kiwifruit slices. To examine the
significance of the factors, the data analysis of variance was performed using SPSS software
and the mean comparison of treatments was made at the 5% probability level.

3. Results and Discussion
3.1. Mathematical Modeling

Table 2 shows the statistical parameters obtained from the fitting of the experimental
data of the drying experiments to the 11 models listed in Table 1. According to the tables,
it can be seen that, in the method of hybrid HAI drying with ultrasonic pretreatment, the
logistic model has the highest value of determination coefficient (0.9997) and the lowest
values of chi-square (χ2 = 0.0007) and root mean square error (RMSE = 0.0177) compared
to other models.

Table 2. Statistical analysis of mathematical modeling of kiwifruit slices drying kinetics.

Models RMSE χ2 R2

Two-term 0.0501 0.0167 0.9979
Two-term exponential 0.0648 0.0221 0.9968

Verma 0.0402 0.0092 0.9985
Demir et al. 0.0367 0.0074 0.9988
Midilli et al. 0.0211 0.0017 0.9995

Newton (Lewis) 0.0761 0.0272 0.9958
Page 0.0285 0.0037 0.9991

Wang and Singh 0.0473 0.0132 0.9981
Henderson and Pabis 0.0533 0.0192 0.9977

Logistic 0.0177 0.0007 0.9997

3.2. Drying Time

Figure 1 shows the effect of drying air temperature, thickness and ultrasonic pretreat-
ment time on the drying time of kiwifruit slices. As shown in Figure 1, the maximum drying
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time was obtained at 50 ◦C with a thickness of 8 mm (control sample) for 420 min. Also,
the minimum drying time was obtained at 70 ◦C, 4 mm thickness and ultrasonic radiation
time of 30 min for 70 min. As expected, the drying time is significantly reduced (p < 0.05)
by raising the temperature due to the increased thermal gradient (as a result of higher mass
and heat transfer) and greater and quicker removal of moisture from the product [36].
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The results obtained in Figure 1 also show that the highest effect of using ultrasonic
pretreatment on the drying time of kiwifruit is seen for 30 min of ultrasonic application
and the lowest one is seen for the control sample. By applying the cavitation process
(asymmetric bursting of bubbles) near the foodsurface, ultrasonic pretreatment causes the
rapid and eruptive flow of sound waves to the surface and forms microscopic channels in
the samples by creating successive contractions and expansions. In addition, by increasing
the duration of applying this energy (ultrasound), the channels expands and the product
has a spongy texture, facilitating the flow of water out of the product during the drying
through the created channels [37]. Similar results were observed for carrot drying [24],
banana drying [31], and blackberry drying [29]. They showed that, by increasing the
ultrasonic radiation time, the drying time decreases significantly (p < 0.05). As shown in
Figure 1, the drying time was longer as the thickness of the samples increased. The reason
for this issue is the hardening mechanism of the cutting surface, increased amount of
water, and also a longer path of vaporremoval, which made it difficult to transfer moisture
through the texture and ultimately increased the drying time [38]. Doymaz and Ozdemir
for drying tomatoes and Onwude et al. for drying potatoes showed that the drying time
increases by enlarging the thickness of the samples [28,36].

3.3. Deff

Different values of Deff for different treatments of this study are reported in Figure 2.
By increasing the drying temperature, the sample thickness and ultrasonic radiation time
during the kiwifruit drying process Deff had a significantly (p < 0.05) increasing trend.
By increasing the air temperature from 50 to 70 ◦C, it was observed that the moisture
diffusivity coefficient increased from 3.09 × 10−10 to 2.26 × 10−9 m2/s. The reason for
this issue is the significant effect of air temperature in creating more molecular movement
and surface suction, and increasing the diffusivity coefficient. Additionally, increasing the
temperature increases the enthalpy of the entering air, and increasing the enthalpy increases
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the mass and heat transfer, which increases Deff. Further, by increasing the thickness of
the samples, the amount of Deff increased. Nguyen and Price reported that superficial
hardening generally occurs much faster in thinner samples than in thicker samples, while
the rate of moisture evaporation in thinner samples is much higher [39]. Therefore, rapid
superficial hardening in the samples with less thickness causes a restriction in moisture
transfer compared to thicker samples and thus leads to a decrease in moisture diffusivity
coefficient in thinner samples [40,41]. Similar observations on the effect of thickness on
moisture diffusivity coefficient have been reported by other researchers, including Doymaz
and Gol, Azimi-Nejadian and Hoseini and Onwude et al. [28,40,42]. The Deff increased
by prolonging the ultrasonic pretreatment time from 0 to 30 min. Ultrasonic pretreatment
causes the opening of the capillary tubes due to the dispersion of surface compounds and
the formation of longer microscopic channels due to the deformation of the cells, followed
by the formation ofmore open capillary tubes [43]. Therefore, ultrasonic pretreatment
accelerates the removal of moisture from the product by deforming the cells and destroying
the cell wall.
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Many researchers have reported Deff for other products with ultrasonic pretreat-
ment. For instance, the obtained moisture diffusivity coefficient values for potatoes in the
hybrid microwave-hot air dryer with ultrasonic pretreatment ranged from 1.07 × 10−7

to 1.283 × 10−7 m2/s [11]. Vallespir et al. obtained the Deff for kiwifruit in a hot air
dryer with ultrasonic pretreatment ranging from 3.67 × 10−11 to 9.45 × 10−11 m2/s [5].
Abbaspour-Gilandeh et al. calculated the diffusivity coefficient for the drying of walnut
in the microwave and hot air dryers at different ultrasonic pretreatment times between
3.12 × 10−9 and 8.99 × 10−9 m2/s and between 2.77 × 10−9 and 5.56 × 10−9 m2/s [43].

3.4. Thermodynamic Parameters
3.4.1. SEC

According to Figure 3, the lowest SEC (36.57 kWh/kg) was obtained with a significant
difference (p < 0.05) at an air temperature of 70 ◦C, ultrasonic radiation time of 30 min,
and thickness of 4 mm. Additionally, the control sample with a thickness of 8 mm for
drying kiwifruit significantly (p < 0.05) had the highest SEC (181.97 kWh/kg). This can be
due to the low moisture removal from the drying product and the increase in drying time.
As the air temperature grows from 50 to 70 ◦C, the thermal gradient within the drying
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product increases, resulting in an increase in the moisture evaporation rate (the down-
ward slope of the MR variation diagram becomes steeper as the temperature increases).
Therefore, with the increasing temperature, the total energy consumption decreases [44].
Further, by enhancing the drying temperature from 50 to 70 ◦C, the difference between
the drying temperature and the ambient temperature increased. As a result, increasing
the temperature difference significantly decreased the drying time of the product, which
is a strong reason for the reduced energy consumption. Motevali et al. and Kaveh et al.,
for drying Roman chamomile and Pistacia Atlantica, respectively, showed decreased energy
consumption with increasing temperatures [33,44].

Appl. Sci. 2021, 11, x 11 of 17 
 

 

Figure 3. Amounts of SEC under different conditions for kiwifruit slices. 

3.4.2. Energy Efficiency and Drying Efficiency 

Figures 4 and 5 show the effect of different treatments (temperature, thickness and 
ultrasonic radiation time) on energy efficiency and drying efficiency, respectively. The 

highest energy efficiency and drying efficiency values (7.69% and 11.09%) were obtained 
at 70 °C, 4 mm thickness, and 30 min ultrasonic radiation time, respectively. Increasing 

the temperature from 50 to 70 °C increases the energy efficiency and the drying efficiency. 
Drying temperature increases the rate of moisture removal from the product and reduces 
the drying time, and consequently, both efficiency values will increase with increasing 

temperatures. However, comparing the application times of ultrasonic pretreatment 
shows that the highest values of both efficiencies occur when the 30 min ultrasonic pre-

treatment is used. According to Figures 4 and 5, it can be seen that reducing the thickness 
of kiwifruit samples will significantly (P < 0.05) increase energy efficiency and drying ef-
ficiency, because less thickness will increase the gradient of the drying product and more 

moisture is removed from the product, and as a result, the drying time of kiwifruit at low 
thicknesses is reduced. The lowest energy efficiency and drying efficiency values can be 

seen in the control treatment with a thickness of 8 mm (1.54% and 1.88%), respectively. 
The results show that increasing the ultrasonic pretreatment time improves both energy 
efficiency and drying efficiency. This is because, by increasing the ultrasonic pretreatment 

time, the changes in the product texture increases and the hard layer does not form in the 
process of drying this pretreated product and the product dries faster. 

The results of this study are consistent with the results published by other research-
ers. The energy efficiency values for drying chamomile in hot air dryers ranged between 
1.91% and 6.76% [44], for apple slices between 2.87% and 9.11% [46], for Pistacia atlantica 

in a hot air dryer equal to 5.65% [47], and for peppermint leaves in a hot air dryer with 
ultrasonic pretreatment varying between 1.41% and 3.69% [12]. Albini et al. obtained the 

drying efficiency and energy efficiency for barley drying in a hot air dryer ranging 8%–
17.4% and 24%–34.2%, respectively [48]. In another study, the drying efficiency was cal-
culated between 3.42% and 12.29% for apple drying and showed that the drying efficiency 

increases by increasing the temperature [46]. 

Figure 3. Amounts of SEC under different conditions for kiwifruit slices.

Increasing the ultrasonic radiation time from 0 (control sample) to 30 min significantly
decreased the SEC (p < 0.05), because with increasing the ultrasonic pretreatment time, the
product texture is more destroyed and the hard layer does not form in the product during
the drying process, and thus, the product dries faster, and consequently, the SEC in the
dryer is reduced [45]. The researchers showed that, with an increasing ultrasonic radiation
time, the SEC decreases during the drying of blackberries [29].

The study of the effect of thickness on energy consumption revealed that reducing the
thickness during the drying of kiwi reduces the drying time due to the increased thermal
gradient and accelerated the removal of moisture from the product, thus reducing the total
energy consumption. Darvishi et al., for drying kiwifruit in different thicknesses using
the microwave dryer, showed that by reducing the thickness of the samples, the SEC is
significantly reduced (p < 0.05) [16].

3.4.2. Energy Efficiency and Drying Efficiency

Figures 4 and 5 show the effect of different treatments (temperature, thickness and
ultrasonic radiation time) on energy efficiency and drying efficiency, respectively. The
highest energy efficiency and drying efficiency values (7.69% and 11.09%) were obtained
at 70 ◦C, 4 mm thickness, and 30 min ultrasonic radiation time, respectively. Increasing
the temperature from 50 to 70 ◦C increases the energy efficiency and the drying efficiency.
Drying temperature increases the rate of moisture removal from the product and reduces
the drying time, and consequently, both efficiency values will increase with increasing
temperatures. However, comparing the application times of ultrasonic pretreatment shows
that the highest values of both efficiencies occur when the 30 min ultrasonic pretreatment
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is used. According to Figures 4 and 5, it can be seen that reducing the thickness of kiwifruit
samples will significantly (p < 0.05) increase energy efficiency and drying efficiency, because
less thickness will increase the gradient of the drying product and more moisture is
removed from the product, and as a result, the drying time of kiwifruit at low thicknesses
is reduced. The lowest energy efficiency and drying efficiency values can be seen in the
control treatment with a thickness of 8 mm (1.54% and 1.88%), respectively. The results
show that increasing the ultrasonic pretreatment time improves both energy efficiency
and drying efficiency. This is because, by increasing the ultrasonic pretreatment time, the
changes in the product texture increases and the hard layer does not form in the process of
drying this pretreated product and the product dries faster.
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The results of this study are consistent with the results published by other researchers.
The energy efficiency values for drying chamomile in hot air dryers ranged between 1.91%
and 6.76% [44], for apple slices between 2.87% and 9.11% [46], for Pistacia atlantica in a hot
air dryer equal to 5.65% [47], and for peppermint leaves in a hot air dryer with ultrasonic
pretreatment varying between 1.41% and 3.69% [12]. Albini et al. obtained the drying
efficiency and energy efficiency for barley drying in a hot air dryer ranging 8%–17.4%
and 24%–34.2%, respectively [48]. In another study, the drying efficiency was calculated
between 3.42% and 12.29% for apple drying and showed that the drying efficiency increases
by increasing the temperature [46].

3.4.3. Thermal Efficiency

Figure 6 depicts the effect of different treatments on thermal efficiency. It shows
that the highest amount of thermal efficiency (10.58%) was achieved at 70 ◦C, ultrasonic
radiation time of 30 min, and thickness of 4 mm, while the lowest value of this efficiency
(1.54%) was obtained at 50 ◦C, control sample, and thickness of 8 mm. The results show
that, with increasing temperatures, the changes in thermal efficiency have a significantly
(p < 0.05) upward trend. The increase in thermal efficiency is due to the fact that, with
increasing temperatures, the difference between the temperature of the drying product
and the temperature of the drying air increases and leads to the accelerated removal of
moisture from the product and thus reduces the time and amount of energy required.
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Thermal efficiency had an upward trend when using ultrasonic pretreatment. In
the case of ultrasonic pretreatment, due to the reduced relative humidity of the drying
air, the drying time is significantly (p < 0.05) shorter, and as a result, the share of energy
consumption is smaller. The effect of thickness on the changes in thermal efficiency shows
that, with decreasing thicknesses, the amount of thermal efficiency increases significantly
(p < 0.05). This can be due to the increased drying rate as a result of the decreased
thickness, because with decreasing thicknesses, the thermal gradient increases, the removal
of moisture from within the product to the surface increases, and the drying time decreases.

Torki-Harchegani et al. showed that the thermal efficiency of peppermint leaf drying
was 38.36%–49.33% for the microwave dryer and 3.69%–5.47% for the hot air dryer [49]. In
another study by Beigi for drying apple, the thermal efficiency was calculated as ranging
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3.70%–9.44%, and it was shown that, with increasing temperatures, the thermal efficiency
increases [46]. Motevali et al. calculated the thermal efficiency for drying chamomile in
a hot air dryer between 2.12% and 6.87% and stated that the thermal efficiency increases
with increasing drying temperatures [44].

3.5. Qualitative Properties
3.5.1. Color

As can be seen in Figure 7, by raising the air temperature from 50 to 70 ◦C, the overall
color change significantly increased (p < 0.05). One of the reasons is that, during the
process of food drying, the pigments are decomposed due to slow heating and will cause
discoloration in the products [18]. Islam et al. showed that increasing the temperature
causes papaya color changes in a hot air dryer [35]. Sufer and Palazoglu achieved similar
results for drying pomegranate [50]. For drying kiwifruit in a hot air dryer at different
temperatures, Izli et al. showed that the color changes of kiwifruit increased by increasing
the temperature [20]. Additionally, by increasing the thickness of the sample, the overall
color changes increased, which was due to the fact that at high thicknesses, as the drying
time increases, the kiwifruits slices were exposed to hot air for a longer period of time, and
the high heat exposure to kiwifruit slices intensified the decomposition of pigments [26].
Therefore, at a thickness of 4 mm, the least amount of overall color changes was seen. The
use of ultrasonic pretreatment also reduced color changes. Increasing the time of ultrasonic
application reduced the rate of color changes in the ultrasonic pretreatment. Additionally,
applying ultrasonic pretreatment time had less color changes than the control sample.
The color changes during kiwifruit drying are due to various factors such as thermal
degradation of chlorophyll, oxidation, enzymatic reactions and non-enzymatic browning
reactions [51]. Taghinezhad et al. studied the drying of blackberries and concluded that the
least amount of overall color change was observed at 30 min ultrasonic radiation time [37].
In another study, Dehghannya et al. examined the color changes of Mirabelle plum in the
hot air dryer with ultrasonic pretreatment [52]. They showed that the amount of color
changes decreases with increasing ultrasonic radiation time. Further, the results obtained
by Wang et al. study, which was gathered on kiwifruit slices in the hot air dryer with
ultrasonic pretreatment, showed that the highest amount of overall color change was 32.45
in the control sample and the lowest color change amount of 9.59 was observed in the
ultrasonic radiation time of 30 min [27].
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3.5.2. Shrinkage

Figure 8 shows the percentage of shrinkage changes in the HAI dryer with ultra-
sonic pretreatment at different thicknesses of kiwifruit. The results show that, at high
temperatures, high ultrasonic radiation time and less thickness, the amount of shrinkage
is significantly reduced (p < 0.05). As kiwifruit has a high initial moisture, due to the
shrinkage, which is also significant, some changes occur in the initial structure during the
drying process. In this way, the fluid in the cell wall exerts pressure to the cell wall and the
fluid inside the cell is put under pressure [51]. During the drying process, the removal of
water from the cell reduces the stress induced by the liquid on the cell wall. This reduction
in stress causes the shrinkage of the constituent texture of the substance [26]. However, air
temperature, high ultrasonic radiation time and less thickness accelerate the water removal
rate and do not allow the product to deform. The results of this study corroborate those
obtained by Kaveh et al. [29]. They investigated the effect of ultrasonic radiation time on
blackberry shrinkage in the hot air dryer, and demonstrated that with increasing air temper-
ature and ultrasonic radiation time, the amount of shrinkage decreased. Dehghannya et al.
also achieved similar results for drying potato slices [11].
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4. Conclusions

In this study, drying of kiwifruit was performed at thicknesses of 4, 6 and 8 mm
with a hybrid HAI dryer at air temperatures of 50, 60 and 70 ◦C and ultrasonic times of 0
(control sample), 10, 20 and 30 min. The results showed that, by increasing the temperature,
ultrasonic time and decreasing the thickness, the drying time and SEC decreased. The
logistic model was able to predict the MR with the highest value of R2 = 0.9997 and
the lowest values of RMSE = 0.0117 and χ2 = 0.0007 were chosen as the best model.
Additionally, by increasing the thickness of the samples, ultrasonic pretreatment time
and by prolonging the air temperature, the amount of Deff increased from 3.09 × 10−10

to 2.26 × 10−9 m2/s. The SEC value decreased significantly (p < 0.05) by increasing the
temperature, ultrasonic time and decreasing the thickness. The lowest SEC value was
obtained at 70 ◦C, ultrasonic time of 30 min, and thickness of 4 mm. The highest values
of drying efficiency, energy efficiency, and thermal efficiency were 11.09%, 7.69% and
10.58%, respectively, at air an temperature of 70 ◦C, an ultrasonic time of 30 min, and
sample thickness of 4 mm. The lowest color changes and shrinkage values were 13.2%9 and
25.25%, respectively, at 50 ◦C air temperature, 30 min ultrasonic time, and 4 mm thickness.



Appl. Sci. 2021, 11, 1297 15 of 17

Author Contributions: Conceptualization, E.T. and M.K.; methodology, E.T. and M.K.; validation,
E.T. and M.K.; formal analysis, E.T.; investigation, E.T. and M.K.; resources, E.T. and A.S.; data
curation, E.T. and M.K.; writing—original draft preparation, E.T. and A.S.; writing—review and
editing, E.T., A.S.; and M.K.; visualization, E.T. and A.S.; funding acquisition, E.T. and A.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the office of vice chancellor for research at Mohaghegh
Ardabili University, and Wrocław University of Environmental and Life Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data for this research will available.

Acknowledgments: The authors are highly thankful to Department of Agricultural Technology
Engineering, Mohaghegh Ardabili University, Ardabil, Iran for providing facilities to conduct this
research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, Y.; Zeng, Y.; Hu, X.; Sun, X. Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices

During Contact Ultrasound Intensified Heat Pump Drying. Food Bioprocess Technol. 2020, 13, 430–441. [CrossRef]
2. Zakipour-Molkabadi, E.; Hamidi-Esfahani, Z.; Abbasi, S. Formulation of leather from kiwi fruit losses. Iranian Food Sci. Technol.

Res. J. 2011, 6, 263–271.
3. Kumar, C.; Karim, A.; Saha, S.C.; Joardder, M.U.H.; Brown, R.J.; Biswas, D. Multiphysics modelling of convective drying of food

materials. In Proceedings of the Global Engineering, Science and Technology Conference, Marrakech, Morocco, 17–20 April 2012.
4. Taghinezhad, E.; Szumny, A.; Kaveh, M.; Rasooli Sharabiani, V.; Kumar, A.; Shimizu, N. Parboiled Paddy Drying with Different

Dryers: Thermodynamic and Quality Properties, Mathematical Modeling Using ANNs Assessment. Foods 2020, 9, 86. [CrossRef]
[PubMed]

5. Vallespir, F.; Rodríguez, Ó.; Cárcel, J.A.; Rosselló, C.; Simal, S. Ultrasound assisted low-temperature drying of kiwifruit: Effects
on drying kinetics, bioactive compounds and antioxidant activity. J. Sci. Food Agric. 2019, 99, 2901–2909. [CrossRef]

6. Salehi, F. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. Int. J.
Fruit Sci. 2020, 20, 586–602. [CrossRef]

7. Barzegar, M.; Zare, D.; Stroshine, R.L. An integrated energy and quality approach to optimization of green peas drying in a hot
air infrared-assisted vibratory bed dryer. J. Food Eng. 2015, 166, 302–315. [CrossRef]

8. Charoux, C.M.; Ojha, K.S.; O’Donnell, C.P.; Cardoni, A.; Tiwari, B.K. Applications of airborne ultrasonic technology in the food
industry. J. Food Eng. 2017, 208, 28–36. [CrossRef]
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