
applied  
sciences

Article

Comorbidity Pattern Analysis for Predicting Amyotrophic
Lateral Sclerosis

Chia-Hui Huang 1, Bak-Sau Yip 2, David Taniar 3, Chi-Shin Hwang 4 and Tun-Wen Pai 5,*

����������
�������

Citation: Huang, C.-H.; Yip, B.-S.;

Taniar, D.; Hwang, C.-S.; Pai, T.-W.

Comorbidity Pattern Analysis for

Predicting Amyotrophic Lateral

Sclerosis. Appl. Sci. 2021, 11, 1289.

https://doi.org/10.3390/app11031289

Academic Editors: Michał Strzelecki

and Pawel Badura

Received: 9 October 2020

Accepted: 28 January 2021

Published: 31 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, National Taiwan Ocean University,
Keelung 20224, Taiwan; 10757030@email.ntou.edu.tw

2 Department of Neurology, National Taiwan University Hospital Hsin Chu Branch, Hsin Chu 30059, Taiwan;
neuro@hch.gov.tw

3 Department of Software Systems and Cybersecurity, Monash University, Victoria 3800, Australia;
David.Taniar@monash.edu

4 Department of Neurology, ShuTien Hospital, Taipei 10662, Taiwan; DAH88@tpech.gov.tw
5 Department of Computer Science and Information Engineering, National Taipei University of Technology,

Taipei 10608, Taiwan
* Correspondence: twp@csie.ntut.edu.tw; Tel.: +886-2-27712171 (ext. 4222)

Abstract: Electronic Medical Records (EMRs) can be used to create alerts for clinicians to identify
patients at risk and to provide useful information for clinical decision-making support. In this
study, we proposed a novel approach for predicting Amyotrophic Lateral Sclerosis (ALS) based on
comorbidities and associated indicators using EMRs. The medical histories of ALS patients were
analyzed and compared with those of subjects without ALS, and the associated comorbidities were
selected as features for constructing the machine learning and prediction model. We proposed a
novel weighted Jaccard index (WJI) that incorporates four different machine learning techniques to
construct prediction systems. Alternative prediction models were constructed based on two different
levels of comorbidity: single disease codes and clustered disease codes. With an accuracy of 83.7%,
sensitivity of 78.8%, specificity of 85.7%, and area under the receiver operating characteristic curve
(AUC) value of 0.907 for the single disease code level, the proposed WJI outperformed the traditional
Jaccard index (JI) and scoring methods. Incorporating the proposed WJI into EMRs enabled the
construction of a prediction system for analyzing the risk of suffering a specific disease based on
comorbidity combinatorial patterns, which could provide a fast, low-cost, and noninvasive evaluation
approach for early diagnosis of a specific disease.

Keywords: Electronic Medical Record (EMR); disease prediction; Amyotrophic Lateral Sclero-
sis (ALS); weighted Jaccard index (WJI)

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a multi-syndrome and fatal neurodegenerative
disorder that results in progressive loss of bulbar and limb function [1]. The prevalence of
ALS is uniformly distributed across most countries [2]. According to the ALS Association,
the incidence rate of ALS is approximately between 1.8 and 2 per 100,000 person-years.
Death from ALS occurs from respiratory failure, generally within 2–3 years from the onset
of the bulbar symptom and 3–5 years after the limb onset [3]. For the majority of patients
with ALS, it usually takes 9 to 15 months from symptom onset to definitive diagnosis by two
or three specialists [1]. The diagnostic processes for ALS are very complicated compared
to other diseases. Several steps are required to ensure that all medical evaluation items
are completely performed. These processes include neurological examination and a series
of diagnostic tests such as electromyography (EMG), magnetic resonance imaging (MRI),
blood and urine tests, etc. However, there is yet no definitive diagnostic testing standard
for ALS. Different medical evaluations are always performed after disease progression in
different combinations of suggestive clinical signs of pathologies. Currently, the etiology
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of sporadic ALS is unclear, and there is no cure for ALS. Treatment is mainly aimed at
delaying the progression of the disease and not at eliminating the symptoms [4,5]. Hence, if
at-risk subjects of ALS can be identified during the early stages, they can be advised to focus
on strengthening their immune system and on improving the environmental conditions in
which they live. Early prognosis may slow the progressive deterioration of ALS symptoms.
Since there is a near two-year lead-time interval prior to definitive diagnosis of ALS, the
symptoms and comorbidities could provide important clues for ALS prediction. Hence, we
consider Electronic Medical Records (EMRs) as useful for discriminating ALS and non-ALS
patients in the early stages, and the developed classifier could serve as an alternative
diagnostic approach or an early warning signal for doctors and ALS patients.

This study was aimed at identifying high-risk Amyotrophic Lateral Sclerosis (ALS)
subjects in the early stage using a novel detection mechanism solely based on EMRs. The
novel prediction index used in this study is a modified version of the Jaccard index (JI). The
traditional JI is a statistical value for comparing the similarity and diversity between two
different sample sets. It measures the similarity between two limited sample groups. The
value is directly proportional to the similarity between the two groups [6]. Studies have
demonstrated that it is more effective to consider the weighted coefficients on similarity
analysis for specific problems [7].

To enhance the traditional JI indicator and the evidence of different populations
with an identical disease possessing high comorbidity similarities, we proposed a novel
weighted JI (WJI) that can effectively reflect the comorbidity distribution of EMRs, instead
of using the binary status of comorbidity; further, compared with traditional approaches,
we formulated indices to provide accurate prediction results. The details and experimental
results are described in the following sections.

Electronic Medical Records

EMRs are medical history of patients systematically collected by hospitals and/or
insurance institutions; they contain general information on clinical practices, such as
medical diagnoses and associated treatments. Wide usage of EMRs can reduce healthcare
expenses and medical errors and can improve patients’ health [8]. An EMR system has the
potential to improve healthcare delivery and to reduce medical costs by enhancing data
management capabilities and by mining valuable information from the comprehensive
clinical practice database [9]. According to research reports, EMRs play an important role
in medical services, such as clinical decision-making support, medical quality monitoring,
disease prediction model construction, clinical trial analysis, and treatment personalization.

There are many reports on the different applications of EMRs. Several studies have
focused on expanding the clinical contexts of genomic diversities based on EMR-linked
genetic data. Denny et al. revealed the associations among rare diseases and genetic effects
in relation to prognosis, treatments, drug responses, and comorbidity risk [10]. Based on
EMRs, other studies have identified patterns among multiple comorbidities and defined
non-random associations between diseases; using different methodologies for feature
analysis and similarity detection among these patterns, they found various comorbidity
modes [11]. Freund et al. proposed predictive models based on historical insurance claim
data to identify and explore patterns of multimorbidity in new customers to detect the
high risk of future hospitalizations for constructing intervention management for primary
care [12]. Kirchberger et al. identified patterns of comorbidity and multimorbidity by ana-
lyzing prevalence figures, logistic regression models, and exploratory factor analysis [13].
The objective of this study was to explore patterns of comorbidity and multimorbidity in
the elderly population using different analytical approaches. The report confirmed the
existence of certain co-occurring diseases in elderly persons that were not caused by chance.
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In some studies, a prediction model featuring patient similarities based on a large
amount of medical data was constructed. Different approaches are used for evaluating
patient similarities and clustering patient groups, such as analyzing the similarities or
distinguishing characteristics among a variety of feature components from patient data.
The commonly used Euclidean vector adopts the cosine angle, also known as the cosine
similarity measure, between two patients’ feature vectors to define the associated patient
similarity metric [14]. For example, Tashkandi et al. and Lee et al. evaluated the patient sim-
ilarities in the ICU dataset (MIMIC-III) using the cosine-similarity-based patient similarity
measure (PSM) [15,16].

Taiwan has an internationally well-known National Health Insurance Research Data-
base (NHIRD) [17] that maintains general information of clinical practices in all hospital
clinics and integrates the medical records of all Taiwanese citizens. Using this database,
researchers can integrate, extract, and convert long-term historical longitudinal medical
records from multi-aspect and multi-function databases into a required specification format
according to a patient’s diagnosis records, medication, and hospitalization information for
specific medical applications. In this study, the similarities between the disease records of
the control and experimental groups were calculated to identify those with high-risk factors
through EMRs. In the following sections, we describe the construction of the prediction
model using the proposed WJI and verify the effectiveness of the novel proposed indicator.

2. Materials and Methods
2.1. Source of Materials

The data used in this study were anonymous medical data authorized by the NHIRD
(Taiwan), consisting of one million insured people collected between 1996 and 2013 (IRB:
104-5430B). The disease classification code followed the international disease classification
standard ICD-9-CM, which contains 17 chapters and 2 supplementary categories. The
17 major chapters can be further labeled and classified into 143 mid-level classification and
999 individual disease classes. The information used in this study was mainly based on
an analysis of the disease codes at the individual- and the mid-levels. According to the
definition of the disease group, the individual-level classification was represented by a
three-digit code for a single disease, and each mid-level classification represented a disease
group. Hence, 999 disease categories were defined based on individual-level classification;
these individual disease categories were grouped into 143 disease groups, which were
defined as mid-level classification groups.

2.2. Medical Histories and Feature Extraction Analysis

Firstly, positive and negative data groups were defined. The positive and negative
data groups were composed of subjects with and without ALS, respectively. The positive
subjects were obtained directly from the one million NHIRD medical database, and the
relatively larger number of negative subjects were retrieved from the same database based
on matching gender and age attributes according to the positive subjects.

The experimental data obtained from the NHIRD database underwent data cleaning
and data integration to yield two complete sets of medical diagnosis records for both groups.
Furthermore, the subjects for the different disease codes for each group were counted.
Statistical analysis was performed on the different disease codes to select associated disease
comorbidities for both the experimental and control groups for constructing the prediction
systems.

Figure 1a,b are simple schematic diagrams of the disease set corresponding to the ex-
perimental and control groups. These two diagrams were designed for illustration; they do
not represent actual medical data contents. The data represent the comprehensive disease
records of the positive subjects (diagnosed with the ALS disease) within two years before
diagnosis. The total number of subjects suffering from a specific disease in the experimental
or control group was noted, and the comorbidity codes were preliminarily screened by
evaluating a minimum support threshold setting. A minimum support threshold value
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represents the minimum number of subjects or the minimum percentage of total subjects
within the experimental group. In other words, comorbidities which were present in less
than a certain percentage of subjects within the experimental group were discarded from
the feature set in this study.
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Figure 1. Illustration of the disease set from (a) the experimental group and (b) the control group: on the right part of the two
tables are disease records of each subject, and each disease is displayed within the defined interval binary representation of
0 and 1. The left side is the disease set of the experimental/control group and the total number of subjects suffering various
diseases. DiseaseEG and DiseaseCG refer to disease classification codes in the experimental and control groups, respectively.
NumberEG and NumberCG refer to the total number of subjects in the experimental and control groups suffering from a
certain disease. DEGi and DCGi refer to the ith disease classification code in the experimental and control groups, respectively.
NEGi and NCGi refer to the total number of subjects in the experimental/control group suffering from the ith disease under a
classification code. EGSj and CGSj refer to the jth subject in the experimental and control groups, respectively.

Figure 2 is a schematic diagram of the comorbidity feature set. For the disease code
sets from both the experimental and control groups, the same lead-time interval and an
identical minimum support threshold setting were applied to define the associated disease
records for comorbidity analysis. To identify highly associated comorbidities with ALS,
the classification codes of all the comorbidities were further analyzed by evaluating the
corresponding odds ratios (ORs) for ALS. In other words, the OR of each comorbidity was
calculated to evaluate the chances of a comorbidity associated with ALS. A set of comorbid-
ity codes with ORs > 2 was constructed and defined as an associated comorbidity feature
set for ALS. Since the associated comorbidity set of ALS was retrieved from the disease
set of the original experimental group, after the OR analysis, the selected comorbidities
must be a subset from the disease set of the experimental group. Therefore, the number
of subjects for the filtered associated diseases in the associated comorbidity feature set
should be the same as that of the subjects within the original experimental group. This
process may remove background noise (unassociated comorbidities) from the constructed
prediction model. For example, the disease code sets of both the experimental and control
groups may simultaneously contain a seasonal cold; hence, a small OR could be obtained
and no specific correlation was detected between seasonal cold and ALS. Thus, following
the statistical significance analysis of all comorbidities, the system defined a comorbidity
feature set with strong association with ALS, which can explain the strong relationship
between the comorbidity codes and ALS.
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Figure 2. Illustration of the comorbidity feature set: DiseaseFS refers to comorbidity classification
codes with odds ratios > 2. NumberEG refers to the total number of subjects in the experimental group
suffering from a specific disease. The number of subjects suffering from a specific disease in the
comorbidity feature set is the same as the number of subjects in the disease set in the experimental
group (NumberEG).

2.3. Proposed Patient Prediction Module

The proposed diagnostic model is mainly based on the similarity measurement of
comorbidity patterns between testing subjects and known ALS patients. From the experi-
mental and control data groups, we initially calculated the odds ratios for each comorbidity
(within a two-year interval) for measuring the association between comorbidities and ALS
disease. Based on odds ratio analysis, comorbidities with strong associations were selected
and constructed as an important comorbidity feature set, and the proposed WJI similarity
measurements were further calculated for the experimental group vs. the comorbidity
feature set and for the control group vs. the comorbidity feature set. A binary outcome
prediction model for supporting clinical decision making was trained on the calculated
WJI indicators of the experimental (ALS) and control (non-ALS) groups versus the ALS-
associated comorbidity feature set. Once the WJI indicators of the experimental and control
data groups were trained and constructed as a prediction model, only the selected asso-
ciated comorbidities of testing subjects were considered and evaluated according to the
WJI similarity measurement and compared to the previously trained thresholding value.
The ALS prediction module was constructed and described as the following. Obtaining the
comorbidities for each subject in the experimental or control groups, and its corresponding
WJI similarity was calculated with respect to the defined associated comorbidity feature
set. Subsequently, a Z-score standardization procedure was performed for similarity mea-
surement and for training and construction of the probability prediction model. Excluding
the subjects in the experimental and control data groups, for which the data were utilized
as the training dataset (80% of samples), the data of the remaining subjects were applied as
the testing data (20% of samples).

In this study, four different machine learning models were utilized for data training:
Logistic Regression (LR) [18], Support Vector Classifier (SVC) [19,20], random forest [21],
and eXtreme Gradient Boosting (XGBoost) [22]; five-fold cross validation was adopted to
verify the accuracy and prediction stability of the trained models. All four machine learning
techniques are discrimination supervised learning models that learn from the training
dataset and build a model to make predictions for unseen data in different classification
applications. Both the LR and SVC are prediction models commonly used in traditional
medical applications. The random forest and XGBoost, which are the most popular machine
learning models in recent years, are both ensemble learning approaches designed by
integrating a variety of learning algorithms to achieve better prediction capabilities.
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2.4. Jaccard Index

The traditional Jaccard index (JI) defines the similarity between two different sample
sets, A and B. The index is shown in Equation (1):

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (1)

where |A ∩ B| represents the number of overlapped items and |A ∪ B| represents the
number of union items. Regardless of the occurrence frequency of each item (such as disease
classification code), “1” and “0” denote existing and nonexisting conditions, respectively.
This similarity indicator confers equal importance of co-occurring items.

However, to predict a target disease through the comorbidity analysis, the co-occurrence
frequencies of different comorbidities should possess different weights for disease eval-
uation. For example, pregnant women with high blood pressure-related diseases would
have a relatively higher probability of premature delivery than those who suffer from skin
diseases. However, the traditional JI can only mark different comorbidity codes as “1” or
“0,” ignoring the incidence of certain important comorbidities.

To strengthen the occurrence frequency of various comorbidities from the EMRs of
known patients, we proposed an improved WJI to replace the traditional JI for better
evaluation of the similarities between two comorbidity sets. This novel index utilizes
the proportional incident rate for corresponding weight calculation and enhances the
accuracy of the similarity measurement between positive and negative training datasets.
The WJI-related terminologies are defined in Table 1; several examples are illustrated in the
supplementary document I.

Table 1. Number of patients and corresponding weights for AG∗ and BG∗.

AG∗

DiseaseA dA1 dA2 . . . dAi−1 dAi

NumberA NA1 NA2 . . . NAi−1 NAi

WeightA
NA1

∑ NAi

NA2
∑ NAi

. . . NAi−1
∑ NAi−1

NAi
∑ NAi

BG∗

DiseaseB dB1 dB2 . . . dBj−1 dBj

NumberB NB1 NB2 . . . NBj−1 NBj

WeightB
NB1

∑ NBj

NB2
∑ NBj

. . . NBj−1

∑ NBj−1

NBj

∑ NBj

AG: set of comorbidities for patient group A within the defined interval before the patient is diagnosed with
specific target disease. AG∗: top i frequently co-occurring diseases content set of AG. DiseaseA: comorbidities
in patient group A. dAi : ith comorbidity in group A. NumberA: number of patients with a specific comorbidity
in group A. NAi : number of patients with the ith comorbidity in group A. WeightA: corresponding weights of
specific comorbidities in group A. NAi

∑ NA : the corresponding weight of the ith specific comorbidity in group A. BG:
the comorbidity records for group B within the same interval as AG. BG∗: top j frequently co-occurring diseases
content set of BG. DiseaseB: comorbidities in patient group B. dBj: jth comorbidity in group B. NumberB: number
of patients with a specific comorbidity in group B. NBj: number of patients with the jth comorbidity in group

B. WeightB: corresponding weights of specific comorbidities in group B.
NBj

∑ NB : corresponding weight of the jth

specific comorbidity in group B.

There are two different types of comorbidities, and different methods are used to
calculate the corresponding WJIs. For the first type, the comorbidity classification codes
appeared exclusively in either set AG∗ or BG∗. When a comorbidity occurred only in
AG∗, the corresponding weighting coefficient for the specific disease code was obtained by
dividing the number of patients with such a comorbidity within AG∗ by the total number
of patients with each type of comorbidity in AG∗. Similarly, the weighting coefficient
algorithm can be applied to any single comorbidity occurring in BG∗ exclusively.

In contrast, the second type of comorbidity code occurred within AG∗ and BG∗
simultaneously. In this case, the corresponding weights of the co-occurring comorbidity
codes were calculated by taking proportional measurements in each patient group as the
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first type and then by taking an average from both AG∗ or BG∗ as the final corresponding
weights for the common comorbidities. The formula is denoted as Equation (2):

Weight =


NAi

∑ NAi
or NBi

∑ NBi
, i f dAi 6= dBj

NAi
∑ NAi

+
NBj

∑ NBj
2 , i f dAi = dBj

(2)

The WJI was then obtained by summing up all the weighting coefficients correspond-
ing to AG∗ and BG∗ of the commonly occurring comorbidity codes and then by dividing
by the sum of all the weights of the disease classification codes within AG∗ and BG∗. A
few examples are given in the Supplementary Materials.

2.5. Scoring Methods

To evaluate the proposed WJI similarity-based ALS prediction system, two different
approaches including the traditional JI similarity (without weighting concern) and the
scoring mechanism (score) were constructed for comparison. The scoring method is similar
to the symptom indexing chart used in the past for the initial diagnosis of a specific disease.
Different approaches were used for estimating the risk of suffering a target disease. A
common approach was to design a score sheet for evaluating disease symptoms. Another
common approach was to administer questionnaires. For example, the International
Prostate Symptom Score, the Edinburgh Postnatal Depression Scale, and kidney disease
include scores sheet to evaluate associated symptoms [23–25]

In the following experimental analysis, the scoring index was defined by taking
the comorbidity classification codes as the symptom feature set; subsequently, a related
weighted proportional score was given according to the historical number of patients.
Finally, the weighted scores of the comorbidity records of the test subject within a specific
duration were summed up, and the score for the test subject was obtained. The score acts
as a preliminary prediction of the possibility of the subject suffering the disease in the near
future. The simple illustration in Table 2 shows the conception of the intuitive scoring
mechanism defined in this study.

Table 2. Simple illustration of scoring mechanism.

DiseaseFS NumberFS Weight Patient Score

dA1 4 4
20 = 0.20 V

dA2 6 6
20 = 0.30

dA3 10 10
20 = 0.50 V

Total 20 1 0.20 + 0.50 = 0.70

The left side is the disease classification codes and the total number of subjects in the
comorbidity feature set; the related weighted proportional score was given according to the
historical number of patients. The right side is the final score of the test subject, which is
the sum of the weighted scores of comorbidity records of a subject within a specific period.
DiseaseFS is the disease classification codes in the comorbidity feature set. NumberFS is the
total number of subjects in the comorbidity feature set suffering from a certain disease.
Weight is the corresponding weights of specific comorbidities. Patient Score is the final score
of a test subject.

2.6. Amyotrophic Lateral Sclerosis (ALS)

In this study, a total of 162 ALS patients were identified, and their corresponding
EMRs were retrieved from the selected governmental medical database composed of one
million data (IRB: 104-5430B). To confirm that the initial subjects were indeed ALS patients
(excluding suspected cases), we only considered patients who were hospitalized due to the
disease. Hence, only 71 subjects were selected for this study (male–female ratio = 45:26).
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Among them, 41 were hospitalized directly upon diagnosis; the remaining 30 subjects were
hospitalized after some time following the diagnosis. The average period of hospitalization
for ALS following the first diagnosis was 2 years.

The 71 confirmed subjects were considered the experimental group, and their historical
disease records within 2 years of diagnosis were defined as ALS_EG. The total number of
subjects suffering from each disease was recorded as the disease set of the experimental
group, and the comorbidity classification codes were preliminarily screened and defined
as ALS_EG_FEA. To further analyze and compare the different parameter settings, the
comorbidity classification code of ALS_EG_FEA that was found among more than 10% of
the total number of patients (71) was extracted and defined as ALS_EG_FEA0.1.

The subjects of the control group were retrieved from the database based on the age
and ratio of each gender. A total number of 399 subjects without the ALS disease were
selected as the control group (male–female ratio = 249:150). According to the governmental
database in Taiwan, the average onset age of the retrieved ALS subjects is 51 years old.
Therefore, the historical medical records between 49 and 51 years old were retrieved for
each control group subject and defined as ALS_CG. All the various disease records for the
control group were enumerated and counted, and the corresponding comorbidity codes
were preliminarily screened and defined as ALS_CG_FEA. To analyze and compare the
different parameter settings, a comorbidity code occurring among more than 10% of the
399 subjects was additionally extracted and defined as ALS_CG_FEA0.1.

Finally, we calculated the odds for each comorbidity code within both ALS_EG_FEA
and ALS_CG_FEA and divided them to obtain an OR for explaining the strength of specific
comorbidities associated with ALS. In other words, the OR identifying a specific comorbid-
ity was calculated. When OR > 2, the associated disease code was selected and defined
as an important feature for subsequent identification; the comorbidity set collected was
defined as ALS_SELECT_FEA. These associated comorbidities were defined as the feature
set of the ALS comorbidities that were used to explain the important correlation between
certain comorbidities and ALS diseases. Further, to select a feature disease set with stronger
representation, a screening condition based on a proportion greater than 10% of the total
subjects was established and defined as ALS_EG_FEA0.1 and ALS_CG_FEA0.1. Similar
procedures for calculating the ORs for each disease code from ALS_EG_FEA0.1 and for
selecting comorbidities with ORs > 2 were performed for subsequent identification, and
the comorbidity set was defined as ALS_SELECT_FEA0.1.

Because there were two different comorbidity feature sets, it was necessary to construct
two different ALS prediction models for at-risk patient recognition. The first prediction
system focused on each subject within ALS_EG and ALS_CG and adopted the WJI similarity
analysis, with respect to ALS_SELECT_FEA. The similarity between each subject within
the comorbidity feature set was calculated and normalized, following which a probability
prediction model was constructed. Subsequently, the model was used to predict the
probability of a subject suffering from ALS. Finally, five-fold cross validation was adopted
to verify the accuracy and prediction stability of the trained model. In contrast, the second
prediction system used a disease occurrence rate >10%, that is, ALS_SELECT_FEA0.1, which
was obtained using ALS_EG_FEA0.1 and ALS_CG_FEA0.1 for significance analysis. The
final prediction results were obtained by analyzing each subject of ALS_EG and ALS_CG
using ALS_SELECT_FEA0.1.

2.7. Model Evaluation Index

The model score, precision, sensitivity, specificity, accuracy, F1 score, and area under
the receiver operating characteristic curve (AUC) were utilized as the evaluation indicators
for comparing different predictive models [26]. A true positive (TP) is the number of
subjects in the positive class correctly predicted as belonging to the positive class; a true
negative (TN) is the number of subjects in the negative class correctly predicted as belonging
to the negative class; a false positive (FP) is the number of subjects in the negative class
incorrectly predicted as belonging to the positive class; and a false negative (FN) is the
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number of subjects in the positive class incorrectly predicted as belonging to the negative
class.

Precision is defined as TP/(TP+FP).
Sensitivity, also referred to as the recall rate, is defined as TP/(TP+FN).
Specificity is defined as TN/(FP+TN);
Accuracy was the accuracy rate of prediction based on the testing data; it is defined as

(TP+TN)/(TP+FP+TN+FN); the model score is the accuracy rate of prediction obtained
from the training data itself.

F1 score refers to the harmonic average of the precision and the recall rate.
AUC refers to the area under the receiver operating characteristic curve, which rep-

resents a statistical value of the predictive ability of the classifier; the larger its value, the
better the performance of the prediction model.

3. Results and Discussion

We analyzed comorbidities of ALS disease with a strong association through odds
ratio analysis. The selected comorbidities were categorized into the individual level and
mid-level. Both selected comorbidities with strong associations in different levels are
shown in the Supplementary Materials. We also compared pair similarities among the
disease set of the experimental group vs. control group and thee comorbidity feature set
vs. control group. The value of JI similarity between the disease set of the experimental
group and control group is always larger than the JI similarity between the comorbidity
feature set and control group. It is due to the comorbidity feature set removing a lot of
unassociated diseases by statistical analytics. Hence, several common diseases such as
the seasonal flu and common cold were removed and the similarity indicator decreased.
Similarly, the similarity measurement for the WJI indicator possesses the same decreasing
trend. From Table 3, it can be observed that the differentiation value of JI indicator (0.22) is
less than the WJI indicator (0.43). It is mainly due to each disease code in the feature set
weighted in the WJI indicator according to the disease population, and the difference was
enlarged due to unevenly distributed subjects. Therefore, the WJI indicator provided a
better differentiating factor than the JI indicator in general. It is an important property to
provide a better prediction performance for discriminating ALS patients and health subjects.
The similarities in the individual disease and mid-level clustered disease code levels among
ALS_EG_FEA, ALS_CG_FEA, and ALS_SELECT_FEA are shown in Tables 3 and 4. For
different disease code levels (either individual or mid-level codes), the differentiation
values also preserved an identical trend between the WJI and JI indicators.

Table 3. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA, ALS_CG_FEA,
and ALS_SELECT_FEA (individual-level classification).

Individual-Level
Classification Jaccard Index Weighted Jaccard Index

Disease Set from
Control Group 2

Disease Set from
Control Group 2

Disease Set from
Experimental Group 1 0.55 0.87

Comorbidity Feature Set 3 0.33 0.44

Differentiation 0.22 0.43
1 Disease set from the experimental group: ALS_EG_FEA; 2 Disease set from the control group: ALS_CG_FEA;
3 Comorbidity feature set: ALS_SELECT_FEA.
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Table 4. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA, ALS_CG_FEA,
and ALS_SELECT_FEA (mid-level classification).

Mid-Level Classification Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.75 0.98

Comorbidity Feature Set 3 0.43 0.53

Differentiation 0.32 0.45
1 Disease set from experimental group: ALS_EG_FEA; 2 Disease set from control group: ALS_CG_FEA; 3 Comor-
bidity feature set: ALS_SELECT_FEA.

Tables 5 and 6 show the pair similarities of the individual disease code level and middle-
clustered disease code level among constrained disease feature groups (ALS_EG_FEA0.1 vs.
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 vs. ALS_CG_FEA0.1). From Tables 3–6, the
differences in the WJI between the disease set of the experimental and control groups are
higher than those of the JI. Again, the main reason for this is that the WJI involves weight
coefficient calculations and possesses more detailed associations than the JI. When the
number of subjects suffering from an identical disease between the two sets was large,
the relative weight coefficient for the specific comorbidity and the degree of influence
became associated. However, when the number of subjects suffering from diseases under
various classification codes was large but the number of subjects was small, the relative
weight coefficient for the specific comorbidity was reduced and the corresponding impact
decreased. The traditional JI similarity is based solely on the presence or absence of a
disease classification code; it does not consider the difference in the prevalence of the
associated comorbidity codes. The binary counting of 0 and 1 was used to analyze the
comorbidity relationship. Therefore, the value of the WJI provides better distinguishability
than that using JI.

Table 5. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA0.1,
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 (individual-level classification).

Individual-Level
Classification Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.48 0.65

Comorbidity Feature Set 3 0.19 0.23

Differentiation 0.29 0.42
1 Disease set from the experimental group: ALS_EG_FEA0.1; 2 Disease set from control group: ALS_CG_FEA0.1;
3 Comorbidity feature set: ALS_SELECT_FEA0.1.

A high similarity between the comorbidity set of the experimental and control groups
implies a small difference between the two sets. This might be due to too many common
comorbidity codes within the similarity analysis. For example, seasonal flu is a common
disease in both groups; therefore, this disease code has no association in distinguishing
between both two groups. Hence, we used statistical verification to eliminate disease
codes that failed to satisfy the significance analysis. A new feature set with the associated
disease codes was constructed for comparison, which showed a larger difference between
the associated feature set and the original disease code set of the control group. The
tables show that the difference in the similarities according to the WJI was larger than
that using the JI. Therefore, through our proposed method, two original feature sets with
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no discriminative attributes could be improved by constructing the associated feature
set to realize a better prediction model. The similarity measurement according to the
middle-clustered classification codes was generally higher than that of the individual-level
classification; this is mainly because the individual-level classification representing each
disease code was a specific disease, and the mid-level clustered classification implied
that each code represents a group of similar diseases. A disease group contains many
individual disease codes, which increase the similarity measurement in relation to the
middle-clustered classification models.

Table 6. Jaccard index and weighted Jaccard index similarities pairwise ALS_EG_FEA0.1,
ALS_CG_FEA0.1, and ALS_SELECT_FEA0.1 (mid-level classification).

Mid-Level Classification Jaccard Index Weighted Jaccard Index

Disease Set from Control
Group 2

Disease Set from Control
Group 2

Disease Set from
Experimental Group 1 0.61 0.73

Comorbidity Feature Set 3 0.27 0.34

Differentiation 0.34 0.39
1 Disease set from the experimental group: ALS_EG_FEA0.1; 2 Disease set from the control group: ALS_CG_FEA0.1;
3 Comorbidity feature set: ALS_SELECT_FEA0.1.

According to the individual-level and middle-clustered classification of disease codes
and different parameter settings, to construct the training data and prediction system,
each subject of ALS_EG and ALS_CG was analyzed based on the similarities between two
different comorbidities. The verification of the prediction results is shown in Tables 7–10.

Tables 7 and 8 show the prediction results obtained by training ALS_EG, ALS_CG,
and ALS_SELECT_FEA. In addition to the XGBoost, compared with the JI and traditional
scoring analysis, the WJI improved the performance of the training models and prediction
results. Table 7 shows the prediction results obtained using individual disease code-level
classification for model training. Excluding the XGBoost, the prediction results of the
other three machine learning models based on the WJI was higher than that of the JI and
traditional scoring analysis in terms of sensitivity, accuracy, F1 score, and AUC value. The
results obtained by applying the middle-clustered classification for model training are
shown in Table 8. In addition to the XGBoost, all the training and prediction results of the
other three machine learning models based on the WJI outperformed the JI and traditional
scoring in terms of model score, precision, sensitivity, specificity, accuracy, F1 score, and
AUC value.

According to the WJI training verification results shown in Tables 7 and 8, the per-
formance of the XGBoost based on the individual disease code-level classification was
generally worse than that of the mid-level clustered classification, unlike the other three
machine learning models. The comparisons between the individual- and mid-level clus-
tered disease codes for the three machine learning models were analyzed as follows. In
the mid-level clustered classification, the models trained using the SVC and random forest
approach could achieve a high accuracy of 0.808, sensitivity of 0.729, specificity of 0.886,
and AUC value of 0.844. However, the individual-level classification outperformed the
mid-level clustered classification. The SVC and random forest models achieved an accuracy
of 0.837, sensitivity of 0.788, specificity of 0.857, and AUC values of 0.907.
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Table 7. Training and verification results of ALS_EG, ALS_CG and ALS_SELECT_FEA (individual level classification).

Individual Level Classification
(Mean of 5-fold Values)

Logistic Regression Support Vector Classification Random Forest XGBoost

JI 1 WJI 2 Score JI WJI Score JI WJI Score JI WJI Score

Model Score 0.785 0.840 0.753 0.662 0.852 0.715 0.805 0.866 0.776 0.949 0.977 0.933
Precision 0.883 0.854 0.824 1.0 0.87 0.823 0.84 0.883 0.784 0.835 0.79 0.643

Sensitivity 0.659 0.83 0.659 0.322 0.816 0.491 0.688 0.788 0.688 0.816 0.745 0.562
Specificity 0.915 0.843 0.859 1.0 0.857 0.9 0.872 0.886 0.816 0.814 0.787 0.704
Accuracy 0.787 0.836 0.759 0.661 0.837 0.695 0.78 0.837 0.752 0.815 0.766 0.633
F1 Score 0.751 0.836 0.725 0.481 0.835 0.613 0.752 0.829 0.729 0.817 0.755 0.596

AUC 0.872 0.907 0.816 0.411 0.907 0.816 0.87 0.915 0.807 0.815 0.766 0.633
1 JI represents Jaccard index; 2 WJI represents weighted Jaccard index.

Table 8. Training and verification results of ALS_EG, ALS_CG and ALS_SELECT_FEA (mid-level classification).

Mid-Level Classification (Mean
of 5-fold Values)

Logistic Regression Support Vector Classification Random Forest XGBoost

JI WJI Score JI WJI Score JI WJI Score JI WJI Score

Model Score 0.739 0.792 0.743 0.755 0.812 0.743 0.774 0.828 0.751 0.924 0.977 0.921
Precision 0.762 0.787 0.733 0.77 0.866 0.699 0.794 0.865 0.694 0.827 0.784 0.65

Sensitivity 0.716 0.801 0.728 0.659 0.731 0.728 0.659 0.729 0.703 0.772 0.788 0.659
Specificity 0.761 0.774 0.733 0.789 0.886 0.689 0.801 0.887 0.689 0.818 0.774 0.635
Accuracy 0.739 0.788 0.731 0.724 0.808 0.709 0.73 0.808 0.696 0.795 0.781 0.647
F1 Score 0.731 0.788 0.723 0.703 0.791 0.707 0.71 0.787 0.695 0.789 0.784 0.649

AUC 0.837 0.876 0.812 0.816 0.844 0.794 0.833 0.866 0.788 0.795 0.781 0.647
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Table 9. Training and verification results of ALS_EG, ALS_CG and ALS_SELECT_FEA0.1 (individual level classification).

Individual Level Classification
(Mean of 5-fold Values)

Logistic Regression Support Vector Classification Random Forest XGBoost

JI WJI Score JI WJI Score JI WJI Score JI WJI Score

Model Score 0.753 0.785 0.746 0.75 0.776 0.736 0.759 0.794 0.759 0.912 0.963 0.919
Precision 0.76 0.789 0.754 0.76 0.78 0.739 0.752 0.795 0.794 0.698 0.765 0.733

Sensitivity 0.744 0.773 0.715 0.744 0.719 0.715 0.702 0.759 0.688 0.673 0.773 0.676
Specificity 0.761 0.788 0.747 0.761 0.787 0.732 0.76 0.802 0.817 0.718 0.761 0.731
Accuracy 0.752 0.781 0.731 0.752 0.753 0.724 0.731 0.781 0.752 0.696 0.767 0.704
F1 Score 0.747 0.778 0.724 0.747 0.742 0.718 0.721 0.775 0.731 0.679 0.768 0.698

AUC 0.821 0.832 0.8 0.796 0.809 0.773 0.811 0.841 0.797 0.696 0.767 0.704

Table 10. Training and verification results of ALS_EG, ALS_CG and ALS_SELECT_FEA0.1 (mid-level classification).

Mid-Level Classification (Mean
of 5-fold Values)

Logistic Regression Support Vector Classification Random Forest XGBoost

JI WJI Score JI WJI Score JI WJI Score JI WJI Score

Model Score 0.738 0.75 0.734 0.746 0.767 0.743 0.767 0.781 0.746 0.901 0.977 0.896
Precision 0.744 0.735 0.733 0.762 0.812 0.684 0.769 0.786 0.683 0.769 0.713 0.55

Sensitivity 0.728 0.729 0.728 0.687 0.702 0.714 0.617 0.689 0.674 0.733 0.731 0.503
Specificity 0.747 0.746 0.733 0.788 0.829 0.676 0.815 0.8 0.689 0.774 0.704 0.605
Accuracy 0.738 0.737 0.731 0.737 0.765 0.695 0.716 0.744 0.682 0.754 0.718 0.554
F1 Score 0.729 0.724 0.723 0.716 0.746 0.69 0.68 0.726 0.675 0.748 0.72 0.523

AUC 0.83 0.846 0.806 0.799 0.807 0.79 0.831 0.843 0.783 0.754 0.718 0.554
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Tables 9 and 10 show the various verification results for ALS_EG, ALS_CG, and
ALS_SELECT_FEA0.1. It can be observed that the four machine learning models based
on the WJI generally outperformed the JI and traditional scoring analysis. Table 9 is the
prediction result obtained from using the individual disease codes for model training. For
model training, the four different machine learning models incorporating the WJI yielded
scores better in terms of precision, accuracy, and AUC values compared with the JI and
traditional scoring analysis. Table 10 shows the results obtained using the middle-clustered-
level classification for model training. The SVC and random forest learning models based
on the WJI, rather than the JI and traditional scoring indicator, achieved better performance.

The comparison of the performance of the WJI-based training models for the individ-
ual disease code and the middle clustered-level classification for the four different machine
learning models are shown in Tables 9 and 10. For the mid-level clustered classification,
the SVC learning model achieved a high accuracy of 0.765, sensitivity of 0.702, specificity
of 0.829, and AUC value of 0.807. However, the individual-level classification was more
effective than the middle-clustered-level classification. Among the four different learning
models, the LR and random forest achieved an accuracy of 0.781, sensitivity of 0.759,
specificity of 0.788, and AUC value of 0.832.

Tables 7–10 show that the learning models based on the WJI generally outperformed
the ones based on the JI and traditional scoring analysis. Specifically, Tables 7 and 8 show
that the prediction results for each subject in ALS_EG and ALS_CG against ALS_SELECT_FEA
were better than that in ALS_SELECT_FEA0.1. In addition, the results obtained at the
individual disease code level (shown in Table 7) were better than those of the mid-level
clustered classification (Table 8). Because each mid-level clustered code represented a group
of similar diseases, the corresponding weighted coefficients might be diluted during feature
training, resulting in reduced effectiveness in distinguishing the various comorbidity
features. This leads to poor performance during model training and cross-verification
prediction.

In this study, ALS was applied as the target disease for validating the proposed
method. As a matter of fact, different multivariate models were considered initially, but
the performance was not good and not reported in this study. It is believed that the many
comorbidities and few ALS subjects were the main reasons causing unsatisfactory results.
Therefore, we proposed the novel similarity-based approach instead of the statistical mod-
eling approach. To validate the proposed efficient and effective prediction systems, four
different machine learning models were adopted. To further analyze the prediction models
with different parameter settings, two different levels of comorbidity, namely individual
disease codes and mid-level clustered disease codes, were applied for constructing the pre-
diction model and for comparing the system performance. To enhance the effectiveness of
the proposed model, in addition to the proposed WJI similarity, the traditional JI similarity
and a scoring mechanism were applied.

According to our survey results, our proposed machine learning method using WJI
indicators is the first approach based on Electronic Medical Records for ALS prediction.
Previous ALS diagnosis mainly focused on clinical biomarkers, biological biomarkers, ge-
netic/proteomics biomarkers, and neuroimaging indicators [27]. Several machine learning
techniques have been extensively applied to assist ALS diagnosis using the mentioned
biomarkers. Among all different biomarker usages, using a neuroimaging approach
achieved the best performance of higher than 80% sensitivity in general [28,29]. How-
ever, these diagnostic approaches often occurred after serious symptom onset and led to
diagnostic delay. How to apply noninvasive approaches with outstanding sensitivities
and specificities at an early stage has become an important issue for ALS patients, and
such a diagnostic model could help at-risk ALS patients to be recruited into earlier clinical
trials. One advantage of our proposed method is that using individual EMRs as features to
compare with comorbidity patterns of ALS patients is a noninvasive, cost-free, and efficient
approach for early detection. However, no single test could provide a definitive diagnosis
of ALS so far. Several diseases such as multiple sclerosis and Parkinson’s disease hold simi-
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lar symptoms to ALS, and these symptoms may be initially neglected by non-ALS-trained
physicians. Hence, the proposed approach only provides an early alert for physicians.
Complete neurologic examinations for muscle weakness, spasticity, and atrophy are still
required for precise diagnosis of ALS.

Through historical disease records, each subject in the experimental and the control
groups was analyzed, and training was performed using two different sets of comorbidity
features for constructing the prediction model. We proposed the novel WJI with four
different machine learning techniques to construct an ALS prediction system. Since there is
no diagnostic model adopting EMRs for ALS prediction, we applied both the traditional
JI indicator and scoring mechanism for comparison. Furthermore, two different levels of
comorbidity, individual-level disease codes and mid-level clustered disease codes, were
applied for model construction and comparison of system performance.

For the ALS prediction model, the new WJI indicator-based system performed better
than the traditional JI indicator and scoring mechanism-based methods. Predicting ALS
disease using the WJI indicator and individual-level disease codes could yield a high
accuracy of 83.7%, sensitivity of 78.8%, specificity of 85.7%, and AUC value of 0.907. When
the mid-level clustered disease codes were used, the performance was slightly degraded,
showing an accuracy of 80.8%, sensitivity of 72.9%, specificity of 88.6%, and AUC value
of 0.844.

From these results, it can be observed that the learning models were more effective
when the individual-level disease codes rather than the mid-level clustered classification
were used. Thus, the WJI is more effective for model construction based on individual-
level disease codes. This is because the mid-level clustered disease codes can dilute the
weighted relationship and can reduce the effectiveness of the comorbidity features. The
difference between the WJI and JI is that the former enhances the uneven relationship of
comorbidities. When a large proportion of subjects in both the experimental and control
groups suffer from an identical disease, the relative weighting coefficients and degrees of
influence increase. In contrast, when the number of disease codes for various diseases is
large but only a small number of subjects suffer from diseases under the same codes, the
relative weighting coefficient and corresponding impact are reduced. The traditional JI
similarity indicator is based on either the presence or absence of a disease code. It does not
consider the different proportions and prevalence of the selected comorbidities. As only
the binary conditions of 0 and 1 can be applied to evaluate comorbidities, the value of WJI
could yield better distinguishability than the JI indicator.

4. Conclusions

In this study, the original feature sets without discriminative attributes can be im-
proved by the novel proposed indicator and the newly modified feature sets can be trained
effectively to realize a good prediction system. Although the data size is small in this
study, the prediction performance with accuracy rates higher than 80% was comparable
to traditional neuroimaging-based approaches. The proposed ALS prediction model is a
time-saving and convenient noninvasive way to detect and evaluate at-risk ALS subjects.
However, many mimicking diseases holding similar symptoms are likely to cause similar
historical EMRs, and this would increase the false positive rate in general. Nevertheless,
early alerts for physicians to identify at-risk ALS patients is one of the main goals of this
study, and the proposed WJI indicators can be applied to construct a prediction model
for a defined disease with specific comorbidities. Based on the prediction results of the
personal disease records, detecting and treating potential patients in the early stages can
be achieved. Therefore, the model can strengthen the prevention of specific diseases, can
prolong survival years, and can improve the quality of life. It can be used to obtain an
efficient in silico analytical tool to effectively aid medical applications for detecting or
evaluating difficult diseases. By exploring a large number of medical records to improve
the preventive medical applications, we hope that the proposed method can enable doctors
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to make good decisions in terms of medical treatment and risk assessment for precise
diagnosis in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
417/11/3/1289/s1. Five different examples are illustrated to show the conception of the novel
proposed weighted Jaccard index.
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