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Abstract: In this paper, we propose two control methods for driving a power-assisted cart made for
walking assistance for the elderly. The optimal assistance ratio (OAR) and disturbance observer-based
(DOB) methods properly adjust the motor output of the cart with high operational efficiency in
response to changes in the environment. Healthy subjects walked with the cart on several road
surfaces under various conditions, and the experimental results indicate the high operational
efficiency of the two proposed methods. Meanwhile, their drawbacks are also discussed herein.
The two methods can be used separately or combined according to the application. The OAR
method is more suitable for indoor use, while the DOB method is applicable for outdoor applications.
Combining these two methods could overcome the mentioned drawbacks.

Keywords: power-assisted cart; road roughness; assisted walking; operational efficiency; human-robot
interaction

1. Introduction

Nowadays, the world is facing the challenge of an aging population. Especially in
Japan, people aged over 65 accounted for 26.0% of the total population as of 1 October
2014 [1]. The aging population has led to higher healthcare costs and social spending be-
cause the elderly tend to have a greater need for medical and livelihood support, which has
recently attracted interest from many researchers. To help the elderly and handicapped
people maintain their independence and avoid social isolation, walking assistance devices
such as the lower limb exoskeleton [2], the powered wheelchair [3], and the assistive
cane [4] have been developed so far. While the power wheelchair is designed for those who
have difficulty walking, the assistive cane provides assistance with guidance for visually
impaired people.

There is another type of walking assisting device, the power-assisted cart/walker,
oriented toward healthy people. The user pushes the handle of the cart to operate it. Most of
the studies on power-assisted carts are on those made for industrial use [5–7]. The cart
helps the operator to carry and transport extremely heavy loads, and the development
objectives for the cart have been about how to stabilize the balance, reduce lateral deviation,
and so on. Moreover, some researchers have focused on a cart-type assisting device for
use in the daily lives of the elderly. An active robotic walker called “JARoW” has been
proposed to adjust its motion direction and velocity to the user by using IR sensors [8].
Fontanelli et al. [9] proposed a guidance mechanism for a walking robotic assistant based
on the use of differential braking, while Ko et al. [10] designed a control method for a
walking assistance robot for outdoor guidance that enabled movement on flat ground and
up and down slopes.

The intention of the user is extremely important for power-assisted devices that is
highly related to the safety and effectiveness of power assistance [11,12]. While electromyo-
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graphy signals are commonly utilized for power-assisted exoskeletons [13–15], the interac-
tion force between the user and the device is acquired for the control of the cart/walker.
Yu et al. [16] developed a personal mobility aid and health monitoring system consisting of
a cane/walker robot with a force/torque sensor and a proposed admittance-based control
method. Kobayashi et al. [17] proposed a control method with operational prediction.
However, uncertainties such as environmental variation have not been considered and so
would become limitations of these methods in practical applications.

In a complex outdoor environment, road roughness is one factor that affects the oper-
ation and thus needs to be estimated and eliminated [18–20]. As the most common control
strategy of the power-assisted systems on the market, such as in electric bicycles [21,22],
the actuator generates a driving force proportional to the operational force from the user,
and the ratio of the driving force to the operational one is usually set to be constant. How-
ever, this kind of simple strategy has several limitations when applied to power-assisted
carts, especially when walking outside. For example, the necessary operational force varies
with the road condition: if the road surface is rougher, the force will be larger. Moreover,
while walking on a slope, the effect of gravitation needs to be compensated for. However,
the weight of the load on the cart is usually unknown in daily life. Hence, if the ratio
remains unchanged, the user must put more load onto the cart to exert a larger force. Thus,
improper motor output will result in excessive fatigue and discomfort, which is adverse
to outdoor activities. When taking the power-assisted cart as the payload, the way of
maintaining the efficiency during assisted walking is the major problem in this application.

Different from the above studies, the power-assisted cart in this paper is designed
for such a scene: it can carry the belongings of the user, sustain the weight of the user,
and provide enough driving force with only minimal effort needed from the user to operate
it. This will make it more convenient for the elderly to go outdoors and to participate
in social activities, and thus is good for health [23,24] and the avoidance of cognitive
impairment such as dementia [25,26].

The main objective is to ensure that the cart motor delivers proper walking assistance
force under various environmental conditions, including gravity and frictional resistance
variation, with high efficiency.

Inspired by the fuel efficiency of cars, we propose a performance index for the as-
sessment of operational efficiency while walking with the power-assisted cart (payload).
We designed two control methods, namely the optimal assistance ratio (OAR) and the
disturbance-observer-based (DOB) methods, for a power-assisted cart named RT.1 devel-
oped by Funai Electric Co., Ltd., and RT.WORKS Co., Ltd. Both assist the user by reducing
the influence of the environment. The performances of these two methods were evaluated
via experimentation by comparing cases without assistance and with default assistance.
Eight participants walked with the power-assisted cart at a fixed pace. The performance
index for each method to evaluate the operational efficiency and walking speed during as-
sisted walking was calculated from the obtained experimental data. Finally, the drawbacks
and applicable scope of the proposed methods are discussed herein.

The OAR method is based on a simple idea. Since frictional resistance varies with the
road conditions, it is assumed that there is an OAR for each type of road from the data
obtained in preliminary studies. Next, a classifier is chosen to recognize the road surfaces
with high accuracy. After that, high efficiency needs to hold while walking with the cart on
one of these surfaces.

The usefulness of the DOB method for walking assistance has been shown in a number
of studies [27–30]. The key idea is that a disturbance observer can estimate and eliminate
any existing “disturbance”. This method has some distinctive merits compared to the
OAR one. First, there is no need to estimate the road type; second, it can deal with
frictional resistance and gravitational effect together; and third, it still works when no one
is operating the cart.

The novelty of this study is divided into three parts. First, when the traditional
assistance method is implemented in the power-assisted cart, we found that an OAR can be
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determined for each surface during stable walking via experimental verification. Second,
we reveal the efficiency of the two proposed methods and also discuss their disadvantages.
According to the experimental results, the scope of the application of each method is also
discussed. Third, combining the two methods can overcome the mentioned drawbacks
and maintain good performance while walking over a long distance. The results of this
study could motivate manufacturers to improve similar existing devices on the market and
also provide guidance on how to utilize the proposed methods for practical use.

2. Specifications and Modeling of Power Assisted Cart: RT.1

The experimental device, RT.1, is produced by Funai Electric Co. and RT.WORKS Co.
(Figure 1a) and is now on sale in Japan [31]. The power-assisted cart can sustain the weight
of the user and carry heavy loads during walking; the former decreases muscular activity,
while the latter reduces the load-carrying burden. The number of cart users is dramatically
increasing in Japan.

The specifications of the cart are reported in Table 1. There are force sensors inside
the handles for measuring the force from the user, along the forward/backward direction
only. The measured forces at the left and right handles are expressed as FHL and FHR,
respectively. Besides, the acceleration and angular velocity of the cart can be obtained via a
built-in inertial measurement unit (IMU; MPU6050, TDK Invensense, San Jose, CA, USA).
When the user pushes the handles of the power-assisted cart during walking (Figure 1b),
two brushless DC motors at the rear wheels provide torque (driving force) for moving
the cart. The rotational velocities of the two motors are acquired via hall effect sensors.
The signal processing and control strategy are implemented by a microcontroller unit
(RX63T, Renesas, Japan), of which the maximum operating frequency is up to 100 MHz.
The frequency for the control loop was set as 500 Hz.

(a) (b)

Figure 1. (a) Appearance and (b) experimental setup of the power-assisted cart RT. 1 provided by RT.
WORKS [31].

Table 1. Specifications of RT.1.

Characteristic RT.1

Dimensions Width 510 mm × length 601 mm × height 819–1019 mm

Weight 14.8 kg

Power Lithium battery

Mounted sensors Force sensor, inertial measurement unit

Microcontroller unit RX63T, Renesas
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As previously mentioned, the basic idea of such power-assisted devices for practical
use can be summarized as the output for assistance is proportional to the input. For exam-
ple, the cart enables the amount of assistance required to proceed and varies the steering
depending on the input from the user. In this subsection, we describe the dynamic model
of the cart with respect to the rotational center (the center of the rear wheels).

Figure 2a presents the model for the power-assisted cart. The front passive wheels can
be considered as one caster for simplicity. The terms FHuman and MHuman are the resultant
force and moment from the user applied to the rotational center, respectively; FAssist and
MAssist are the resultant force and moment generated by two DC brushless motors to drive
the rear wheels, respectively; and the forces generated by the left and right motors are
represented by FML and FMR, respectively. The distance between the mass center and the
rotational center is denoted as l. The relationship between the forces from the user and the
two motors can be written as[

FAssist
MAssist

]
= J1

[
FHuman
MHuman

]
, (1)

where the matrix J1 is equivalent to
[

αT 0
0 αR

]
and αT and αR are the ratios of the output

to the input for translational and rotational movements, respectively. These forces and
moments satisfy the following conditions:[

FHuman
MHuman

]
= J2

[
FHL
FHR

]
,[

FAssist
MAssist

]
= J3

[
FML
FMR

]
,

(2)

where J2 =

[
1 1
−r r

]
and J3 =

[
1 1
−R R

]
. Notations r and R express the displacements

between one handle and the rotational center and between the rotational center and one
of the wheels, respectively. Figure 2b shows the resultant force and moment applied to
the cart.

FHRFHL

FMRFML

r

R

FAssist + FHuman

MAssist +MHuman

(a) (b)

l

Mass center

Rotational center

Caster

Rear wheel

Figure 2. (a) Model of the power-assisted cart and (b) resultant force and moment applied to the cart.
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Assistance ratios αT and αR are normally predefined as constants and their default
values are set to be 1.5 and 0, respectively, for RT.1. In this study, the motors assist both
forward and rotational movements, and for simplicity, the ratio for forward movement is
equivalent to the one for rotational movement, i.e., αT = αR = α.

First, we introduce the equations of motion for the translational movement of the
cart. We define M, Kv and g as the total mass of the cart and load, the equivalent viscous
friction coefficient related to the translational movement, and gravitational acceleration,
respectively. The translational velocities of both rear wheels are vL and vR, respectively,
and we define v and ω as the translational and rotational velocities of the cart, respectively.
It should be noted that [

v
ω

]
= J4

[
vL
vR

]
, (3)

where J4 =

[ 1
2

1
2

− 1
2R

1
2R

]
= J−T

3 . When the cart moves on a slope as shown in Figure 3,

the dynamics of the translational motion can be described as

FT = FHuman + FAssist = M
dv
dt

+ Fv + dT , (4)

where

Fv = Kvv ,

dT = Mg(cβsθsγ + sβcγ) + µc(FNL + FNR)cβcθ ,
(5)

µc is the coefficient of kinetic friction in the translational direction, and dT expresses
the disturbance including gravity and Coulomb friction. Notations FNL and FNR are for
normal forces on the wheels, where FNL + FNR = Mg; c∗ and s∗mean cos(∗) and sin(∗),
and (β, θ, γ) correspond to the Euler angles. It should be noted that dT is constant while
moving on a flat surface or going straight on a slope whereas it will vary rapidly if the cart
rotates on a slope.

Figure 3. Movement of the cart on a slope.

Let I be the rotational inertia of the cart and load with respect to the rotational center
and Kω be the coefficient of viscosity in rotational movement. Similarly, the dynamics of
the cart related to rotational motion can be written as

MT = MHuman + MAssist = I
dω

dt
+ Mw + dR , (6)

where

Mw = Kωω ,

dR = lMg(−cβsθcγ + sβsγ) + µc(FNR − FNL)Rcβcθ ,
(7)
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and dR represents the disturbance related to the rotational movement. If the disturbance
can be ignored, the transfer functions related to translational and rotational movements are
expressed as

v(s)
FT(s)

=
1

Ms + Kv
,

ω(s)
MT(s)

=
1

Is + Kω
.

(8)

3. Problem Formulation
3.1. Introduction to the Problem

As mentioned above, assistance ratios αT and αR are commonly constant for commer-
cial use. However, based on a preliminary study, it was found that DC motors with a fixed
ratio cannot provide proper assistance in different environments because the friction term
varies as the road surface changes. For example, the rolling resistance on sand is much
larger than that on an indoor surface. Thus, if the assistance ratios of the cart are specified
properly for indoor use, the user will feel that he or she needs extra force to operate the cart
while walking on sand. In contrast, when the ratios are suitable for sand, the DC motor
will offer excessive force while moving indoors. Consequently, the road roughness should
be carefully dealt with for the daily use of a power-assisted cart.

During assisted walking, the operational force corresponds to the relative movement
between the cart and the user. As the velocity of the user always fluctuates periodically
during stable walking, the cart will also move in a similar manner. Figure 4 indicates the
time histories of the operational forces during walking with the cart, which does not provide
any assistance like a traditional walker. The subject (male, 28 years old, height 183 cm,
and weight 75 kg) walked on an indoor surface, as is shown later. The data, including the
operational forces and angular velocities, were recorded and filtered via a zero-phase 10th
order low-pass filter with a cut-off frequency of 10 Hz. The power spectral densities for the
calculated resultant operational force FHuman and translational velocity v were estimated
by using MATLAB function Periodogram, as shown in Figure 5. The same dominant
frequency for FHuman and v, which is related to the step time, was observed, thus the
movement of the cart was governed by the user whose body accelerated and decelerated
alternately during stable walking [32].

HL

HR

Figure 4. Operational forces for one subject with α = 0 in 15 s on the indoor surface.

Human-machine interaction also affects the movements of the user and the walking
assistant during assisted walking. When a user walks steadily with the power-assisted
cart, not only the operational forces but also the motor output exert an influence on the
cart. The user must expend extra force to pull back the handles for slowing down the cart
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when its velocity becomes larger than the user. At this moment, the deceleration process is
again amplified by α, but the cart decelerates more than necessary when α is very large.
Thus, in the next acceleration process, the uncoordinated movement between the cart and
the user will also lead to a larger operational force. Finally, the overall operational force is
increased, which brings about inefficiency and discomfort. On the other hand, with a small
α, the motor output slightly reduces the burden on the user. In conclusion, we hypothesize
that there is an assistance ratio α that is most suitable for each surface; the hypothesis was
verified, as is covered later on.

Figure 5. Estimated power spectral densities for resultant operational force FHuman and translational
velocity v.

3.2. The Performance Index

The following performance index was chosen to evaluate the operational efficiency to
push the cart:

We =
∑(|vL|dT) + ∑(|vR|dT)

∑(|FLvL|dT) + ∑(|FRvR|dT)
, (9)

where dT is the sampling time (0.01 s). The index was inspired by how the fuel efficiency
of cars is measured, which is the distance traveled per unit volume of fuel used [33].
The numerator of We is set to be the sum of the actual distances that the wheels move,
which means that not only the translational movement but also the rotational one can be
evaluated. When removing the norm, the denominator of We becomes the work done by
the user. When the operational force fluctuates dramatically (as discussed previously),
the movement of the cart will disturb the gait of the user and make him or her feel
uncomfortable. The occurrence of a large negative force is also not desirable when walking
forward. Thus, we chose the absolute value of the work as the denominator of performance
index We. A large value for We implies less operational force and better efficiency to
operate the cart. If an extreme point can be found on the curve, it is considered as the OAR.
In addition, we also obtain the walking speed to quantify the gait ability during assisted
walking. We propose two methods for solving the mentioned problems in the next section
and verify the performance of the methods.

3.3. Hypothesis Verification

Four young healthy male subjects (age 26.62 ± 1.42 years old, height 171.14 ± 8.37 cm,
and weight 68.53 ± 3.59 kg) participated in the pre-experiment to verify the hypothesis.
The subjects operated the power-assisted cart on three types of flat surfaces, namely indoor,
tile, and sand, as shown in Figure 6. On each surface, the subjects were asked to operate
the cart to go straight forward for 20 s at four different walking speeds, while the assistance
ratio of the cart (αT) was set from 0 to 5 in increments of 1 and αR = 0. Four different
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frequencies on a metronome were used during continuous walking to help the users
maintain a steady speed or pace during assisted walking. Thus, there were 6× 4 = 24
combinations of the assistance ratios and walking speeds for each surface, and five trials
were conducted for each combination. Subsequently, the operational efficiency for each
trial was calculated using (9).

(a) (b) (c)

Figure 6. Experimental environments: (a) indoor, (b) tile, (c) sand.

Figure 7 shows the operational efficiency for the experimental trials of one subject
on the indoor, tile, and sand surfaces. The asterisks illustrate the operational efficiency
of the trials at different walking speeds, and the colored curves correspond to the curve
fitting results. From the graphs, it is obvious that the extreme points of all curves fall
in the intervals [1.5, 2] for indoor, [3, 4] for tile, and [3, 4] for sand. Moreover, similar
results were observed for the other subjects. Therefore, we confirmed that there is an OAR
with the highest efficiency for each kind of road surface. In addition, by averaging the
experimental results, the values of 2.0 for indoor, 3.5 for tile, and 3.7 for sand are suitable
for the OAR method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.10 [m/s]

0.91 [m/s]

0.72 [m/s]

0.45 [m/s]

(a)

Figure 7. Cont.



Appl. Sci. 2021, 11, 1079 9 of 18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.97 [m/s]

0.82 [m/s]

0.67 [m/s]

0.40 [m/s]

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.0 [m/s]

0.84 [m/s]

0.65 [m/s]

0.41 [m/s]

(c)

Figure 7. The relationship between operational efficiency and assistance ratio from the data of one
subject on the (a) indoor, (b) tile, and (c) sand surfaces. The asterisks illustrate the operational
efficiency of the trials at different walking speeds.

4. Methods
4.1. The Oar Method

The OAR method originates from the confirmed hypothesis. We consider that a
properly selected assistance ratio will lead to driving forces suitable for each surface. If the
current road surface is properly recognized during assisted walking, the user will be able
to walk efficiently. Therefore, the cart must have the ability to recognize different terrain
types. This can be accomplished by using machine learning technology, a typical procedure
for which is as follows. First, raw data from driving the cart on different road types are
collected. Second, the classifier is trained using features calculated from the raw data as
input and using the road types as labels (target output). Third, the accuracy of the trained
classifier is tested on new input data.

In this study, we used support vector machine (SVM) as the classifier and classified the
surfaces into three groups: indoor, tile, and sand. First, acceleration in three axes (ax, ay, az,
corresponding to the lateral, forward, and vertical directions, respectively), translational ve-
locity v, and resultant interaction force FHuman were obtained at a frequency of 100 Hz from



Appl. Sci. 2021, 11, 1079 10 of 18

the IMU, hall effect sensors, and force sensors, respectively. Second, feature extraction was
conducted due to the high sampling rate of the data and periodic fluctuation of human
walking. In this study, the following features were selected as candidates:

F1 = max(xi) ,

F2 =
1
N

N

∑
i=1

xi ,

F3 =
1
N

N

∑
i=1

(xi − F2)
2 ,

F4 = exp(
1
N

N

∑
i=1

log |xi|) ,

F5 =
1

N − 1

N−1

∑
i=1
|xi+1 − xi| ,

(10)

where xi is the ith data item and N is the number of data items in the time window.
The time window is set to 1 s, i.e., N = 100. The features correspond to the Maximum,
Average, Mean Square Error, Log Detector, and Average Amplitude Change of the data,
respectively. The offline training of the SVM was conducted using MATLAB ver. 9.0
(Mathworks, Natick, MA, USA). After the training, the SVM classifier was implemented in
the power-assisted cart.

After considering the limited performance of the cart-mounted motor control unit
(MCU) and the trade-off between the classification accuracy and computational load,
we did not use all of the sensor data and features. Instead, we surveyed the sensor data
items and features and tried to determine the most effective combination. More details are
provided in Section 5.

4.2. The DOB Method

This is proposed for estimating and canceling disturbance (as explained in Section 2)
and is applied to both the translational and rotational motions of the cart. To utilize the
disturbance observer, the terms in (4) and (6) are considered as time-persistent disturbances,
i.e., ḋT = ḋR = 0. The low-pass filter plays a significant role in DOB, and it takes time
to compensate for the disturbance due to the phase delay. While rotating on a slope,
the disturbance varies rapidly as the cart rotates, resulting in the conditions ḋT 6= 0 and
ḋR 6= 0. Thus, the movement of rotating on a slope was not covered in this study.

Figure 8 shows a block diagram of the whole system, where P1, P2, Q1, and Q2
are the real plants and low-pass filters for the translational and rotational movements,
respectively. Different from the traditional method, a low-pass filter of 1

0.1s+1 was used
to make the inputs of the disturbance observer, such as force and velocity smoothing.
Since it is impossible to measure the weights of the load and friction in daily life accurately,
the parameters for the real plants P1 and P2 are unknown but limited. As mentioned
in [34], the behavior of a real system can be made similar to the nominal one by using the
disturbance observer. Apart from the time-persistent disturbances dT and dR, the DOB
method also estimates and cancels the difference between the real plant and the nominal
one. The design of the low-pass filter in DOB is extremely significant, and the filter was
chosen as

Q∗(s) =
1

τ∗s + 1
, ∗ = 1, 2 , (11)

where τ∗ corresponds to the cut-off frequency (a small τ∗ leads to a fast response). It should
be noted that a response that is too fast may make the user feel uncomfortable, and thus,
different values of τ1 and τ2 for the translational and rotational movements need to be
properly selected. In this study, the value of τ1 brought about a faster response than that
of τ2.
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v

dT

P1

FT

+
+

+

w
dR

MT

+ +

+

DOB for rotational movement

vL

vRFHR

FHL

αT + 1

αR + 1

Q2

+
Is+Kw−

P2

1
0.1s+1

1
0.1s+1

DOB for translational movement

Q1

+
Ms+Kv

−

1
0.1s+1

1
0.1s+1

FHuman

MHuman

J2 J−1
4

Figure 8. A block diagram of the cart.

5. Experiment

Experiments were carried out to evaluate the validity of the proposed methods.
Here, the details of the experiments and the experimental results are reported. First,
pre-experiments were carried out to determine the features and inputs for OAR and the
parameters for DOB. Second, the OAR and DOB methods were applied for movement on
flat surfaces and a slope, respectively.

5.1. Pre-Experiment
5.1.1. Feature Selection

As mentioned before, we tried to find effective combinations for reducing the burden
of the cart-mounted MCU, from using 5 features (F1, . . . , F5) and 5 inputs: accelerations
of the cart (ax, ay, az), the resultant force (Fhuman), and the translational velocity (v). For a
certain combination, the features related to each set of sensor data items were calculated
for each combination of inputs .

Table 2 summarizes the details of the five most effective combinations. Combination D
resulted in high accuracy and had a relatively small number of inputs. In comparison to
Combination D, the deficiency of the acceleration ay in Combination E resulted in a rapid
reduction in accuracy for sand. As we know, the computational load will increase with the
number of inputs when calculating the input for an SVM. Since the performance of the
cart-mounted MCU is limited, we need to maintain the balance between high classification
accuracy and low computational load. Thus, we chose Combination D as the input for the
SVM embedded in the power-assisted cart.
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Table 2. The input combinations for SVM and the corresponding accuracy.

Combination A B C D E

Feature
F2 ! ! ! ! !

F3 ! !

F5 ! ! ! ! !

Sensor

ay ! ! ! !

ax ! ! ! ! !

az ! !

v ! ! ! ! !

Fhuman ! ! ! ! !

Number of input 15 12 10 8 6

Training accuracy [%] 99.5 98.5 98.2 97.36 95.4
Test accuracy [%] 97.7 97.3 96.1 95.3 93.3

Indoor [%] 99.5 99.6 99.8 99.7 99.5
Tile [%] 96.5 95.6 93.7 92.8 90.0

Sand [%] 96.1 95.1 92.3 90.0 85.8

5.1.2. Parameter Selection for DOB

The physical parameters of the power-assisted cart were obtained through parameter
identification as M = 14.8, K = 1.68, I = 0.095 and Kω = 0.16. The experiment was
conducted without an external load in the indoor environment (Figure 6a). These parame-
ters are set to be the ones for the nominal plant of DOB. Moreover, the parameters of the
low-pass filters used in DOB are were chosen as τ1 = 0.1 for the forward movement and
τ2 = 0.5 for the rotational movement. All of the subjects reported that they could walk
without feeling uncomfortable.

When DOB is activated, the cart can stop on a slope at any angle γ, as shown in
Figure 9. The proposed disturbance observer cancels the effect of gravity and prevents the
cart from slipping down the slope. With a simple DOB which that only compensates for
the disturbance related to the translational movement, the cart can only stop on a slope
with γ = 0 because of the gravitational effect on the rotational movement.

Figure 9. Photographs showing that the cart can stop on a slope in at any attitude angle (Specification
specifications of the slope: θ = 0◦, β = 10◦, wood) when a disturbance observer-based (DOB) method
is activated.

5.2. Experimental Setup

Eight healthy male subjects (age 25.38± 1.77 years, height 171.75± 7.40 cm, and weight
69.88 ± 3.87 kg) who consented to the experimental protocol approved by the Institutional
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Review Board of Kyoto University, participated in the experiment. None of them had any
history of injuries to their lower extremities or of falling in the past year. Data during
walking with OAR and DOB, without assistance (α = 0), and with the default assistance
ratio were obtained for comparison. The default assistance ratio was the same as that used
in products already on the market, i.e., α = 1.5. Ratio α was set as 1.5 for DOB and the
relevant value for the particular environment obtained in the pre-experiment of Section 3.3
for OAR. In the cases with the default assistance ratio and OAR, the gravity compensation
from the motors just counteracted the gravity effect of the cart excluding the weight of the
load. Moreover, since we wanted to determine the robustness of each method to changes
in load weight, the experiment was conducted with and without a load of 10 kg.

The experiment was conducted on three flat surfaces and a slope, as shown in
Figures 6 and 10. The slope of 8 degrees and the tile surface are of the same material.
In the flat surface experiment, the subjects moved with the cart along a straight line and in
a circle of 1 m radius, while they only moved straight up a slope with γ = 0 in the slope
experiment. In the straight-line walking cases, the subjects walked for 15 s, which was
repeated five times. In the circular walking cases, the subjects moved along the circle for
50 s. For all of the trials, the step frequency during walking was set by using a metronome
at a frequency of 85 bpm. The participants could walk slowly at a speed of equal or less
than 0.8 m/s to simulate the locomotion of the frail elderly [35].

Figure 10. Experimental environment: slope of 8 degrees and the same material as the tile surface.

5.3. Data Processing and Statistical Analysis

After each trial, the performance index We in (9) was calculated. Moreover, we aver-
aged the performance indices for 5 repetitions from the data of each participant during
straight-line walking. Walking speed was affected by the step length because of the walking
constraint induced by the metronome, and so to cancel out the difference between individu-
als, the dimensionless walking speed VD was obtained by scaling to the leg length L of each
participant, as suggested in [36]: VD = v/

√
gL. Data processing and statistical analysis,

including the Kruskal-Wallis test (nonparametric one-way analysis of variance (ANOVA))
and multiple comparison tests, were conducted in MATLAB, while nonparametric two-way
ANOVA was performed with R based on the Aligned Rank Transform [37]. For the one-
way ANOVA, the effect of the control method on the dimensional walking speed for each
surface was investigated. For the two-way ANOVA on operational efficiency, the surfaces
and control methods with/without the load were considered as factors to be examined.
Multiple comparisons were performed if there was a statistically significant difference in a
particular test. A p-value of less than 0.05 was considered statistically significant. Noise in
the experimental data was removed through applying a zero-phase 10th order low-pass
filter with a cut-off frequency of 10 Hz.
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5.4. Experimental Results

Table 3 reports the averaged operational efficiency without a load for each condition
and surface. The results of nonparametric two-way ANOVA for the operational efficiency
show statistically significant differences between the surfaces (F = 128.61, p < 0.01) and
between the methods (F = 16.11, p < 0.01), while interaction between these factors was
also observed (F = 3.48, p < 0.01). Due to the significant differences, multiple comparisons
tests for the methods were performed. The averaged operational efficiencies for OAR and
DOB were significantly different from the ones for the case without assistance and with the
default method, while there was no evidential difference between OAR and DOB.

The averaged operational efficiency with load of 10 kg for each condition and surface
is reported in Table 4. The results of nonparametric two-way ANOVA for the operational
efficiency indicate statistically significant differences between the surfaces (F = 202.15,
p < 0.01) and between the methods (F = 52.47, p < 0.01), while interaction between these
factors was also observed (F = 5.45, p < 0.01). The results of multiple comparison tests for
the methods illustrate a significant difference between DOB and the other methods.

The results of nonparametric one-way ANOVA and multiple comparison tests for the
dimensionless walking speed indicate that there were almost no significant differences
in the dimensionless walking speed between the four methods for all of the surfaces,
except that the dimensionless walking speed for DOB (VD = 0.26) was significantly
different from the ones for the case without assistance (VD = 0.20) and with default
assistance (VD = 0.20) while walking upon the slope (p = 0.016 without the load and
p < 0.01 with the load).

Table 3. Averaged operational efficiency without load.

Environment
Method No Assistance Default OAR DOB

Indoor 0.319 0.505 0.539 0.504

Flat Tile 0.327 0.461 0.544 0.552

Straight Sand 0.166 0.321 0.450 0.591

Indoor 0.272 0.520 0.609 0.557

Flat Tile 0.287 0.439 0.619 0.516

Circular Sand 0.179 0.350 0.455 0.538

Slope Upwards 0.052 0.361 0.461 0.555

Straight Downwards 0.111 0.381 0.458 0.458

Table 4. Averaged operational efficiency with a load of 10 kg.

Environment
Method No Assistance Default OAR DOB

Indoor 0.273 0.468 0.476 0.416

Flat Tile 0.306 0.421 0.486 0.540

Straight Sand 0.110 0.249 0.392 0.552

Indoor 0.197 0.350 0.367 0.388

Flat Tile 0.161 0.277 0.415 0.487

Circular Sand 0.119 0.214 0.347 0.461

Slope Upwards 0.038 0.141 0.212 0.352

Straight Downwards 0.065 0.178 0.288 0.451



Appl. Sci. 2021, 11, 1079 15 of 18

6. Discussion

From the results of the experiments in Section 3.3, it was found that there was a
maximum operational efficiency for each surface and walking speed during stable walking,
which demonstrates the validity of the hypothesis. According to the data from the four
subjects, OAR was chosen as 2.0 for indoor, 3.5 for tile, and 3.7 for sand, respectively.
Hence, the power-assisted cart needs to provide more assistance in a complex environ-
ment. In addition, we found that the performance index decreased with an increment in
walking speed.

Our experimental results also reveal that the operational efficiency values for the
two proposed methods were relatively better than the ones for no assistance and default
assistance. The OAR method had better operational efficiency for the indoor flat road,
while DOB provided the most efficient assistance in most of the other cases. On the other
hand, the improvement in efficiency with the DOB method resulted from the compensation
to counteract disturbance and reducing the necessary force for pushing the cart, especially
on a slope. However, with a load of 10 kg in the indoor environment, the operational
efficiency for DOB was no better than that for the default assistance of α = 1.5. This could
be the result of using the low-pass filter since the difference between the actual plant and
the nominal one was relatively small. In the experiments of this study, young subjects
walked slowly to simulate the locomotion of the elderly. Since the step frequency was fixed
in this study with the use of a metronome, increased walking speed corresponded to an
increment in step length. The difference in dimensionless walking speed while walking
upon the slope indicates that if DOB is active, the cart could easily be pushed even with a
heavy load.

The time histories of the operational forces for one trial with DOB with the same
surface and participant as in Figure 4 without assistance is shown in Figure 11. The periodic
variation related to gait became indistinct in comparison with that in Figure 4, while the
necessary force to push the cart was drastically reduced. This implies that the force to
move the cart was not only generated by the subject but also by the motor output.

Figure 11. Operational forces of one subject with DOB in 15 s on an indoor surface.

Both methods have some drawbacks. As shown in Section 3, the operational efficiency
could be considered as a unimodal function of α for a specific surface and walking speed,
while the offline procedure in Section 5 for obtaining the OAR was very complex. Instead,
the optimal one could be acquired via an on-line approach, and a golden-section search
would be useful due to the relationship between the operational efficiency and assistance
ratio. Moreover, the movement of walking on an unknown surface might result in high
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classification error and improper assistance from the cart, a problem that could be solved
by simplifying the categories for classification.

In addition, there is still a serious limitation while utilizing DOB. It was found that
with DOB, when the user rotated on a slope, the cart became extremely hard to operate
due to the rapid change in the disturbance. Thus, rotational movement on a slope needs to
be detected and DOB must be turned off during rotation.

In conclusion, each method has its merits and demerits. It seems better to utilize
DOB in an unknown environment and OAR for indoor surfaces. The way of combining
both methods may become accepted as a suitable strategy for solving the above problems.
First, the surface is classified via a machine learning approach such as an SVM into only
two categories: indoor and outdoor. The rotational movement and posture of the cart are
detected simultaneously, then a proper method can be chosen according to the classification
and detection results. For instance, the cart can be controlled by applying the OAR method
for the indoor flat surface and switching to the DOB method for outdoor use.

We combined OAR and DOB and implemented the above algorithm. Acceleration
data and rotational velocities were processed for the detection of posture and rotational
movement. The combined method and default assistance ratio were included for com-
parison. One subject walked freely for 6 min with the power-assisted cart and load of
10 kg. The experimental space included but was not limited to the surfaces in Figure 6.
The classification rate of 98.4% indicates high accuracy. The obtained mean operational
efficiency for the combined method is 0.502, while the one for the default assistance ratio is
just 0.317. In addition, since DOB was turned off, the user did not feel uncomfortable while
rotating on the slope. The result indicates the high performance of the combined method.

7. Conclusions

In this paper, two methods of controlling a power-assisted cart have been proposed
for practical use. The OAR method searches for the optimal assistance ratios on different
types of roads, and then a classifier is integrated to recognize the road type based on
SVM. Through pre-experimental verification, it established an OAR for each surface during
stable walking. The DOB method estimates and cancels the disturbance with respect to the
environmental effect. Eight healthy subjects participated in an experiment of cart-assisted
walking on different flat road surfaces and a slope. The experimental results indicate higher
efficiency of OAR and DOB methods while walking with the cart on different surfaces
compared to the cases without assistance and with default assistance. Especially on a
slope, DOB led to the best performance with high efficiency and steady walking speed.
The drawbacks of the proposed methods and how to overcome them by sole use or in
combination were discussed: the cart can be controlled with high performance by using
OAR during walking indoors and DOB during walking outdoors, while their drawbacks
could be eliminated by combining them. The findings of this study provide guidance on
how to utilize the proposed methods for practical use.

Author Contributions: Conceptualization, X.W. and F.M.; methodology, X.W. and J.M.; software,
X.W., J.M. and Y.Z.; validation, X.W., T.E. and F.M.; formal analysis, X.W.; investigation, X.W., J.M.
and Y.Z.; resources, X.W.; data curation, X.W. and T.E.; writing—original draft preparation, X.W.;
writing—review and editing, T.E. and F.M.; visualization, X.W.; supervision, T.E. and F.M. ; project
administration, F.M.; funding acquisition, F.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was approved by the Institutional Review Board
of Kyoto University.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 1079 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

ANOVA Analysis of variance
DC Direct current
DOB Disturbance observer
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MCU Motor control unit
OAR Optimal assistance ratio
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