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Abstract: Molecular quantum electrodynamics (QED) theory is employed to calculate the rate of
resonance energy transfer (RET) between a donor, D, described by an electric dipole and quadrupole,
and magnetic dipole coupling, and an identical acceptor molecule, A, that is mediated by a third
body, T, which is otherwise inert. A single virtual photon propagates between D and T, and between
T and A. Time-dependent perturbation theory is used to compute the matrix element, from which
the transfer rate is evaluated using the Fermi golden rule. This extends previous studies that were
limited to the electric dipole approximation only and admits the possibility of the exchange of
excitation between a chiral emitter and absorber. Rate terms are computed for specific pure and
mixed multipole-dependent contributions of D and A for both an oriented arrangement of the three
particles and for the freely tumbling situation. Mixed multipole moment contributions, such as
those involving electric–magnetic dipole or electric dipole–quadrupole coupling at one center, do
not survive random orientational averaging. Interestingly, the mixed electric–magnetic dipole D
and A rate term is non-vanishing and discriminatory, exhibiting a dependence on the chirality of
the emitter and absorber, and is entirely retarded. It vanishes, however, if D and A are oriented
perpendicularly to one another. Near- and far-zone asymptotes of isotropic contributions to the rate
are also evaluated, demonstrating radiationless short-range transfer and inverse-square radiative
exchange at very large separations.

Keywords: molecular QED; resonance energy transfer; discriminatory effects; mediated exchange

1. Introduction

Fundamental theoretical studies of resonance energy transfer (RET) [1], especially
those involving the use of quantum electrodynamics (QED) theory [2–7], have largely con-
centrated on the exchange of energy taking place between two interacting particles, a donor,
D, and an acceptor, A. These species may be atoms, molecules, chromophores, functional
groups, or other such material entities that engage with electromagnetic radiation and
undergo electronic and/or vibrational excitation and de-excitation to and from quantized
energy levels. Migration of energy occurs from the initially excited D, to A, which is
initially in its ground state, with A capturing all of the excitation energy in a resonant
process. According to QED, energy is conveyed from emitter to absorber at the speed of
light through the propagation of a single virtual photon. This is because coupling between
matter at the microscopic scale of atoms and molecules is due to electromagnetic forces,
which are mediated by gauge bosons. These are the light quanta, a direct manifestation
of quantization of the electromagnetic field, which is a key feature of QED. Perturbation
theory has been used to evaluate the Fermi golden rule transfer rate as a function of the
pair separation distance, R, for oriented and freely tumbling particles [8–16]. From these
results, it has been established that at short inter-nuclear distances, the exchange of energy
is radiationless, exhibiting an R−6 Förster-type dependence, while in the other extreme, cor-
responding to the far-zone, the rate has inverse square behavior, illustrative of a radiative
transfer mechanism.

While a majority of works have understandably focused on RET in free space, con-
siderable effort has also been devoted to exploring the effects of a medium in modifying
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the rate [17,18] as environment-influenced energy transfer is the usual situation commonly
found in diverse scientific fields and technological applications. An early method to ac-
count for the dispersive and dissipative properties of a bath, and a means to introduce the
refractive index, was to view the medium as possessing a uniform dielectric constant, with
connection to the bulk polarizability made via the Clausius–Mossotti relation [19]. More
rigorous treatments have followed. These have included quantizing both the electromag-
netic field and a dielectric medium, with the latter viewed as a collection of identical atoms
arranged as a lattice, within which a chromophore or a pair of interacting particles is em-
bedded [20–24]. The elementary bosonic excitations of the bath are now medium-dressed
photons or polaritons, allowing for individual emission and absorption events to occur.
One such particle is exchanged in RET taking place in a surrounding environment, altering
the rate relative to its vacuum value through the appearance of a complex refractive index,
local field and screening factors, and the correct diminution of the amplitude via exponen-
tial decay. This approach has been extended within the framework of macroscopic QED
in which the medium is taken to be a linear magnetodielectric [25]. It has recently been
applied to compute RET, for instance, in treating coupling to plasmons in nanostructure
systems [26–28].

Instead of viewing the direct transfer between D and A taking place in an environment,
an alternative approach is to picture exchange mediated by microscopic particles, and to
consider how constructing a microscopic many-body theory modifies the rate. The extrap-
olation of the results obtained for the few-body case to an infinite number of mediators
allows a comparison to be made with macroscopic treatments. A few calculations have
been performed of the rate mediated by a neutral, polarizable third molecule that either
serves as a bridging species, relaying energy between D and A, or is coupled only to D or
only to A [29–33], including interference terms between direct and various indirect path-
ways. In addition, a small number of studies have examined the effect of two additional
bridging molecules on RET, and the complicated distance and orientational dependences
exhibited by the rate [34–36]. Furthermore, these three-body, free-space QED results have
been supplemented by accounting for a dielectric medium using the polariton exchange
approach, in which amplitude and phase damping, vibrational relaxation, and dissipative
effects on the rate were investigated [24,37,38]. Interest in three-center RET has been driven
by potential applications involving sensitization and energy pooling in organic systems,
as well as up-conversion and down-conversion in rare-Earth doped materials [39–41], in
addition to testing mixed QM/MM methods for treating a solvent [42].

Until now, the problem of RET between two chiral molecules mediated by a third
body has not been considered. This is the aim of the present contribution. As in previous
studies, the mediator is taken to be achiral, characterized by its electric dipole polarizability.
To deal with the potential optical activity of D and A, the electric dipole approximation
is relaxed for these two species, with magnetic dipole and electric quadrupole coupling
terms included in the description of the response properties of the emitter and absorber
molecules. This will not only allow a comparison to be made with previous work involving
RET modified by one or two mediators in the electric dipole approximation, but also with
earlier molecular QED calculations of discriminatory pair RET [43,44]. In these last works,
interference between electric and magnetic dipole coupling terms led to a transfer rate that
depended on the handedness of the donor and acceptor, changing sign when its mirror
image form replaces one enantiomer. It is examined whether such behavior is replicated in
the mediated case. The paper is organized as follows: first the problem is set up within
the framework of molecular QED theory and basic equations are given. Time-dependent
perturbation theory is used to evaluate the matrix element for mediated RET. This is done
together in Section 2. Specific higher-order multipole moment-dependent contributions of
D or A contributing to the oriented or isotropic Fermi golden rule rate are then extracted in
Sections 3 and 4, with special emphasis placed on the term proportional to the handedness
of the emitter or absorber in order to elucidate possible discriminatory effects. A summary
is given in Section 5.



Appl. Sci. 2021, 11, 1012 3 of 16

2. QED Matrix Element for Third Body-Mediated RET between Two Chiral Molecules

Consider RET between two chiral molecules, one serving as the donor species, D,

located at
→
RD, and the second, A, positioned at

→
RA, playing the role of acceptor entity. If D

and A are not identical, then their energy spectra need to overlap. Because symmetry plays
a special part in classifying whether a molecule is chiral or not, spectroscopic selection
rules are less stringent for such species relative to non-chiral or achiral substances, allowing
multipole moment contributions other than the electric dipole moment to contribute to
numerous processes involving the coupling of light with matter. D is assumed to initially
be in the excited electronic state |mD>, with energy ED

m , while A is in the ground state |0A>,
with energy EA

0 . An amount of energy Em0 = Em − E0 = hckm0 is transferred, with km0
being the wave number of the transition associated with de-excitation in D. This quantity of
energy is gained by the absorber, which becomes excited to state |mA>, while the emitter
decays to the ground state, |0D>.

Let the exchanged energy be mediated by a third particle, T, positioned at
→
RT , which

serves to relay excitation between D and A. T is electrically polarizable and may undergo
virtual transitions from the ground state |0T> to excited levels |rT>, but is otherwise
inert, remaining in the ground state when not interacting. In the multipolar formalism of
molecular QED theory [3,4,6], the total Hamiltonian operator for the system comprising
the three particles, the radiation field, and their mutual interaction, is written as

H = ∑
ξ

Hmol(ξ) + Hrad + ∑
ξ

Hint(ξ), ξ = D, A, T. (1)

The first term in Equation (1) is the molecular Hamiltonian of particle ξ, Hmol(ξ), famil-
iar from quantum chemistry and which is expressed as a sum of kinetic and intra-molecular
potential energy contributions for a collection of non-relativistic charged particles grouped
into atoms or molecules ξ. A characteristic feature of QED is the placing of the electromag-
netic field on an equal footing with matter, with both subject to the axioms of quantum
mechanics. This leads to the explicit appearance in Equation (1) of the Hamiltonian operator
for the radiation field, Hrad. One form for the total energy of the field is given by

Hrad =
1

2ε0

∫
{
→
d
⊥2

(
→
r ) + ε2

0c2
→
b

2
(
→
r )}d3→r , (2)

where
→
d
⊥
(
→
r ) and

→
b (
→
r ) are microscopic transverse electric displacement and magnetic

fields, respectively. In QED, the electromagnetic field is pictured as a sum of independent
simple harmonic oscillators, whose quantization is straightforward in either the particle
or wave viewpoints. This results in photons, which are completely characterized by their

individual mode designation
→
k , λ, where

→
k is the wave vector, signifying the propagation

direction of light, and λ is its index of polarization. These first two terms of Equation (1)
constitute the unperturbed Hamiltonian, whose solutions are assumed to be known. They
correspond to the problem of matter in the absence of radiation, and the propagation of
electromagnetic radiation in free space, respectively.

Energy eigenstates |mξ > for a particle ξ in a state described by one or more quan-
tum numbers mξ , with energy Eξ

m, are employed as base states for matter, while radi-

ation states are specified by |n(
→
k , λ) >, which details the number of photons in the

field of mode
→
k , λ, with n being the number operator whose eigenvalues are 0, 1, 2,

. . . . Because the unperturbed Hamiltonian is separable, the base states employed to
monitor the evolution of the system under the influence of the perturbation operator,
Hint = ∑

ξ
Hint(ξ), are product molecule-field states of the form |mol > ⊗| f ield >=

|mol; f ield >= |mξ , m′ξ
′
, . . . ; n(

→
k , λ), n′(

→
k
′
, λ′), . . . > . The state of the composite sys-

tem at some final time, tf, |f>, given that at the initial time, ti, it was in the initial state |i>,



Appl. Sci. 2021, 11, 1012 4 of 16

is then obtained using standard techniques of time-dependent perturbation theory, with
the perturbation operator understood to cause the transition | f >← |i > .

Turning to the last term in Equation (1), the perturbation operator, which describes
the coupling between light and matter, takes the following explicit form: for the emitter
and the absorber, both of which are chiral, the first few terms of the multipolar expansion
of the electric polarization and magnetization fields are retained, yielding

Hint(ξ) = −ε−1
0 µi(ξ)d⊥i (

→
Rξ)−mi(ξ)bi(

→
Rξ)− ε−1

0 Qij(ξ)∇jd⊥i (
→
Rξ), ξ = D, A (3)

where Roman indices denote Cartesian tensor components in the space-fixed frame of refer-
ence, and Einstein’s summation convention is in force for indices that repeat. In expression
(3), µi(ξ), mi(ξ), and Qij(ξ) are the electric dipole moment operator, the magnetic dipole
moment operator, and the electric quadrupole moment operator, respectively. The multi-
pole moments couple directly to the electromagnetic fields. A convenient form to express
these microscopic Maxwell field operators is as a sum over Fourier modes, with expansions

→
d
⊥
(
→
r ) = i ∑

→
k ,λ

(
hckε0

2V

)1/2
[
→
e
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −→e

(λ)
(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ], (4)

and

→
b (
→
r ) = i ∑

→
k ,λ

(
hk

2ε0cV

)1/2
[
→
b
(λ)

(
→
k )a(λ)(

→
k )ei

→
k ·→r −

→
b
(λ)

(
→
k )a†(λ)(

→
k )e−i

→
k ·→r ]. (5)

Appearing in these last two expressions are the second quantized raising and lowering

operators for a
→
k , λ mode photon, a†(λ)(

→
k ) and a(λ)(

→
k ), respectively, with

→
e
(λ)

(
→
k ) being

the complex unit electric polarization vector,
→
b
(λ)

(
→
k ) is its magnetic counterpart, and V

is the volume of the radiation quantization box, which serves to restrict the number of
allowed field modes to a countable infinity.

Because the third body, T, acts as a bridge between D and A, scattering virtual photons,
it is advantageous to employ the following form for the interaction operator, Hint(T),

Hint(T) = −ε−2
0 αij(T)d⊥i (

→
RT)d⊥j (

→
RT), (6)

which is seen to be quadratic in the electric displacement field. The mediator responds to
radiation through its ground state frequency-dependent electric dipole polarizability tensor

αij(T) = αij(T;±k1,±k2) = ∑
r
{

µ0r
i (T)µr0

j (T)

Er0 ∓ hck1
+

µ0r
j (T)µr0

i (T)

Er0 ∓ hck2
}, (7)

where the matrix element of the electric dipole moment operator between electronic states
|0T> and |rT> of T is abbreviated to µ0r

i (T) =< 0T |µi(T)|rT >. Since a single virtual
photon traverses between D and T, and between T and A, the interaction Hamiltonian
Equation (6) is an effective two-photon perturbation operator [45]. Employing it will help
to simplify the computation of the matrix element by reducing the number of Feynman-like
diagrams that have to be drawn and summed over, which is beneficial when solving higher-
order processes. This type of coupling Hamiltonian has been used to similar good effect in
the evaluation of the Casimir–van der Waals dispersion potential, which is attributed to
two virtual photon exchanges [46–49], and its radiation-induced analog [50,51].

To complete the statement of the problem, the final item required is the specification
of the initial and final states. These may be written as

|i >= |mD, 0A, 0T >; | f >= |0D, mA, 0T >, (8)
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corresponding to the migration of electronic energy from D to A resonantly, with energy
Em0, with the mediator T remaining unexcited before and after the transfer process. No
photons—real or virtual—are present at times t < ti and t > t f .

Let the single virtual photon exchanged between D and T be of mode
→
p , ε, and the

one propagating between T and A be of mode
→
p
′
, ε′. With the interaction Hamiltonians

given by Equations (3) and (6), the matrix element for mediated RET between two chiral
molecules is evaluated using the third-order perturbation theory formula

M f i = ∑
I,I I

< f |Hint|I I >< I I|Hint|I >< I|Hint|i >
EiI EiI I

, (9)

with Hint = ∑
ξ

Hint(ξ), ξ = D, A, and T, and where the sum in Equation (9) is carried out over

all intermediate states that link | f >← |i > . Written in the denominator of Equation (9)
are differences in energy between initial and intermediate states, EiI = Ei − EI , etc. The
computation of the probability amplitude for the process under consideration may be aided
by drawing time-ordered diagrams depicting the sequence of photon emission/absorption
events, with the total number being equal to the number of terms in the sum of Equation (9).
In the present example, because the mediator interacts with radiation via the effective
two-photon coupling (Equation (6)), only six Feynman-like diagrams contribute. They may
be obtained from diagrams of the type shown in Figure 1d of [37].

On using the standard calculational techniques of molecular QED theory, the matrix
element is found to be

M f i = − ∑
→
p ,ε

∑
→
p
′
,ε′

(
p

2ε0V

)(
p′

2ε0V

)
αrs(T;−p,−p′)

×{[µ0m
i (D)e(ε)i (

→
p ) + 1

c m0m
i (D)b(ε)i (

→
p ) + ipjQ0m

ij (D)e(ε)i (
→
p )]

×[µm0
k (A)e(ε

′)
k (

→
p
′
) + 1

c mm0
k (A)b(ε

′)
k (

→
p
′
) + ip′ lQ

m0
kl (A)e(ε

′)
k (

→
p
′
)]e(ε)r (

→
p )e(ε

′)
s (

→
p
′
) ei

→
p ·
→
R ei
→
p
′
·
→
R
′

(p+km0)(p′−km0)

+[µ0m
i (D)e(ε)i (

→
p ) + 1

c m0m
i (D)b

(ε)
i (
→
p )− ipjQ0m

ij (D)e(ε)i (
→
p )]

×[µm0
k (A)e(ε

′)
k (

→
p
′
) + 1

c mm0
k (A)b

(ε′)
k (

→
p
′
)− ip′ lQ

m0
kl (A)e(ε

′)
k (

→
p
′
)]e(ε)r (

→
p )e(ε

′)
s (

→
p
′
) e−i

→
p ·
→
R e−i

→
p
′
·
→
R
′

(p−km0)(p′+km0)

+[µ0m
i (D)e(ε)i (

→
p ) + 1

c m0m
i (D)b

(ε)
i (
→
p )− ipjQ0m

ij (D)e(ε)i (
→
p )]

×[µm0
k (A)e(ε

′)
k (

→
p
′
) + 1

c mm0
k (A)b(ε

′)
k (

→
p
′
) + ip′ lQ

m0
kl (A)e(ε

′)
k (

→
p
′
)]e(ε)r (

→
p )e(ε

′)
s (

→
p
′
) e−i

→
p ·
→
R ei
→
p
′
·
→
R
′

(p−km0)(p′−km0)

+[µ0m
i (D)e(ε)i (

→
p ) + 1

c m0m
i (D)b(ε)i (

→
p ) + ipjQ0m

ij (D)e(ε)i (
→
p )]

×[µm0
k (A)e(ε

′)
k (

→
p
′
) + 1

c mm0
k (A)b

(ε′)
k (

→
p
′
)− ip′ lQ

m0
kl (A)e(ε

′)
k (

→
p
′
)]e(ε)r (

→
p )e(ε

′)
s (

→
p
′
) ei

→
p ·
→
R e−i

→
p
′
·
→
R
′

(p+km0)(p′+km0)
},

(10)

where the inter-particle displacement vectors
→
R and

→
R
′

are defined as
→
R =

→
RD −

→
RT and

→
R
′
=
→
RA −

→
RT , respectively.

To proceed further in the calculation of the matrix element, the sums over the virtual

photon modes
→
p , ε and

→
p
′
, ε′ must be evaluated. For the polarization index sums, use is

made of the identities [3]

∑
ε

e(ε)i (
→
p )e(ε)j (

→
p ) = ∑

ε

b(ε)i (
→
p )b

(ε)
j (
→
p ) = δij − p̂i p̂j, (11)

and
∑

ε

e(ε)i (
→
p )b

(ε)
j (
→
p ) = εijk p̂k, (12)

where εijk is the Levi-Civita alternating tensor. The leading term of Equation (10), namely,
the matrix element for RET between an electric dipole donor and an electric dipole acceptor
mediated by an electric dipole polarizable third body, has been evaluated previously [29–32].
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New features arise with the inclusion of higher multipole moments. By way of illustration,
the contribution from Equation (10) proportional to “[

→
µ (D)

→
m(A) +

→
m(D)

→
µ (A)]α(T)” is

extracted. Carrying out the polarization sums using the first relation of Equations (11), and
Equation (12), this term is

1
c ∑
→
p

∑
→
p
′

(
p

2ε0V

)(
p′

2ε0V

)
αkl(T;−p,−p′)

×[µ0m
i (D)mm0

j (A)(δik − p̂i p̂k)ε jls p̂′s + m0m
i (D)µm0

j (A)εiks p̂s(δjl − p̂′j p̂
′
l)]

×{ ei
→
p ·
→
R ei
→
p′ ·
→
R
′

(p+km0)(p′−km0)
+ e−i

→
p ·
→
R e−i

→
p′ ·
→
R
′

(p−km0)(p′+km0)
+ e−i

→
p ·
→
R ei
→
p′ ·
→
R
′

(p−km0)(p′−km0)
+ ei

→
p ·
→
R e−i

→
p′ ·
→
R
′

(p+km0)(p′+km0)
}.

(13)

The four terms within braces of the last expression may be written as a product of

factors involving one virtual photon momentum variable only so that the
→
p and

→
p
′

and
sums are now independent:

1
c ∑
→
p

∑
→
p
′

(
p

2ε0V

)(
p′

2ε0V

)
αkl(T;−p,−p′)

×[µ0m
i (D)mm0

j (A)(δik − p̂i p̂k)ε jls p̂′s + m0m
i (D)µm0

j (A)εiks p̂s(δjl − p̂′j p̂
′
l)]

×{ ei
→
p ·
→
R

p+km0
+ e−i

→
p ·
→
R

p−km0
}{ ei

→
p
′
·
→
R
′

p′−km0
+ e−i

→
p
′
·
→
R
′

p′+km0
}.

(14)

Converting the sum over discrete virtual photon wave vectors to a continuous variable
via the relation,

∑
→
p

→ V

(2π)3

∫
d3→p , (15)

and performing the necessary angular averages, the wave vector sums may be evaluated
to give

∑
→
p

(
p

2ε0V

)
(δij − p̂i p̂j){

ei
→
p ·
→
R

p− km0
+

e−i
→
p ·
→
R

p + km0
} = −Vij(km0,

→
R), (16)

and
1
c ∑
→
p

(
p

2ε0V

)
εijk p̂k{

ei
→
p ·
→
R

p− km0
+

e−i
→
p ·
→
R

p + km0
} = −Uij(km0,

→
R). (17)

On the right-hand side of the result Equation (16) is the familiar retarded resonant

electric dipole–dipole interaction tensor, Vij(km0,
→
R), defined by

Vij(k,
→
r ) = − 1

4πε0
(−∇2δij +∇i∇j)

eikr

r
=

1
4πε0r3 [(δij − 3r̂i r̂j)(1− ikr)− (δij − r̂i r̂j)k2r2]eikr. (18)

Appearing in Equation (17) is the tensor

Uij(k,
→
r ) = − ik

4πε0c
εijk∇k

eikr

r
=

1
4πε0cr3 εijk r̂k[ikr + k2r2]eikr, (19)

which features in RET between electric and magnetic dipole moments; it is entirely retarded,
vanishing when k = 0 [3,4,43]. The contribution Equation (14) thus becomes

[µ0m
i (D)mm0

j (A)Vik(km0,
→
R)Ujl(km0,

→
R
′
) + m0m

i (D)µm0
j (A)Uik(km0,

→
R)Vjl(km0,

→
R
′
)]αkl(T;−km0,+km0). (20)
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Returning to Equation (10) and focusing on the pure and mixed dipolar terms only,
using the identities Equations (11) and (12), and the results Equations (16) and (17), the
electric and magnetic dipole-dependent matrix element is found to be

Mµ+m
f i = [−µ0m

i (D)µm0
j (A)VR

ik VR′
jl + µ0m

i (D)mm0
j (A)VR

ik UR′
jl

+m0m
i (D)µm0

j (A)UR
ikVR′

jl −m0m
i (D)mm0

j (A)UR
ikUR′

jl ]α
T
kl ,

(21)

where to simplify the expression, the following shorthand notation is introduced: VR
ij =

Vij(km0,
→
R), UR

ij = Uij(km0,
→
R), and αT

kl = αkl(T;−km0,+km0).
A similar procedure is used to obtain contributions dependent upon the electric

quadrupole moment. Only pure and mixed electric multipole moment terms of Equation
(10) are extracted, with higher-order mixed magnetic dipole–electric quadrupole factors
being neglected. Use is made of the result

∑
→
p

(
p

2ε0V

)
(δij − p̂i p̂j)∇k{

ei
→
p ·
→
R

p + km0
+

e−i
→
p ·
→
R

p− km0
} = −Vijk(km0,

→
R), (22)

which features in quadrupolar RET [52], with Vijk(k,
→
r ) defined as

Vijk(k,
→
r ) = − 1

4πε0
(−∇2δij +∇i∇j)∇k

eikr

r
= 1

4πε0r4 [(δij − r̂i r̂j)r̂k(−ik3r3 + k2r2) + (δij r̂k + δik r̂j + δjk r̂i − 5r̂i r̂j r̂k)(k2r2 + 3ikr− 3)]eikr.
(23)

Thus, the electric dipole and quadrupole-dependent contribution to the matrix element
is given by

Mµ+Q
f i = [−µ0m

i (D)µm0
k (A)VR

ir VR′
ks − µ0m

i (D)Qm0
kl (A)VR

ir VR′
ksl

+Q0m
ij (D)µm0

k (A)VR
irjV

R′
ks + Q0m

ij (D)Qm0
kl (A)VR

irjV
R′
ksl ]α

T
rs,

(24)

where the shorthand notation VR
ijk = Vijk(km0,

→
R) is introduced. Note that the leading elec-

tric dipole–dipole term appears as the first term in Equation (24), just as in Equation (21).
This completes the evaluation of the matrix element for RET between an electric dipole,
quadrupole, and magnetic dipole donor and acceptor molecule mediated by a third
molecule. Specific contributions to the transfer rate are extracted in the sections that follow.

3. Dipolar Contributions to the Mediated Rate

For weak radiation–matter coupling, in which a perturbative approximation is invoked
to solve the QED eigenvalue problem via the computation of the matrix element, M f i, the
rate of RET may be obtained from the Fermi golden rule formula:

Γ =
2πρ f

h
|M f i|2, (25)

where Γ is the rate, and ρ f is the density of final states. To keep the length of rate results man-
ageable, specific multipole moment-dependent contributions will be considered separately.

The first term to be examined is the rate between an electric dipole donor and an
acceptor that is characterized by terms proportional to the product of transition electric
and magnetic dipole moments, i.e., “

→
µ
→
m +

→
m
→
µ”. The rate for the three species in fixed

orientation relative to one another is

Γ(µµ)D−(µm+mµ)A
=

2πρ f
h µ0m

i (D)µm0
i′ (D)

×[µ0m
j (A)mm0

j′ (A)VR′
jl UR′

j′ l′ − µ0m
j′ (A)mm0

j (A)UR′
jl VR′

j′ l′ ]

×VR
ik VR

i′k′α
T
klα

T
k′ l′ ,

(26)
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where the overbar denotes the complex conjugate quantity, and use has been made of
the relations m0m

i = −mm0
i = mm0

i , for an imaginary magnetic dipole moment operator
and real molecular wave functions. Explicit distance and orientational dependences of
Equation (26) are obtained on inserting the geometric tensors VR/R′

ij and UR/R′
ij .

To obtain the rate formula applicable to species that are freely tumbling, as in the
gaseous or liquid phases, an orientational average must be performed on Equation (26).
The averages over D and A involve using the result for the average of a second-rank
Cartesian tensor since they each involve a product of dipole moments. Hence

< µ0m
i (D)µm0

i′ (D) >=
1
3

δii′ |
→
µ

m0
(D)|2, (27)

and
< µ0m

j (A)mm0
j′ (A) >=

1
3

δjj′ [
→
µ

0m
(A) ·→m

m0
(A)], (28)

where the chevron brackets indicate an orientationally averaged quantity. From Equation
(26), it is seen that the mediator appears in the rate as the product of its dynamic polarizabil-
ity and its complex conjugate, each of which are second-rank tensors. A free orientational
average of the mediator thus requires use of the result for the average of a fourth-rank
Cartesian tensor [53],

< αT
klα

T
k′ l′ >=

1
30
{(4δklδk′ l′ − δkl′δk′ l − δkk′δll′)α

T
λλαT

µµ + [−2δklδk′ l′ + 3(δkl′δk′ l + δkk′δll′)]α
T
λµαT

λµ}, (29)

using the index symmetry properties of the polarizability tensor, with Greek subscripts
referring to Cartesian tensor components in the body-fixed frame. The result Equation (29)
will be utilized in all of the remaining calculations of isotropic transfer rates. Inserting the
last three relations in Equation (26) and contracting with the product of V and U tensors
results in the isotropic rate vanishing, that is,

< Γ(µµ)D−(µm+mµ)A
>= 0. (30)

Unsurprisingly, interchanging the role of D and A also produces a vanishing randomly
averaged rate. That is,

< Γ(µm+mµ)D−(µµ)A
>= 0. (31)

On taking advantage of the fact that the electric and magnetic dipole moments are both
vectors, the isotropic rate between a magnetic dipole donor particle and an electric dipole–
magnetic dipole acceptor species, and the rate between an electric dipole–magnetic dipole
donor and a magnetic dipole acceptor, both mediated by an electric dipole polarizable
third body, T, also vanish on free orientational averaging, that is,

< Γ(mm)D−(µm+mµ)A
>=< Γ(µm+mµ)D−(mm)A

>= 0. (32)

We now return to Equation (21) and extract the contribution to the rate proportional
to the product of electric and magnetic dipole moments at both the emitter and absorber
sites. For oriented D, A, and T, this is given by the expression

Γ(µm+mµ)D−(µm+mµ)A
=

2πρ f
h {µ

0m
i (D)mm0

i′ (D)[µ0m
j′ (A)mm0

j (A)UR′
jl VR′

j′ l′ − µ0m
j (A)mm0

j′ (A)VR′
jl UR′

j′ l′ ]VR
ik UR

i′k′

+µ0m
i′ (D)mm0

i (D)[µ0m
j (A)mm0

j′ (A)VR′
jl UR′

j′ l′ − µ0m
j′ (A)mm0

j (A)UR′
jl VR′

j′ l′ ]UR
ikVR

i′k′}αT
klα

T
k′ l′ ,

(33)

with explicit distance and orientational behavior following from substituting the geometric
tensors.

To find the isotropic rate, the orientational averages in Equations (28) and (29) are
applied to Equation (33) and the product of tensors involving V and U are contracted. The
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transfer rate between two electric–magnetic dipole particles mediated by an electric dipole
polarizable third molecule is found to be

< Γ(µm+mµ)D−(µm+mµ)A
>=

− 8πρ f
27hc2

1
(4πε0)

4
k8

m0
R2R′2

(R̂ · R̂′)[→µ
0m

(D) ·→m
m0

(D)][
→
µ

0m
(A) ·→m

m0
(A)][αT

λλαT
µµ − αT

λµαT
λµ].

(34)

This rate is clearly discriminatory, dependent upon the chirality of the emitter and

receiver, which manifests through the pseudoscalar quantity [
→
µ

0m
(ξ) ·→m

m0
(ξ)], ξ = D, A,

which changes sign when one enantiomer is replaced by its mirror-image structure. A
number of other interesting features emerge from the result Equation (34). The rate vanishes
if the acceptor is oriented perpendicularly relative to the donor and has its maximum value
when D, T, and A are collinear. Similarly, if the product of the diagonal components of
the polarizability tensor of the mediator is equal to its product of off-diagonal elements,
the rate again vanishes. While this may be achieved in a two-level truncation scheme, a
multi-level model of T is needed to ensure that the relay of energy occurs. Expression
Equation (34) is retarded, as evidenced by the factor k8

m0, indicative of radiative migration
of energy. Further confirmation is provided by the inverse square dependence of the rate
on each of the inter-particle displacements, R and R′. Hence, no near-zone limit exists. This
is to be expected since there is no coupling between static electric and magnetic dipoles.
The result Equation (34) complements discriminatory pair RET between two optically
active molecules [43,44]. Dispersion energy shifts between two electric–magnetic dipole
polarizable molecules are also discriminatory [54–58].

A contribution that is of an identical order of magnitude to that considered in the
last example, Equations (33) and (34), is the rate between an electric dipole donor and a
magnetic dipole acceptor, mediated by a third-body T. From Equation (21), the rate for an
oriented arrangement of the three particles is

Γ(µµ)D−(mm)A
=

2πρ f

h
µ0m

i (D)µ0m
i′ (D)mm0

j (A)mm0
j′ (A)αT

klα
T
k′ l′V

R
ik VR

i′k′U
R′
jl UR′

j′ l′ . (35)

In addition to Equations (27) and (29), the following orientational average over prod-
ucts of magnetic dipole moments associated with center ξ is necessary to compute the rate
applicable to a fluid sample,

< m0m
i (ξ)mm0

i′ (ξ) >=
1
3

δii′ |
→
m

0m
(ξ)|2, (36)

yielding the isotropic rate result

< Γ(µµ)D−(mm)A
>=

πρ f
135hc2

1
(4πε0)

4
1

(RR′)6 |
→
µ

0m
(D)|2|→m

m0
(A)|2

×({[3− 9(R̂ · R̂′)2
](k2R′2 + k4R′4) + [5− 15(R̂ · R̂′)2

](k4R2R′2 + k6R2R′4)
+[−1 + 3(R̂ · R̂′)2

](k6R4R′2 + k8R4R′4)}αT
λλαT

µµ

+{[41− 3(R̂ · R̂′)2
](k2R′2 + k4R′4) + [15− 5(R̂ · R̂′)2

](k4R2R′2 + k6R2R′4)
+[13 + (R̂ · R̂′)2

](k6R4R′2 + k8R4R′4)}αT
λµαT

λµ),

(37)

where k = km0. It is informative to evaluate the asymptotic limits of result Equation (37)
corresponding to short and large relative separation distances. In the near zone, kR << 1
and kR′ << 1, yielding the asymptote

< Γ(µµ)D−(mm)A
>NZ ∼

πρ f
135hc2

1
(4πε0)

4
k2

R6R′4
|→µ

0m
(D)|2|→m

m0
(A)|2

×([3− 9(R̂ · R̂′)2
]αT

λλαT
µµ + [41− 3(R̂ · R̂′)2

]αT
λµαT

λµ),
(38)
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which is also not a true near-zone limit since Uij is retarded, and with k2 = k2
m0 appearing

explicitly. Interestingly, the short-range rate exhibits Förster-like R−6 dependence due to
electric dipole–dipole transfer between D and T, and R′−4 behavior arising from exchange
between electric dipole T and magnetic dipole A. At very large inter-particle displacements,
kR >> 1 and kR′ >> 1, giving rise to the far zone approximated form of the rate

< Γ(µµ)D−(mm)A
>FZ ∼

πρ f
135hc2

1
(4πε0)

4
k8

R2R′2
|→µ

0m
(D)|2|→m

m0
(A)|2

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + [13 + (R̂ · R̂′)2

]αT
λµαT

λµ},
(39)

displaying characteristic inverse square behavior on each of R and R′, indicative of sequen-
tial real photon emission from D to A via T.

From the results Equations (35) and (37), it is straightforward to obtain the mediated
transfer rate between a magnetic dipole emitter and an electric dipole acceptor; simply
interchange R̂ and R̂′, and R and R′. The same holds for the asymptotically limiting forms
Equations (38) and (39).

The final pure dipolar contribution to the third body-mediated rate to be considered is
that between a magnetic dipole donor and a magnetic dipole acceptor, the magnetic analog
of the leading pure electric dipole case, which has been examined previously [29–32]. For
an oriented configuration, the rate from Equation (21) is given by

Γ(mm)D−(mm)A
=

2πρ f

h
m0m

i (D)mm0
i′ (D)m0m

j (A)mm0
j′ (A)αT

klα
T
k′ l′U

R
ikUR

i′k′U
R′
jl UR′

j′ l′ . (40)

Employing the rotational averages Equations (29) and (36) and contracting with the
geometrical tensors, the mediated rate for a freely tumbling system is

< Γ(mm)D−(mm)A
>=

πρ f
135h

1
(4πε0c)4

1
R6R′6

|→m
0m

(D)|2|→m
m0

(A)|2

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + [13 + (R̂ · R̂′)2

]αT
λµαT

λµ}[k4R2R′2 + k6(R2R′4 + R4R′2) + k8R4R′4],
(41)

with k = km0.
In the near zone, kR and kR′ are both a lot less than unity so that the dominant

contribution from the polynomial factor is k4R2R′2, yielding the limit

< Γ(mm)D−(mm)A
>NZ ∼

πρ f
135h

1
(4πε0c)4

k4

R4R′4
|→m

0m
(D)|2|→m

m0
(A)|2

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + [13 + (R̂ · R̂′)2

]αT
λµαT

λµ},
(42)

which is not a true near-zone limit due to the presence of the radiative factor k4, but which
exhibits inverse fourth power dependence on each displacement variable. In the far zone,
the rate takes the form

< Γ(mm)D−(mm)A
>FZ ∼

πρ f
135h

1
(4πε0c)4

k8

R2R′2
|→m

0m
(D)|2|→m

m0
(A)|2

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + [13 + (R̂ · R̂′)2

]αT
λµαT

λµ},
(43)

illustrative of a radiative exchange mechanism due to the inverse square behavior of R
and R′.

4. Electric Dipole and Quadrupole Contributions to the Mediated Rate

Pure electric dipole and electric quadrupole contributions to the third body-mediated
rate, as well as various mixed contributions, may be obtained from the matrix element,
Mµ+Q

f i , Equation (24). Individual terms are again considered separately.
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The first contribution to be studied is the rate term proportional to a donor that is an
electric dipole emitter, and a mixed electric dipole–quadrupole acceptor, namely between
“(µµ)D” and “(µQ + Qµ)A”. Hence, for the three bodies in fixed mutual orientation,

Γ(µµ)D−(µQ+Qµ)A
=

2πρ f
h [µ0m

i (D)µ0m
i′ (D)µm0

k (A)Qm0
k′ l′(A)VR

ir VR
i′r′VR′

ks VR′
k′s′ l′

+µ0m
i (D)µ0m

i′ (D)Qm0
kl (A)µm0

k′ (A)VR
ir VR

i′r′VR′
kslV

R′
k′s′ ]α

T
rsαT

r′s′ ,
(44)

with explicit distance and orientation dependences obtained on inserting the respective
geometric tensors from Equations (18) and (23). To obtain the isotropic rate, the averages
over D and T may be performed using the results Equations (27) and (29), respectively. For
A, however, an average over a third-rank Cartesian tensor is needed. This is given by

< µ0m
i (ξ)Qm0

jk (ξ) >=
1
6

εijkελµνµ0m
λ (ξ)Qm0

µν (ξ), (45)

which vanishes because the electric quadrupole moment is symmetric in the indices µ and
ν, while the Levi-Civita tensor is anti-symmetric in this pair. Thus

< Γ(µµ)D−(µQ+Qµ)A
>= 0. (46)

Based on symmetry considerations, the isotropic rate also vanishes when the charac-
teristics of D and A are switched relative to the previous case, that is,

< Γ(µQ+Qµ)D−(µµ)A
>= 0. (47)

Using index symmetry of the electric quadrupole moment and index anti-symmetry
of the alternating tensor, it is easily seen that the following isotropic electric quadrupole-
dependent contributions to the rate are also zero,

< Γ(µQ+Qµ)D−(QQ)A
>=< Γ(QQ)D−(µQ+Qµ)A

>=< Γ(µQ+Qµ)D−(µQ+Qµ)A
>= 0. (48)

The last of these three written in Equation (48) is the analog of the discriminatory
rates Equations (33) and (34) evaluated in the previous section involving the interference
of electric and magnetic dipole coupling terms. While the electric dipole–quadrupole
counterpart does not survive orientational averaging, the rate for fixed mutual orientation
of the three bodies does depend on the chirality of D and A. From the matrix element
Equation (24), the rate is

Γ(µQ+Qµ)D−(µQ+Qµ)A
=

− 2πρ f
h {µ

0m
i (D)Q0m

i′ j′ (D)[µm0
k (A)Qm0

k′ l′(A)VR′
ks VR′

k′s′ l′ + Qm0
kl (A)µm0

k′ (A)VR′
kslV

R′
k′s′ ]VR

ir VR
i′r′ j′

+Q0m
ij (D)µ0m

i′ (D)[Qm0
kl (A)µm0

k′ (A)VR′
kslV

R′
k′s′ + µm0

k (A)Qm0
k′ l′(A)VR′

ks VR′
k′s′ l′ ]VR

irjV
R
i′r′ ]}αT

rsαT
r′s′ .

(49)

The only surviving quadrupolar-dependent contributions to the isotropic rate are of
the type “(µµ)D − (QQ)A”, “(QQ)D − (µµ)A”, and the pure quadrupole coupling term
at each D and A center, “(QQ)D − (QQ)A”. These are now evaluated. For a pure electric
dipole donor and a pure electric quadrupole absorber, the oriented rate term from the
matrix element Equation (24) is

Γ(µµ)D−(QQ)A
=

2πρ f

h
µ0m

i (D)µm0
i′ (D)Qm0

kl (A)Qm0
k′ l′(A)αT

rsαT
r′s′V

R
ir VR

i′r′V
R′
kslV

R′
k′s′ l′ . (50)



Appl. Sci. 2021, 11, 1012 12 of 16

To derive the rate applicable to freely tumbling molecules, the rotational averages
Equations (27) and (29) are again used for D and T, respectively; for the product of electric
quadrupole moments of A, the following fourth-rank Cartesian tensor average is employed:

< Q0m
kl (A)Qm0

k′ l′(A) >=
1
10

(δkl′δk′ l + δkk′δll′)Q
0m
ρσ (A)Qm0

ρσ (A), (51)

on making use of the symmetric and traceless properties of the tensor Q0m
ij (ξ). Substituting

the results for the averages, contracting indices, and multiplying the geometric tensors
using relations Equations (18) and (23) yields the isotropic rate formula

< Γ(µµ)D−(QQ)A
>=

πρ f
450h

1
(4πε0)

4
1

R6R′8
|→µ

0m
(D)|2Q0m

ρσ (A)Qm0
ρσ (A)

×[αT
λλαT

µµ{−4[54− 243(R̂ · R̂′)2
]− 108[1− 3(R̂ · R̂′)2

]k2R′2 − 360[1− 3(R̂ · R̂′)2
]k2R2

+72[1− 3(R̂ · R̂′)2
]k4R4 − [21 + 9(R̂ · R̂′)2

]k4R′4 + 18[1− 45(R̂ · R̂′)2
]k4R2R′2

+3[1− 3(R̂ · R̂′)2
]k6R′6 − 3[9 + 5(R̂ · R̂′)2

]k6R2R′4 − 18[1 + 3(R̂ · R̂′)2
]k6R4R′2

+[13− 15(R̂ · R̂′)2
]k8R2R′6 − 3[3− (R̂ · R̂′)2

]k8R4R′4 + 3[1 + (R̂ · R̂′)2
]k10R4R′6}

+αT
λµαT

λµ{3528 + 324(R̂ · R̂′)2
+ [684 + 108(R̂ · R̂′)2

]k2R′2 + 360[3 + (R̂ · R̂′)2
]k2R2

+72[17− (R̂ · R̂′)2
]k4R4 + [89− 3(R̂ · R̂′)2

]k4R′4 + [198 + 270(R̂ · R̂′)2
]k4R2R′2

+[41− 3(R̂ · R̂′)2
]k6R′6 + [23− 5(R̂ · R̂′)2

]k6R2R′4 + 18[13− (R̂ · R̂′)2
]k6R4R′2

+5[3− (R̂ · R̂′)2
]k8R2R′6 + 29[1 + (R̂ · R̂′)2

]k8R4R′4 + [1 + (R̂ · R̂′)2
]k10R4R′6}],

(52)

which holds for all R and R′ outside the charge overlap region, with k = km0. A true
near-zone limit of Equation (52) arises since static coupling is possible between electric
multipoles. Retaining the pertinent wave vector independent terms, the isotropic rate valid
at short separations between particles is

< Γ(µµ)D−(QQ)A
>NZ ∼

πρ f
450h

1
(4πε0)

4
1

R6R′8
|→µ

0m
(D)|2Q0m

ρσ (A)Qm0
ρσ (A)

×{−4αT
λλαT

µµ[54− 243(R̂ · R̂′)2
] + αT

λµαT
λµ[3528 + 324(R̂ · R̂′)2

]},
(53)

which exhibits R−6 behavior indicative of near-zone dipole–dipole transfer between D and
T, and R′−8 near-zone dipole–quadrupole exchange between T and A. At the other distance
extreme, approximating kR and kR′ to be much greater than unity gives rise to the far-zone
asymptote

< Γ(µµ)D−(QQ)A
>FZ ∼

πρ f

450h
1

(4πε0)
4

k10

R2R′2
|→µ

0m
(D)|2Q0m

ρσ (A)Qm0
ρσ (A){3αT

λλαT
µµ + αT

λµαT
λµ}[1 + (R̂ · R̂′)2

], (54)

which displays characteristic inverse square dependences on R and R′. It should be noted
that the oriented and isotropic rates for the case “(QQ)D − (µµ)A” may be obtained from
Equations (50) and (52) on interchanging R and R′, and R̂ and R̂′.

The final surviving isotropic-mediated rate involving the electric quadrupole moment
to be calculated is the term that is dependent upon the pure quadrupole moment of D and
the pure quadrupole of A. From the matrix element Equation (24), the rate for the three
bodies in fixed relative orientation is

< Γ(QQ)D−(QQ)A
>=

2πρ f

h
Q0m

ij (D)Qm0
i′ j′ (D)Q0m

kl (A)Qm0
k′ l′(A)αT

rsαT
r′s′V

R
irjV

R
i′r′ j′V

R′
kslV

R′
k′s′ l′ . (55)

Using Equation (29) for the average over the electric dipole polarizability of T, and the
result Equation (51) for both D and A, contracting the tensors and multiplying the product
of four VR/R′

ijk factors from Equation (23), of which twelve such terms ensue, produces the
isotropic rate formula
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< Γ(QQ)D−(QQ)A
>=

πρ f
1500h

1
(4πε0)

4
1

R8R′8
Q0m

νπ (D)Qm0
νπ (D)Q0m

ρσ (A)Qm0
ρσ (A)

×{αT
λλαT

µµ[−1 + 3(R̂ · R̂′)2
](5184 + 2592k2(R2 + R′2) + 1080k4(R4 + R′4) + 1296k4R2R′2

−72k6(R6 + R′6) + 540k6R2R′2(R2 + R′2) + 225k8R4R′4 − 36k8R2R′2(R4 + R′4)
−15k10R4R′4(R2 + R′2) + k12R6R′6)
+αT

λµαT
λµ(2592[41 + 2(R̂ · R̂′)2

] + 2592[8 + (R̂ · R̂′)2
]k2(R2 + R′2) + 1080[3 + (R̂ · R̂′)2

]k4(R4 + R′4)

+1296[3 + (R̂ · R̂′)2
]k4R2R′2 + 72[17− (R̂ · R̂′)2

]k6(R6 + R′6) + 540[1 + (R̂ · R̂′)2
]k6R2R′2(R2 + R′2)

+45[1 + 5(R̂ · R̂′)2
]k8R4R′4 + 36[7− (R̂ · R̂′)2

]k8R2R′2(R4 + R′4) + 15[3− (R̂ · R̂′)2
]k10R4R′4(R2 + R′2)

+[13 + (R̂ · R̂′)2
]k12R6R′6)},

(56)

which holds beyond the overlap of wave functions associated with D, T, and A.
Asymptotic limits of the general result Equation (56) readily follow from making the

approximations appropriate to the near and far zones. At short R and R′,

< Γ(QQ)D−(QQ)A
>NZ ∼

5184πρ f
1500h

1
(4πε0)

4
1

R8R′8
Q0m

νπ (D)Qm0
νπ (D)Q0m

ρσ (A)Qm0
ρσ (A)

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + 1

2 [41 + 2(R̂ · R̂′)2
]αT

λµαT
λµ},

(57)

exhibiting inverse eighth power dependence on each of the inter-particle separation dis-
tances. In the far zone, on the other hand, radiative transfer leads to inverse square
distance dependences,

< Γ(QQ)D−(QQ)A
>FZ ∼

πρ f
1500h

1
(4πε0)

4
k12

R2R′2
Q0m

νπ (D)Qm0
νπ (D)Q0m

ρσ (A)Qm0
ρσ (A)

×{[−1 + 3(R̂ · R̂′)2
]αT

λλαT
µµ + [13 + (R̂ · R̂′)2

]αT
λµαT

λµ}.
(58)

5. Summary

The problem of RET mediated by a passive, polarizable third body has been tackled
within the framework of molecular QED theory. Previous work [29–32], which was limited
to the electric dipole approximation being made for the emitter and receiver particles, has
been extended to include the effects of magnetic dipole and electric quadrupole interaction
terms. A host of pure and mixed multipole moment terms now contribute to the rate,
including transfer relayed between two chiral molecules, of particular interest in the present
study. To account for the mediation of energy between two optically active molecules,
it was necessary to include magnetic dipole and electric quadrupole coupling terms to
describe the donor and acceptor. While these multipole moments are smaller than the
electric dipole by a factor of the fine structure constant, limiting the treatment of the process
to only the leading electric dipole coupling term, as in earlier work [29–32], does not result
in any discriminatory effects occurring.

A single virtual photon propagating between D and T, and another such particle
traversing between T and A, are responsible for the conveyance of energy. The total
matrix element was evaluated using diagrammatic time-dependent perturbation theory. To
reduce the number of possible time-ordered sequences of emission and absorption events
attributable to differing multipole moments, an effective two-photon coupling Hamiltonian
that was proportional to the polarizability of T and depended quadratically on the electric
displacement field was employed for the mediator molecule. Hence, only six Feynman-like
diagrams needed to be evaluated and summed over at the third order of perturbation
theory. The transfer rate, applicable to both oriented and isotropic systems was computed
via the Fermi golden rule, which applies when the coupling between radiation and matter,
and between particles, is weak, and for durations longer than the inverse frequency of the
decay transition but less than the inverse rate.

If the donor or acceptor is either pure electric or pure magnetic dipolar, and the other
is mixed electric–magnetic dipolar, and vice versa, the rate vanishes on orientational aver-
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aging, with all other dipolar combinations surviving tumble averaging. The contribution
proportional to the mixed electric–magnetic dipole moments of A and D is discriminatory,
depending on the handedness of the emitter and absorber species through the pseudoscalar

[
→
µ

0m
(ξ) ·→m

m0
(ξ)], ξ = D, A, with the rate changing sign when one enantiomer is replaced

by its antipode and increasing in direct proportion to this quantity. Interestingly, the rate
was found to be a maximum if the two chiral molecules and the mediator are collinear,
and is zero if one enantiomer is perpendicular to the other. A possible system of interest
is 3-methylcyclopentanone, which has been employed in studying the enhancement of
the discriminatory dispersion interaction in the presence of a chiral surface [59]. Of the
contributions to the rate proportional to the pure or mixed combinations of electric dipole
and quadrupole moments of D and A, only pure dipole or pure quadrupole moments at
either D or A survive free orientational averaging, all other possibilities producing a zero
isotropic rate. For those permutations of moments that led to non-vanishing orientationally
averaged rate formulae, near- and far-zone limiting forms were calculated. In each case,
the expected short-range radiationless, Förster-type of transfer manifested, corresponding
to static coupling between electric–electric and magnetic–magnetic multipoles. At very
long range, the rates exhibited inverse square behavior on each inter-particle displace-
ment, indicative of radiative transfer. Both mechanisms are well known from pair transfer
theory [4].

In the microscopic model developed, energy is transferred directly between the trans-
mitter and receiver, or indirectly through the mediator, which in the spatial configuration
chosen, relays energy between the two sites. Other possible transfer pathways involving
T coupling only to D or only to A will be considered in future to assess the importance
of the bridge-assisted mechanism. More challenging is to add one extra mediator, to see
the effect on the rate from two inert polarizable particles relative to direct and three-body
contributions to transfer between chiral donor and acceptor. The present and future studies
will enable connections to be made with macroscopic treatments of the surroundings,
which often involve the environment being taken to have a uniform dielectric constant,
though little work has been done examining chiroptical effects. From the microscopic point
of view, the addition and rigorous accounting of more and more mediators will ultimately
lead to results applicable to a bulk medium with the Clausius–Mossotti equation linking
the macroscopic polarizability of the bath to its refractive index and dispersive properties.
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