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Abstract: Solar energy is one of the most strategic energy sources for the world’s economic devel-
opment. This has caused the number of solar photovoltaic plants to increase around the world;
consequently, they are installed in places where their access and manual inspection are arduous
and risky tasks. Recently, the inspection of photovoltaic plants has been conducted with the use
of unmanned aerial vehicles (UAV). Although the inspection with UAVs can be completed with
a drone operator, where the UAV flight path is purely manual or utilizes a previously generated
flight path through a ground control station (GCS). However, the path generated in the GCS has
many restrictions that the operator must supply. Due to these restrictions, we present a novel way to
develop a flight path automatically with coverage path planning (CPP) methods. Using a DL server
to segment the region of interest (RoI) within each of the predefined PV plant images, three CPP
methods were also considered and their performances were assessed with metrics. The UAV energy
consumption performance in each of the CPP methods was assessed using two different UAVs and
standard metrics. Six experiments were performed by varying the CPP width, and the consumption
metrics were recorded in each experiment. According to the results, the most effective and efficient
methods are the exact cellular decomposition boustrophedon and grid-based wavefront coverage,
depending on the CPP width and the area of the PV plant. Finally, a relationship was established
between the size of the photovoltaic plant area and the best UAV to perform the inspection with
the appropriate CPP width. This could be an important result for low-cost inspection with UAVs,
without high-resolution cameras on the UAV board, and in small plants.

Keywords: deep learning (DL); unmanned aerial vehicle (UAV); photovoltaic (PV) plants; semantic
segmentation; coverage path planning (CPP)

1. Introduction

According to REN21, over the past two years, global photovoltaic (PV) plants capaci-
ties and annual additions have grown and expanded rapidly. For instance, 621 GW were
installed in the year 2019 and 760 GW in the year 2020 [1], despite the reduction in electric-
ity consumption and shifted daily demand patterns due to the COVID-19 pandemic [2].
Additionally, it has become one of the most profitable options and is an energy resource
that has recently decreased in cost. As a result, solar electricity generation has grown in
residential, commercial, and utility-scale projects [3]. The future of PV generation will
focus on optimizing hybrid systems [4] and improving the performance of each element of
the system, as well as reducing their cost due to large-scale production [5]. Furthermore,
the sector trend has been asking for low prices, and the competitive market has encouraged
investment in solar PV technologies across the entire value chain, particularly in solar cells
and modules, to improve efficiencies and reduce the levelized cost of energy (LCOE) [1].
As a result, PV power plants could grow almost sixfold over the next ten years, reaching a
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cumulative capacity of 2840 GW globally by 2030 and rising to 8519 GW by 2050, according
to [6].

Thus, it is established that the number of PV plants and generated power have in-
creased around the world. This implies specific technical challenges in their maintenance
and operation (O and M) [7]. Some of these threats affect their production, which increases
cost, and decreases profitability. The most common threats are the failures in the inverters
and PV modules [8]. Through dirty equipment, the state of the environment, or manufac-
turing defects in the PV modules, PV plant energy generation can be curtailed by 31% in
the worst cases [9–11].

One must consider that PV plants are commonly installed on roofs, rooftops, canopies,
or facades for urban environments. Likewise, solar farms utilize rural environments, such
as deserts, plains, and hills [7,12,13]. Depending on the location of the PV plant, the manual
inspection tasks could be exhausting and take up to 8 h/MW, if the number of modules is
considerable. The amount of inspection time increases for solar PV plants on rooftops or
canopies, by virtue of aspects of their installation [14]. In addition, inspections to detect
threats in the panels must be conducted by trained personnel. In some cases, problems
occur in elevated installations, for which special training and certification is required. These
jobs could put people and facilities at risk [15].

In recent decades, unmanned aerial vehicles (UAVs) have been increasingly used
in inspection and patrol tasks [16–18]. UAV-based applications for PV plant inspections
have many advantages in comparison with the manual inspection methods. The main
advantages are flexibility, lower cost, larger area coverage, faster detection, higher precision,
and the capacity to perform a superior and automatic inspections [11,17–21].

There are many approaches to performing an inspection with UAVs in PV modules.
One of them used UAVs with a thermal imaging camera to take photos in the infrared spec-
trum to evaluate the UAVs parameters, such as height, speed, viewing angle, sun reflection,
irradiance and temperature, all of which are necessary to perform defect inspection [22]. In
a second approach, UAVs were implemented to inspect different solar PV plants, wherein
analysis of the correlation between altitude and the pixel resolution was used to detect
PV panel defects and features like shape, size, location, and color, among others, of a
particular defect were also detected [7,23–26]. In a third approach, the authors proposed PV
plant fault inspection with UAVs using image mosaics combined with orthophotography
techniques to create a digital map; image mosaics were combined with multiple visible
and/or infrared range images into a single mosaic image covering a large area [14,27,28].
Whereas the orthophotography technique is a vertical photograph that shows images of
objects in true planimetric position [29]. Thus, these two techniques were integrated with
previous works to achieve an advanced tool that allows monitoring and taking actions
in the operation and maintenance (O and M) of PV plants [7]. In short, this tool has
been used to detect defects and dust or dirt in PV modules [28]. Apart from this, some
approaches have been developed for the detection of defects in PV modules using artificial
vision techniques, machine learning, deep learning, and the integration therewith of the
previous approaches [7,24,30–33]. Additionally, these approaches to planning the UAV’s
flight path were configured from a ground control station (GCS) program. Irrespective of
these approaches, an important aspect is that the UAV should automatically follow the
path to cover important points in PV plants. Many research efforts have been made to
calculate the paths of and solve the waypoint planning problem for UAV inspection of
solar PV plant applications [34–37], but none of them propose the coverage path planning
(CPP) as a method to complete this task.

The CPP, given a region of interest (RoI) in a 2D environment, consists of calculating
the path that passes through each one of the points that make up the desired environment
and must be found considering the limitations of movement [38,39]. CPP is classified as
a classical NP-hard problem in the field of computational complexity. These problems
were initially analyzed for indoor environments with mobile robots. However, with the
development of GPS, CPPs began to be used for missions with UAVs. Due to the envi-
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ronment in which the task is performed and the obstacles present, precise localization in
the environment is an arduous task, which makes the CPP a difficult problem [40]. Addi-
tionally, it is classified as a motion planning subtopic in robotics, and has two approaches,
heuristic and complete. In heuristic approaches, the robots follow a set of rules defining
their behavior, but do not present a guarantee for successful full coverage. These guarantee
using the cellular decomposition of the area, which involves space discretization into cells
to simplify the coverage in each sub-region, unlike complete methods, which cannot afford
such processing. Another important issue mentioned by the authors of reference [39] is
the flight time to fully cover the area, which can be reduced using multiple robots and
by reducing the number of turning maneuvers. Finally, the available RoI information is
important; several approaches accept previous knowledge of the robot’s respecting the
search RoI (offline), while sensor-based approaches collect such information in real-time
along the coverage (online) [41].

In the literature, CPP approaches are needed in several application areas, such as floor
cleaning [42], agriculture [43,44], wildfire tracking [45], bush trimming [46], power line
inspection [47], photogrammetry [39], visual inspection [48], and many more. Additionally,
many surveys regarding CPP present several approaches and techniques for performing
missions with, mostly, land vehicles [41,49,50]. The research interest in aerial robots (indoor
and outdoor) has surely motivated the research of CPP [51]. This can be implemented
in many UAVs platforms, such as fixed-wing, rotary-wing, and hybrid UAV (VTOL) [39].
Rotary-wing UAVs are inexpensive and have good maneuverability, and their small pay-
load capacity limits the weight of on-board sensors and flight time. Hence, they are more
suitable for CPP missions on a small scale. Additionally, the increasing usage of UAVs
in applications with complicated missions has led to CPP methods being a very active
research area for single and multiple UAVs, especially recently [39,52–54], As evidenced in
a previous work [43], the classic taxonomy of coverage paths in UAVs are classified into
no decomposition, exact cellular decomposition, and approximate cellular decomposition.
The first performs the coverage with a single UAV, for which no decomposition technique
is required, because the shape of the RoI has a non-complex geometry. The second divides
the free space into simple, non-overlapping regions called cells. The union of all cells
fills the free space completely. The cells in which there are no obstacles are easy to cover
and can be covered by the robot with simple movements. The third is based on grids.
They use a representation of the environment decomposed into a collection of uniformly
squared cells [55], considering rectangular, concave, and convex polygons for RoIs. In
addition to this, CPP performances were assessed with applied metrics according to [39].
The elemental approach most used to solve offline CPP problem sis the area decomposition
into non-overlapping sub-regions [56], to determine the appropriate visiting sequence of
each sub-region and to cover each decomposed region in a back-and-forth movement to
secure a complete coverage path. As a result, the methods for obtaining complete coverage
of an RoI are the exact and approximate cellular decomposition methods [57–59].

On the other hand, image processing helps to obtain a map of the robot or RoI. Robots,
such as UAVs, need to know the RoI before commencing CPP [60], which represents where
the PV plants are and can be determined in a process called boundary extraction [61,62].
Then, the deep learning (DL) image segmentation technique, also known as semantic
segmentation [63], is achieved by applying deep convolutional neural networks (CNN),
such as the U-Net network model [64,65] or the FCN model [66], which dramatically
enhance the segmentation results. Once the segmentation is done and the mask is obtained
or the RoI is identified, the GCS calculates the CPP that guides the UAV in the automatic
plant inspection, during which it captures images of PV plants [67]. Most of the failures
occur at the centimeter or millimeter level, and that poses a challenge for the inexpensive
sensors available today [68]. Tests of coverage paths it can be conducted with drones in
a real or simulated environment. The most viable option for this stage of the work is
simulation, as verified by other research [69–72]. Simulation has been recognized as an
important research tool; initially, simulation was an academic research tool, but with the
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advancement of computers, simulation has reached new levels. It is a remarkable tool that
guarantees support in design, planning, analysis, and making decisions in different areas
of research and development. Of course, robotics, as modern technology, has not been an
exception [73,74].

This work is focused on implementing the best strategy of coverage path planning
(CPP) over PV plants with UAVs using semantic segmentation in a deep learning server to
obtain the RoI. The experimental results were obtained by simulating the CPP methods
and using UAVs, such as the 3DR Iris and Typhoon aerial robots.

The key contributions of this work are as follows:

• This work proposes CPPs as a novel strategy for conducting an inspection flight over
a PV plant with an UAV, since there are no previous reports of such work.

• This work used three CPP methods over three PV plants, which were modeled in a
simulation environment to evaluate metrics and parameters. As a result, a relationship
was found between the CPP width and energy consumption, and according to that,
the best CPP method to implement.

• This work proposes a hybrid CPP method that uses image processing and a DL server
to find the RoI quickly and accurately, becoming a semi-automatic process.

• A free simulation tool is provided, with an interface to simulate the inspection of PV
plants with UAVs.

This paper is structured as follows. In Section 2, necessary definitions and the tech-
niques used to obtain the results are described. In Section 3, the three CPP methods
implemented are compared to show relationships among the CPP width, number of
maneuvers, and energy consumption, with the aim of finding the best CPP method to
implement. Finally, in Section 4, some conclusions are given.

2. Materials and Methods

In this work, three PV power plants were selected that met the image requirements of
no light distortions, non-complex geometry, and grouped panels. These plants are in differ-
ent parts of the world. The first PV plant has an area of 35, 975 square meters, located in
Brazil (−22.119948323621525, −51.44666423682603), known as Usina Solar Unioeste 1 [75].
The second PV plant has an area of 25, 056 square meters, located in Iran (34.0504329771808,
49.796635265177294), known as Arak power plant [37]. The third plant is in the United
States (38.55989816199527, −121.42374978032115); the plant has 1344 square meters of area,
and it is part of a PV plant located on the roof of the California State University Sacramento
Library (CSUSL) [76].

These plants were subjected to a series of processing stages, as shown in Figure 1.
The RoIs were obtained from Google Maps satellite images with a predefined altitude,
and limits, from which the image (input image) of the desired PV system was obtained
as the first stage, shown in Figure 1. In the second stage, the image was entered into a DL
server that was developed in this work, taking into account the previous work [65]. The DL
server was launched with TensorFlow [77] and Flask [78]. This stage obtains a mask (image
segmentation) of the PV plant, as shown in Figure 1. In the third stage it was necessary to
apply a series of OpenCV functions (post-processing), as referenced in Algorithm A1 in the
Appendix A, to adjust the mask (output mask) to the PV plant area, as seen in Figure 1.
Then, the output mask or RoI was introduced in the GUI interface, where the CPP method
was selected to internally execute. Later, the path GPS positions (CPP computed) were sent
to the UAV through MAVlink commands [79,80]. The UAV executed these commands in
the Gazebo platform (CPP simulation) and, at the same time, the simulation data was fed
back the GUI interface. Simultaneously all GPS points reached by the UAV were drawn in
the GCS platform (CPP). In this stage, the trajectory was validated. Each stage is described
in greater detail in the following sections.

https://goo.gl/maps/7K8tjx3Zng6JCLCc6
https://goo.gl/maps/6t8KERvmZUSrz1tQ6
https://goo.gl/maps/6t8KERvmZUSrz1tQ6
https://goo.gl/maps/WpzfriJmHwtjwqwa7
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Figure 1. Stages for CPP with semantic segmentation for UAV in PV plants.

2.1. Deep Learning (DL) Server for Segmentation

A deep learning (DL) server for segmentation was necessary to extract the RoIs
from the Google Maps images. Additionally, the server was used to achieve this task
automatically with the process called semantic segmentation, wherein each pixel is labeled
with the class of its enclosing object [65,66]. In previous work, a convolutional neural
network was proposed, wherein a public database was used; this data was prepared,
resized for training, and assessed with two network structures. The U-net network had the
best performance, in terms of metrics, in the semantic segmentation task [65]. Then a DL
server was employed to perform image segmentation and obtain the RoI [81].

2.2. Post Processing

In this step, a set of OpenCV functions were applied with Python 3.7. For example,
in the first function, morphological operators like “Erode” and “Dilate” were applied to
the images, then the “FindCountours” function was applied to help extract their contours.
The contour can be defined as a curve that joins all the continuous points at the boundary
of the PV installation. So, the “ContourArea” function was then used to find the area of
the previous contour. Following this pattern, the area was compared with 400 others to
filter the bigger area and eliminate the little areas belonging to false positives. Then the
“ApproxPolyDP” function was used to approximate a shape of the contour to another shape
with fewer vertices. Subsequently, the “DrawContour” function was used to draw the
resulting contour [82,83]. Finally, the “Erode” morphological operators were used again,
to expand the known area and compensate for the limitations of the mask with regard
to the CPP method and some faulty occurrences caused by the false positives of the DL
server. The pseudocode of the openCV functions used is shown in Algorithm A1 in the
Appendix A.

2.3. 2D Coverage Path Planning Method in the GUI Interface

In previous studies of CPPs, there were many existing methods from which to select
to solve the CPP problem. In this work, three methods based on CPP were selected,
considering the following criteria: time of execution, ease of implementation, and more,
which were used to cover the RoI. The methods were selected according to [38,39].

The boustrophedon exact cellular decomposition (BECD), which was proposed by [84],
was the first selected. The CPP method is delineated in Figure 2.
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The second was grid-based spanning tree coverage (GBSTC), which works with
cellular decomposition, first proposed by [85], and depicted in Figure 3.

Figure 2. The RoI and the path generated from the initial point (I) to the final point (F) by BECD.

The third method selected for this project was grid-based wavefront coverage (GBWC),
first proposed by [86]. The method is illustrated in Figure 4. Each of these CPP methods is
explained in more detail in the following sections.

(a). The boustrophedon exact cellular decomposition (BECD) Method: This method
takes the robot’s free space and obstacles and splits them into cells. These cells are covered
by the robot using a back-and-forth pattern from the initial point to the final point, using
maneuvers of 90 degrees to change direction from south to north or vice versa, as shown in
Figure 2. This method improves the trapezoid decomposition technique, as it exploits the
structure of the polygon to determine the start and end of an obstacle, and thus is able to
divide the free space into a few cells that do not require a redundant step, and it permits
the coverage of curved areas [84].

(b). Grid-Based Spanning Tree Coverage (GBSTC): This method is based on approx-
imate cell decomposition and differs from the previous method in that the following
postulates were considered. First, the method divides the space into grids of side L. Second,
the robot only moves in perpendicular directions to the sides of the grid. Third, every
grid is subdivided into four grids of side L/2. Finally, GBSTC discards space that is partly
occupied by obstacles. Consequently, considering these previous postulates, the method
consists of several stages: in the first stage, a graphic structure is defined, S(N, E), where
N is nodes, defined as the central point of each grid, and E is edges, defined as the line
segments connecting the centers of adjoining grids, as shown in Figure 3a. In the second
stage, the method builds a spanning tree for S, and employs this tree to plan a cover path
as follows. Starting in grid I with a sub-grid of side L/2, the robot begins by travelling
between adjoining sub-grids along a path that moves around the spanning tree at a con-
stant distance and in a counterclockwise direction, finishing when the initial sub-grid, I, is
found again, which means it is also in the final point, F [85]. An example of this method is
illustrated in Figure 3b. The approximation depends on the side length, L, of the grid.
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Figure 3. (a) Approximate cell decomposition in grids, and sub grids. (b), coverage path generated
with the GBSTC method.

(c). grid-based wavefront coverage (GBWC): The first grid-based method proposed
for CPP, GBWC is an offline method that uses a grid representation, in addition to applying
a full CPP method. The method requires an initial grid, I, and a final grid, F. A distance
transformation that propagates a wavefront from the final to the initial point is used to
assign a specific number to each item on the grid. That is, the method first assigns a zero
to the final item, and then a one to all its surrounding grids. Then all unmarked grids
adjoining those marked one are numbered two. The process is incrementally repeated until
the wavefront reaches the initial grid [86], as illustrated in Figure 4a.

Figure 4. (a) Wavefront distance transforms for the selection of the initial position (I) and final
position (F). (b) Coverage path generated using the wavefront distance transforms with the selection
of the initial position (I).

Once the distance transformation is determined, a coverage path can be found by
starting at the initial grid, I, and selecting the adjoining grid with the highest number that
has not been explored. If two or more are unexplored, and adjoining grids share the same
number, one of them is randomly selected, as shown in Figure 4b.

2.3.1. Metrics

The metrics evaluate the performance of the three CPP methods. Such assessment can
be performed by considering five commonly used metrics to evaluate the effectiveness of
the proposed CPP methods both theoretically and in simulation (dynamically) [7,41,43,62].
These five metrics are covered path length, flight time, energy consumption, redundancy
of points traveled, and percentage of coverage of the total area. Each of these metrics is
described below.
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The Lct metric (covered path length) is the length of the entire path covered by the
UAV from the initial to the final point. For a trajectory in a 2D plane composed of n points,
assuming the initial point as (x1, f (x1)) and the end point as (xn, f (xn)), the Lct can be
computed as shown in Equation (1):

Lct =
n−1

∑
i=1

√
(xi + 1− xi)2 + ( f (x1 + 1)− f (xi))2 (1)

where (xi, f (xi)), in which i = 1, 2, . . . , n, representing all the n points of the UAV flight
path in 2D coordinates. More details can be found in [87].

The flight time metric of the PX4 SITL Gazebo model is the time required to travel the
total flight path (takeoff, path travel, and landing) with a dynamic speed that considers
the inertia and the variation in speed due to UAV turns angles. These data are collected
through sensors in the Gazebo plugins [88].

The redundancy of points traveled, R%, corresponds to the number of points that are
visited more than once from the total number of points that the path contains, Equation (2).

R% =
Ppc

Pvmo
(2)

where Ppc, and Pvmo correspond to the number of points the trajectory contains, and the
number of points visited more than once.

The percentage of coverage of the total area, C%, measures the number of effectively
covered points within the total number thereof by the points the area to be covered contains,
given by Equation (3).

C% =
Pv

PT
(3)

where Pv, and PT correspond, respectively, to the total number of points visited and the
total number of points in the area.

Moreover, the number of maneuvers metric, which is the number of turning ma-
neuvers the UAV performs on a path, is often used as the main performance metric in
coverage [89,90].

The energy consumption metric is computed from the voltage and current data from
the power module of the PX4 SITL model [91]. Its value depends on parameters, such
as the CPP width between lines and the speed and the height of the UAV at the time
of implementing the CPP, which were configured in the interface and were simulated
in Gazebo.

To validate the results of the methods described above, the BECD, GBSTC, and GBWC
methods were implemented in two UAVs, simulated in Gazebo, and their performances
were assessed by the metrics presented above [39]. The next section describes the results
and compares the models in detail.

2.4. Simulation and Validation Platform

Based on [92], the Gazebo platform was selected to execute the simulation experiments,
as it has extensive documentation on its webpage. In addition, it is the most mentioned and
used simulation platform in previous work [73,74] that implemented path planning or CPP,
used UAV sensors, or deployed several UAVs [92]. Gazebo also allows the modeling of
commercial UAVs using the PX4 autopilot software [91], as shown in Figure 5. In addition,
this figure shows one of the experiments conducted with the Typhoon UAV, flown over
the CSUSL plant. The UAV sonar sensor, represented by blue lines, is also shown, as is the
UAV camera, in the box at the upper right.
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Figure 5. UAV over A PV plant, simulated in Gazebo.

The integration of Gazebo [92], PX4 [91], Python, and the CPP methods was im-
plemented using ROS (Robot Operating System) as middleware [93]. This tool allows
communication among nodes. The nodes are processes, and each node has a task asso-
ciated with it, such as sending a Mavlink command to control the UAV trajectory and
permitting reading messages from the UAV to discern its status in flight, using a simulation
mode referred to as software in the loop (SITL). This simulator provides the ability to run
different vehicles, such as a plane, copter, or rover, without a need for any microcontrollers
or hardware [94]. In addition, two PX4 autopilot rotary wing UAVs, the 3DR Iris and
Typhoon UAV, were chosen because they have good maneuverability and are more suitable
for small-scale CPP missions. Furthermore, these UAVs have been widely used in other
research [67,70,95].

The GCS software (QGroundControl) was selected to validate the CPP calculated for
each UAV and PV plant obtained, because it is the most compatible tool with the PX4
autopilot. It is also recommended on the PX4 webpage. On other hand, another compatible
tool, namely a GUI, was designed using Qt to modify and vary the parameters and to
convert the way points from RoI pixels to geo-referenced points [96].

3. Results and Discussion

The procedure described above—DL-server, post-processing, CPP, and metrics evalu-
ation—are represented in Figure 1, was applied to three different PV plant images. The
results obtained are described in the following sections.

3.1. Results with Deep Server, and OpenCV Functions

OpenCV functions and a DL server were combined to accurately extract the mask and
to trade off the DL server results of the PV plant area. Then, the CPP methods used the
mask as a region of interest (RoI).
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The stages to obtain the results of the RoI in the three images are shown in Figures 6–8.
In the first stage, a high-resolution image from Google Maps, of predefined height and
width, was obtained, and used as an input image in the DL server, depicted in Figure 6a.
In the second stage, the output image of the DL server was the mask, shown in Figure 6b.
In the third stage, the opening function was used in the mask, Figure 6c. In the fourth stage,
the RoI was obtained using the draw contour method, as seen in Figure 6d. Finally, the RoI
was blended with the input image with the aim of comparing the results in Figure 6e. The
results were satisfactory and can be adapted, depending on the environment.

Figure 6. Steps of boundary extraction by the DL server and OpenCV functions in the Unioeste 1 PV plant.

Figure 7. Steps of boundary extraction by DL server, and OpenCV functions in Arak PV plant.

Figure 8. Steps of boundary extraction by DL server, and OpenCV functions in CSUSL PV plant.

3.2. Results of the CPP Method

The CCP method results were obtained from six experiments that implemented the
five metrics previously described. Each experiment was conducted by selecting a PV plant
and a UAV, then choosing the CPP method and the width, speed, and height of the UAV
over the flight path. All of this was done in the implemented GUI interface. The six tests
were conducted by varying the CPP width parameter, while other parameters were not
varied, and the same experimental conditions were maintained throughout.

For these experiments two UAVs were selected, the Typhoon [97] and 3DR Iris [98],
as mentioned in Section 2.4. Three simulated PV plants were also chosen, as highlighted
in Section 2. The metrics referenced in Section 2.3.1 were assessed for each test. Battery
consumption was obtained from the GCS software with the SITL parameter activated. The
rest of the data was collected from the Gazebo simulations. The experiments are explained
in detail in the following sections, and some results are discussed.
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3.2.1. The Three First Experiments with a Typhoon UAV

The three first CPP experiments were conducted with a Typhoon UAV, varying the
CPP width between 0 and 20 m, depending on the PV plant being covered. For example,
in the first and second PV plants, Unioeste 1, and Arak, respectively, the CPP widths were
varied between 5 and 20 m. In the third CSUSL PV plant, the width was varied between
1 and 8 m, due to the method’s restrictions on running in small areas with a large width.
Then, in each of these experiments, the resulting metrics were annotated in Tables, as
shown in Appendix B.

The logged metrics were utilized to draw a clustered columns and lines chart for
experiments 1, 2 and 3, performed with the Typhoon UAV, to highlight the most important
information and to determine their correlations with each other. In these graphs the vertical
axis was scaled logarithmically and the horizontal axis was labeled with the type of CPP
method in use; in this way, it is possible to visualize the correlation of flight time, number
of maneuvers, and path length covered with the energy consumption by each CPP method,
as shown in Figures 9–11. In addition, the relationship between the redundancy metric and
the CPP width is identified, showing that this metric is higher in BECD, but does not affect
energy consumption, which is the primary metric of interest.

Figure 9. Performance metrics of Typhoon UAV on Unioeste PV plant (Experiment 1).

Figure 10. Performance metrics of Typhoon UAV on Arak PV plant (Experiment 2).
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Figure 11. Performance metrics of Typhoon UAV on CSUSL PV plant (Experiment 3).

The UAVs’ energy consumption, in conjunction with the CPP widths, were obtained
from the energy consumption results logs, then a new Table 1 was composed of three large
columns, corresponding to all the assessed PV plants, and each PV plant column is made
up of three CPPs with their respective values of consumed energy. The rows of the table
contain the CPP widths in increasing order from top to bottom, as shown in Table 1. Where
it can be observed, some parameters, such as the energy consumption with regard to CPP
width, were due to the size of the RoI. Additionally, it can be observed that the greater
the CPP width, the lower the energy consumption, as seen in the columns of Table 1. For
example, for the BECD CPP in Unioeste 1, with a width of 5 m, the percentage of energy
consumed was 98%, while, for a width of 20, the energy consumed was 29%. It is also
observed that the larger the PV plant, the UAV consumed all its energy in CPPs with
narrow widths; on the other hand, if the plant is small, with the same width, the UAV does
not have energy consumption problems. As can be seen in the row with a width of 8, where,
for the Unioeste 1 and Arak PV plants, a lot of energy was consumed, between 88% and
52%, unlike the CSUSL plant, in which where the energy consumed was very little, between
7% and 5%. In the experiments for which energy consumption, with respect to CPP width,
cannot be observed, (N/A) was used to annotate these results, which happened when the
CPP width was very large with respect to the RoI, as this does not allow the generation of
the route, or when the CPP width was very small with regard to the RoI causing a flight
path in which the UAV consumes all its energy. In short, the UAV used can be undersized
or oversized with respect to its intended PV plant.

The graphs in Figure 12 were constructed from Table 1 by quintic polynomial inter-
polations, which requires six data points to form a curve that passes through all given
data points [99], where the abscissa axis is the CPP width and the ordinate axis is energy
consumption. For the experiment conducted at the PV plant Unioeste 1, the graph in
Figure 12a shows that the BECD method had the lowest energy consumption when the
CPP width was in the range of 5 to 16 m, while GBSTC and GBWC had the lower energy
consumption when the CPP width was in the range of 16 to 20 m. For the experiment
tested at the Arak PV plant, the graph in Figure 12b shows that the BECD method had
the lowest energy consumption when the CPP width was in the range of 5 to 10 m, while
the GBSTC and GBWC had similar energy consumption when the CPP width was in the
range of 10 to 15 m, and GBWC had the lowest energy consumption when the CPP width
was in the range of 15 and 20 m. For tests conducted at the CSUSL PV plant, the graph in
Figure 12c shows that the BECD method had the lowest energy consumption when the
CPP width was in the range of 1 to 5.5 m, while the method GBSTC had the lowest energy
consumption when the CPP width was in the range of 5.5 to 8 m. All plants were recreated
in a simulation environment with their real dimensions.
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Table 1. Comparison of three CPP methods with regard to CPP width, for a simulated Typhoon UAV at three PV plants.

Energy Consumption

PV Plant Unioeste 1 (35,975 m2) Arak (25,056 m2) CSUSL (1344 m2)

Width (m)
CPP BECD GBSTC GBWC BECD GBSTC GBWC BECD GBSTC GBWC

1 N/A N/A N/A N/A N/A N/A 35% 47% 43%

2 N/A N/A N/A N/A N/A N/A 20% 23% 24%

3 N/A N/A N/A N/A N/A N/A 14% 15% 15%

4 N/A N/A N/A N/A N/A N/A 11% 12% 12%

5 98% 100% 100% 80% 94% 94% N/A N/A N/A

6 N/A N/A N/A N/A N/A N/A 9% 8% 8%

8 74% 85% 88% 52% 62% 63% 7% 6% 5%

10 56% 62% 63% 41.5% 45% 43% 5% N/A 5%

12 47% 54% 55% 36% 37% 35% N/A N/A N/A

15 38% 43% 45% 27% 29% 26% N/A N/A N/A

20 29% 32% 31% 21% 20% 19% N/A N/A N/A

Figure 12. Performance test of Typhoon UAV varying the CPP width.

3.2.2. The Last Three Experiments with 3DR Iris UAV

The last three CPP experiments were conducted with a 3DR Iris UAV, varying the
CPP width between 1 and 20 m, depending on the PV plant covered. For example, in the
first and second PV plants, Unioeste 1 and Arak, respectively, the CPP widths were varied
between 8 and 20 m; in the third PV plant, CSUSL, the width was varied between 1 and
8 m, due to the restrictions of the method requiring it be run in small areas with a large
width. Then, in each of these experiments, the resulting metrics were annotated in tables,
as shown in Appendix C.

As in the previous chapter, the recorded metrics were used to create bar and line
graphs for Experiments 4, 5 and 6, which are those conducted with the 3DR Iris UAV, to
highlight the most important information and to determine correlations among the metrics.
In these graphs, the vertical and horizontal axes were scaled logarithmically and labeled in
the same manner as above, with the aim of visualizing the correlations between flight time,
number of maneuvers and path length covered, with regard to energy consumption by
each CPP method, as shown in Figure 13–15 . Furthermore, the relationship between the
redundancy metric and CPP width is identified, showing behavior similar to the previous
UAV’s data.
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Figure 13. Performance metrics of 3DR Iris UAV on Unioeste PV plants (Experiment 4).

Figure 14. Performance metrics of 3DR Iris UAV on Arak PV plants (Experiment 5).

Figure 15. Performance metrics of 3DR Iris UAV on CSUSL PV plants (Experiment 6).

The UAV energy consumption and CPP widths were obtained from the energy con-
sumption results logs, then a new Table 2 was established, in which three large columns
correspond to the PV plants, where each PV plant column contains three CPPs with their
respective values of consumed energy, and the rows of the table contain the CPP widths in
an increasing direction from top to bottom. Here it can be observed, as in the last table, that
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some parameters’ values, such as the energy consumption by CPP width, are due to the
size of the RoI. It can also be observed that the greater the CPP width, the lower the energy
consumption, as seen in the columns of Table 2. For example, using BECD at Unioeste 1
with a width of 10 m, the percentage of energy consumed was 100%, while for a width
of 20 m, the energy consumed was 48%. It is also observed that, for larger PV plants, the
UAV consumed all its energy in a CPP with a small width, whereas, for small plants of
the same width, the UAV did not have energy waste problems. As can be seen in the row
corresponding to a CPP width of 8 m, at the Unioeste 1 and Arak plants a lot of energy
was consumed, between 100%, and 88%, unlike at the CSUSL plant, where the energy
consumed was very little, between 9%, and 8%. Similarly, in the previous experiments,
wherein the UAV’s energy was exhausted and the CPP width did not allow the generation
of the route or when the CPP width was large with regard to the RoI, the results were
scored with (N/A). To summarize, the UAV used is suitable for the last PV plant.

On the other hand, the 3DR Iris UAV, with its design, size, autonomy, and performance
is suitable when the PV plant to be inspected is small, of an approximate size of 5000 square
meters or less, such as the CSUSL PV plant, at 1344 square meters. Owing to such PV plant
sizes, any coverage method used in this work can be used to cover an area with a CPP
width of 1 meter, while minimizing the metrics of path length covered, flight time and
maneuverability, to obtain lower energy consumption, as shown in the Table 2. In addition,
this UAV did not perform well at large or medium-sized plants, since, to cover them using
the CPP method, the width that must be provided is greater than 8 m; therefore, though
the UAV’s inspection of the PV plant had no high-resolution cameras on board, they were
needed; without them, the inspection cannot be guaranteed.

Table 2. Comparison of three CPP methods with regard to CPP width, simulated in a 3DR Iris UAV on three PV plants.

Energy Consumption

PV Plant Unioeste 1 (35,975 m2) Arak (25,056 m2) CSUSL (1344 m2)

Width (m)
CPP BECD GBSTC GBWC BECD GBSTC GBWC BECD GBSTC GBWC

1 N/A N/A N/A N/A N/A N/A 52% 72% 72%

2 N/A N/A N/A N/A N/A N/A 30% 35% 38%

3 N/A N/A N/A N/A N/A N/A 21% 24% 22%

4 N/A N/A N/A N/A N/A N/A 17% 17% 15%

5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

6 N/A N/A N/A N/A N/A N/A 12% 12% 11%

8 100% 100% 100% 88% 98% 98% 9% 9% 8%

10 96% 100% 100% 70% 76% 71% 7% N/A 7%

12 80% 92% 95% 60% 63% 59% N/A N/A N/A

15 64% 73% 78% 45% 48% 43% N/A N/A N/A

17 60% 68% 67% N/A N/A N/A N/A N/A N/A

20 48% 55% 54% 26% 26% 25% N/A N/A N/A

The graphs in Figure 16 were constructed from Table 2 using quintic polynomial interpo-
lations, wherein the abscissa axis is CPP width and the ordinate axis is energy consumption.

Additionally, the graph in Figure 16a shows that the BECD method had the lowest
energy consumption; when the CPP width spanned the entire test range, the GBSTC and
GBWC methods showed a higher energy consumption at the Unioeste 1 PV plant. The
graph in Figure 16b shows that the BECD method had the lowest energy consumption
when the CPP width was in the range of 8 to 10 m, whereas BECD and GBWC had similar
energy consumption, leaving the GBWC method with the lowest consumption, when the



Appl. Sci. 2021, 11, 12093 16 of 27

CPP width was in the range of 10 to 15 m. On the other hand, the GBWC method had the
lowest energy consumption when the CPP width was in the range of 15 and 20 m; this test
was conducted at the Arak PV plant. Finally, the graph in Figure 16c shows that the BECD
method had the lowest energy consumption when the CPP width was in the range of 1 to
3 m, and the GBWC method had the lowest consumed energy when the CPP width was in
the range of 3 to 8 m. The test was performed at CSUSL’s PV plant.

Figure 16. Performance test of UAV 3DR Iris varying the CPP width.

Summary Tables of the results of the metrics for each of the tests with the Typhoon
UAV and 3DR Iris UAV are shown. All files, and logs for the experiments are available on
GitHub at [100].

3.3. Discussion

The proposed strategy allows a semi-automatic and faster solution for achieving
effective results when inspecting PV plants in geometrically simple areas, with certain
limitations, although some results obtained in this work are theoretical results, such as
from CPP width, for example; in practice, a camera of 14 megapixels is not adequate to
inspect a PV plant with a CPP width of 20 m [37,101].

The results obtained in this work indicate that the most adequate method is BECD for
a specific range of CPP widths, although it also shows adequate performance for various
CPP widths in some RoIs. The GBWC showed a good performance when using a CPP
width greater than 7 m in some RoIs, and all showed a relationship with the area to be
covered, as shown in Tables 1 and 2.

An analysis of the metrics used in this work, such as redundancy, R%, which does
not represent a significant factor when comparing these three CPP methods, showed that,
although the BECD was the method with the highest redundancy, it was also the method
with the lowest consumption of energy. On the other hand, the other metrics, such as
the Lct metric, flight time metric, and the number of maneuvers, are directly related to
energy consumption, as can be seen in Appendix B and C. It also helps to conclude that the
BECD method is more suitable for widths in a range between 0 and 7 m, due to the lower
number of maneuvers in these ranges, as other authors have also mentioned [102,103]. The
percentage of coverage of the total area, C%, always showed that coverage was total

The Lct metric, flight time and number of maneuvers were directly related to the con-
sumption of energy for all the experiments performed, as seen in Figures 9–11 and 13–15,
and as confirmed by other authors [89,90], in addition to helping to reinforce that the most
appropriate CPP for certain ranges is the BECD.

The BECD method is the best method among the three methods tested, in a specific
width range, from 0 to 7 m, for all the RoIs tested, which means that for a 10 Megapixel
camera with a horizontal field of view of 7 m, the CCP method’s good images, in terms of
what to inspect of a PV plant can be obtained [23].
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The implemented BECD method divided the RoI into small regions, and then, over
these regions, it implemented the round-trip coverage pattern, called boustrophedon [38,39].
This pattern allows spending less energy consumption with small widths, due to its low
number of maneuvers compared with the other methods, as shown in Appendix B and C.

On the other hand, the GBWC method allowed lower energy consumption, according
to the results of the simulations, in widths greater than a certain value, but depending on
RoI size; this method also allows an approximate coverage outside the RoI, a characteristic
that is very important in this type of application, and that, perhaps, is not very attractive
for terrestrial robotics, from which this type of method originates [86].

A RoI with many concave points is a great challenge for performance metrics, since
they increase with the distance of travel, and also increase the number of maneuvers
and therefore increase energy consumption, according to these results in the following
works [67,103], a more detailed analysis on these characteristics was made.

In future works, the methods (BECD, GBWC) could be implemented in UAVs with
characteristics similar to those used in this work; these characteristics are shown in
Tables A1 and A5. Additionally, with these UAVs, an inspection could be conducted in at
least one PV plant. Where one can think about the implementation of an expert system that
selects the coverage path between the two types of methods (BECD, GBWC), according to
the CPP width size, required for a camera with a certain resolution, and focal length.

Finally, the results obtained with the BECD, and GBWC methods differ from the results
obtained by other authors [34–37]. Who did not implement CPPs to solve these types of
problems; they used other types of solutions that have restrictions when inspecting PV
plants with UAVs. On the contrary, this work considers the CPPs, and obtained interesting
results for future real implementation. The proposed CPP will increase the possibility
of using inexpensive UAV systems for the inspection of PV systems on roofs of houses,
and commercial buildings, and also, of the use of CPP with small widths to complete
inspections at centimeter scales of the panel where the flaws can be better seen.

4. Conclusions

In this work, a method for implementing CPP in UAV for PV plant inspection was
presented. The method consisted of a series of steps, one of these was the deployment of a
DL-based U-net model to establish a DL service system from which to extract the limits of
PV plants by extracting the boundaries of PV plants from an image. To summarize, the
method was accurate, and fast without depending on the image, with low request latency
and response.

This experiment focused on three novel path planning methods in the PV inspection
missions in order to find the best path for covering each of the three PV power plants with
less energy consumption. A GUI interface was used to order the UAV’s maneuvers in the
inspection of the simulated PV plants. The results of each CPP method in the simulation
were compared. The best CPPs was the BECD, for a range of CPP widths of 0 to 7 m. These
path planning algorithms can be performed by any multirotor UAV that receives Mavlink
commands, can carry a camera sensor, and transmit real-time video to GCS.

Performance on the CPP tasks was measured using two different types of flying robots,
a Typhoon UAV and a 3DR Iris UAV. It was demonstrated that the Typhoon UAV (or one
with similar characteristics) is better suited for large or medium-sized PV plants (such as
those in deserts, plains, and hills); instead, the drone-like 3DR Iris UAV is more suitable
for small-sized PV generation (such as on roofs and rooftops, canopies, and facades). The
proposed strategy allows such comparisons to be made and enables the selection of the
most suitable UAV for each type of installation.

The values obtained for the metrics collected from each of the tests show a correla-
tion between covered path length, flight time, number of maneuvers as regards energy
consumption, and ensuring that the CPPs implemented in UAVs to inspect photovoltaic
plants could be similar when implemented in real plants. The results also help to predict
the energy consumption of a given UAV when performing a plant inspection.
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The following abbreviations are used in this manuscript:

BECD boustrophedon exact cellular decomposition
GBSTC grid-based spanning tree coverage
GBWC grid-Based wavefront coverage
DL deep learning
UAV unmanned aerial vehicle
PV photovoltaic
O and M operation and maintenance
CAGR compound annual growth rate
LCOE levelized cost of energy
List of Symbols
Lct covered path length
R% redundancy of points traveled
C% percentage of coverage of the total area

Appendix A. Algorithm

In this step, a series of OpenCV functions, in python 3.7 and in jupyter-lab, were applied.
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Algorithm A1: OpenCV functions.

1. input :A image Ir of size w× l
2. output :A Map for robot

3. initialization
4. import cv 2, np, flask, tensorflow, matplotlib
5. do
6. Im← cv2.imread(Mask)
7. th← cv2.Threshold(Im,128,255,THRESH_BINARY,THRESH_OTSU)
8. k← cv2.getStructuringElement(MORPH_RECT, (1, 1))
9. j← cv2.getStructuringElement(MORPH_RECT, (5, 5))

10. Ierosion←cv 2.erode(th2[w, l],k,iteration = 2)
11. Idilation← cv 2.dilate(Ierosion[w, l],j,iteration = 20)
12. ThImage← Idilation.astype(np.uint8)
13. cnt← cv2.findCountours(

ThImage[w, l],RETRE_XTER,CHAIN_APX_NONE)
14. for i in cnt:
15. area← cv2.contourArea(cnt)
16. if (area >400):
17. apx← cv2.approxPolyDP(cnt,0.0010∗ cv 2.arcLength(cnt, True) ,True)
18. cv2.drawContours(image_copy, [apx],−1 , (0, 0, 255),7)

19. mask← cv2.zeros([w, l])
20. cc← cv2.drawContours(mask,cnt,−1,(255, 255, 255),−1,FILLED)

while True

Appendix B. Tables of Typhoon UAV

Table A1. Yuneec Typhoon UAV technical specification.

Typhoon UAV

Dimensions 520 × 457 × 310 mm (20.5 × 18 × 12.2 inches)

Weight 1980 g (69.8 ounces)
Battery 5400 mAh 4S/ 14.8 V (79.9 Wh)
Camera 12.4 megapixels, 14mm/F2.8

Flight Time up to 25 min
Flight Speed 20o m/s

Payload Capacity 10.400 g
Motor AC YUNH520120
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Table A2. Experiment 1 with three CPP methods implemented using Typhoon UAV over Unioeste 1
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

5

BECD

8.23 7591.7 31.29 392 88

8 14.18 4751.4 19.36 68 74

10 7.34 3615.9 14.54 45 56

12 13.36 2987.2 12.22 39 47

15 15.33 2388.5 10.18 28 38

20 13.33 2388.5 10 22 29

5

GBSTC

1.27 7154.6 43 527 100

8 2.27 4444.3 22.47 178 85

10 1.83 3486.2 16.35 100 62

12 2.76 2842.1 14.19 104 54

15 4.38 2288.92 11.17 74 42

20 2.67 16,655.1 8.21 54 32

5

GBWC

3.66 7270.8 38.41 392 100

8 8.51 4732.3 24.2 175 88

10 7.95 3707.9 16.38 83 63

12 11.98 3095.2 14.35 78 55

15 12.41 2447.7 12.02 78 45

20 10.67 1779.3 8.1 39 31

Table A3. Experiment 2 with three CPP methods implemented using Typhoon UAV over Arak
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

5

BECD

12.84 4612.5 21.08 125 80

8 18.84 3021.2 13.52 74 52

10 25.52 2339.8 7.4 62 41

12 28.89 2029.9 9.36 62 36

15 12.84 1547.95 7.16 35 28

20 36.59 1126.9 5.25 25 21

5

GBSTC

2.83 4308.4 27.28 365 94

8 3.96 2766.8 16.28 119 62

10 5.73 2089.9 12.07 119 45

12 7.41 1809.7 10.03 85 37

15 8.75 1373.7 7.4 66 29

20 9.36 966.6 5.09 33 20

5

GBWC

9.07 4497.5 28.34 390 94

8 4.26 2789.6 15.01 193 63

10 4.69 2078.4 11.2 98 43

12 14.07 1922.4 9.24 58 35

15 6.25 1360.42 7.02 46 26

20 9.76 1002.8 5.04 25 19
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Table A4. Experiment 3 with three CPP methods implemented using Typhoon UAV over CSUSL
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

1

BECD

8.97 1579.4 9.47 192 35

2 20.05 814.9 5.28 86 20

3 22.09 525.1 3.44 62 14

4 21.11 406.1 3.04 38 11

6 42.86 296.2 2.19 27 9

8 86.67 198.6 1.43 20 7

1

GBSTC

1.25 1289.9 13.1 542 47

2 2.64 680.6 6.23 154 23

3 4.55 448.5 4.15 88 15

4 5.56 370.23 3.23 58 12

6 5.71 233.2 2.08 30 8

8 40 177.3 1.38 19 6

1

GBWC

1.37 1420.7 11.56 462 43

2 4.22 705.9 6.33 168 24

3 11.04 506.1 4.01 69 15

4 8.89 404.4 3.05 44 12

6 13.89 278.7 2.1 24 8

8 13.33 157.5 1.28 14 5

Appendix C. Tables of 3DR Iris UAV

Table A5. 3D Robotics UAV 3DR Iris technical specification.

3D Robotics 3DR Iris

Dimensions 10 cm in height, 55 cm motor-to-motor

Weight 1282 g

Battery 5100 mAh 3S

Camera N/A

Flight Time 15–20 mins

Flight Speed 11 m/s

Payload Capacity 400 g

Motor AC 2830, 950 kV
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Table A6. Experiment 4 with three CPP methods implemented using UAV 3DR Iris over Unioeste 1
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

10

BECD

7.34 3619.1 14.48 45 96

12 13.36 2987.1 12.24 39 80

15 15.33 2391.3 10.04 35 64

17 18.52 2234.1 9.13 25 60

18 13.79 1870.3 7.59 26 52

20 13.33 1773.8 7.25 22 48

10

GBSTC

1.83 3485.5 16.39 100 100

12 2.76 2827 14.12 104 92

15 4.38 2280.3 11.23 74 73

17 6.38 2101.5 10.36 68 68

18 4.6 1790.4 8.52 55 58

20 2.67 1651.2 8.21 54 55

10

GBWC

7.95 3716.5 16.29 83 100

12 11.98 3094.3 14.37 86 95

15 12.41 2442 12.05 78 78

17 14.81 2255.8 10.19 46 67

18 11.49 1883.7 8.47 43 57

20 10.67 1783.3 8.18 39 54

Table A7. Experiment 5 with three CPP methods implemented using the UAV 3DR Iris over Arak
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

7

BECD

15.42 3292.7 15.31 80 95

8 18.84 3020.2 14.2 74 88

10 25.52 2339.3 12.52 62 70

12 28.89 2030.4 9.57 50 60

15 31.25 1548.5 7.27 35 45

20 36.59 1133.3 5.21 25 26

7

GBSTC

5.73 2090.4 43 527 100

8 3.96 2757.8 17.06 179 98

10 5.73 2090.4 12.36 119 76

12 7.41 1809.3 10.18 85 63

15 8.75 13,674.2 8 66 48

20 9.76 971 5.07 33 26

5

GBWC

3.66 7270.8 38.41 392 100

8 4.69 2078.8 11.47 98 2

10 4.69 2078.8 11.47 98 71

12 14.07 1922.7 9.43 58 59

15 6.25 1360.08 7.07 46 43

20 6.25 1360.08 7.07 46 25
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Table A8. Experiment 6 with three CPP methods implemented using the UAV 3DR Iris over CSUSL
PV Plant.

Width CPP Redundacy Distance Flight Time Maneuver Energy Consumed

1

BECD

10.06 1724.8 10.39 211 52

2 15.38 978 6.12 95 30

3 19.3 597.2 4.18 62 21

4 26.67 441.5 3.33 47 17

6 47.22 316.7 2.3 30 12

8 66.67 197.4 1.47 20 9

1

GBSTC

1.77 1416.4 15.31 626 72

2 3.61 697.4 7.2 220 35

3 5.85 508.6 5 108 24

4 5.56 373.4 3.28 65 17

6 19.44 270.1 2.22 32 12

8 40 198.8 1.52 19 9

1

GBWC

3.94 1414.9 15.3 626 72

2 5.53 817.4 7.36 218 38

3 7.6 553 4.36 86 22

4 8.89 404.4 3.05 44 15

6 13.89 274.7 2.13 24 11

8 20 184.9 1.41 16 8
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69. Coopmans, C.; Podhradskỳ, M.; Hoffer, N.V. Software-and hardware-in-the-loop verification of flight dynamics model and flight
control simulation of a fixed-wing unmanned aerial vehicle. In Proceedings of the 2015 Workshop on Research, Education and
Development of Unmanned Aerial Systems (RED-UAS), Cancun, Mexico, 23–25 November 2015; pp. 115–122.

70. Roggi, G.; Niccolai, A.; Grimaccia, F.; Lovera, M. A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic
Plants Monitoring Applications. Energies 2020, 13, 838. [CrossRef]

71. Coates, E.M.; Fossen, T.I. Geometric Reduced-Attitude Control of Fixed-Wing UAVs. Appl. Sci. 2021, 11, 3147. [CrossRef]
72. Tullu, A.; Endale, B.; Wondosen, A.; Hwang, H.Y. Machine Learning Approach to Real-Time 3D Path Planning for Autonomous

Navigation of unmanned aerial vehicle. Appl. Sci. 2021, 11, 4706. [CrossRef]
73. Pitonakova, L.; Giuliani, M.; Pipe, A.; Winfield, A. Feature and performance comparison of the V-REP, Gazebo and ARGoS robot

simulators. In Annual Conference Towards Autonomous Robotic Systems; Springer: Bristol, UK, 25–27 July 2018; pp. 357–368.
74. Akcakoca, M.; Atici, B.M.; Gever, B.; Oguz, S.; Demirezen, U.; Demir, M.; Saldiran, E.; Yuksek, B.; Koyuncu, E.; Yeniceri, R.; et al.

A simulation-based development and verification architecture for micro uav teams and swarms. In AIAA Scitech 2019 Forum;
AIAA: San Diego, CA, USA, 2019; p. 1979.

75. Unoeste Terá Maior Usina Solar de Geração Distribuída de SP-Unoeste. Available online: http://www.unoeste.br/noticias/2019
/3/unoeste-tera-maior-usina-solar-de-geracao-distribuida-de-sp (accessed on 11 October 2021).

76. ABA Newsletter. Available online: http://www.csus.edu/aba2/newsletters/fall2012/abagreennews.html (accessed on 11
October 2021).

77. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16);
USENIX Association: Savannah, GA, USA, 2016; pp. 265–283.

78. Flask. 2021. Available online: https://flask.palletsprojects.com/en/2.0.x/ (accessed on 31 October 2021).
79. Mavlink/Mavlink. 2021. Available online: https://github.com/mavlink/mavlink (accessed on 24 October 2021).
80. Li, J.; Zhou, Y.; Lamont, L. Communication architectures and protocols for networking unmanned aerial vehicles. In Proceedings

of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1415–1420. [CrossRef]
81. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef] [PubMed]
82. Bradski, G. The openCV library. Dobb’S J. Softw. Tools Prof. Program. 2000, 25, 120–123.
83. OpenCV: OpenCV-Python Tutorials. Available online: https://docs.opencv.org/master/d6/d00/tutorial_py_root.html (accessed

on 18 October 2021).
84. Choset, H.; Pignon, P. coverage path planning: The boustrophedon cellular decomposition. In Field and Service Robotics; Springer:

London, UK, 1998; pp. 203–209.
85. Gabriely, Y.; Rimon, E. Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 2001,

31, 77–98. [CrossRef]
86. Zelinsky, A.; Jarvis, R.A.; Byrne, J.; Yuta, S. Planning paths of complete coverage of an unstructured environment by a mobile

robot. In Proceedings of the 1993 IEEE/Tsukuba International Workshop on Advanced Robotics, Tsukuba, Japan, 8–9 November
1993; Volume 13, pp. 533–538.

87. Ceballos, N.M.; Valencia, J.; Giraldo, A.A. Simulation and assessment educational framework for mobile robot algorithms. J.
Autom. Mob. Robot. Intell. Syst. 2014, 8, 53–59. [CrossRef]

88. Jaeyoung, L. PX4 Gazebo Plugin Suite for MAVLink SITL and HITL. 2021. Available online: https://github.com/PX4/PX4
-SITL_gazebo/blob/ffb87ef4a312564cf91791bd5a9d683aacd085a6/models/iris/iris.sdf.jinja (accessed on 7 December 2021).

89. Torres, M.; Pelta, D.A.; Verdegay, J.L.; Torres, J.C. coverage path planning with unmanned aerial vehicles for 3D terrain
reconstruction. Expert Syst. Appl. 2016, 55, 441–451. [CrossRef]

90. Araújo, J.; Sujit, P.; Sousa, J. Multiple UAV area decomposition and coverage. In Proceedings of the 2013 IEEE Symposium on
Computational Intelligence for Security and Defense Applications (CISDA), Singapore, 16–19 April 2013; pp. 30–37. [CrossRef]

91. PX4 Drone Autopilot. 2021. Available online: https://github.com/PX4/PX4-Autopilot (accessed on 23 September 2021).
92. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28
September–2 October 2004; Volume 3, pp. 2149–2154. [CrossRef]

93. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; p. 5.

94. Silano, G.; Iannelli, L. CrazyS: A Software-in-the-Loop Simulation Platform for the Crazyflie 2.0 Nano-Quadcopter. In Robot
Operating System (ROS): The Complete Reference (Volume 4); Koubaa, A., Ed.; Springer International Publishing: Cham, Swotzerland,
2020; pp. 81–115. [CrossRef]

95. Salamh, F.E.; Karabiyik, U.; Rogers, M.K. RPAS Forensic Validation Analysis Towards a Technical Investigation Process: A Case
Study of Yuneec Typhoon H. Sensors 2019, 19, 3246. [CrossRef]

96. QGroundControl Ground Control Station. 2021. Available online: https://github.com/mavlink/qgroundcontrol (accessed on 31
October 2021).

97. Yuneec Typhoon H-Yuneec Futurhobby. Available online: https://yuneec-futurhobby.com/yuneec-typhoon-h-pro-realsense
(accessed on 28 October 2021).

http://dx.doi.org/10.3390/en13040838
http://dx.doi.org/10.3390/app11073147
http://dx.doi.org/10.3390/app11104706
http://www.unoeste.br/noticias/2019/3/unoeste-tera-maior-usina-solar-de-geracao-distribuida-de-sp
http://www.unoeste.br/noticias/2019/3/unoeste-tera-maior-usina-solar-de-geracao-distribuida-de-sp
http://www.csus.edu/aba2/newsletters/fall2012/abagreennews.html
https://flask.palletsprojects.com/en/2.0.x/
https://github.com/mavlink/mavlink
http://dx.doi.org/10.1109/GLOCOMW.2013.6825193
http://dx.doi.org/10.1007/s42979-021-00592-x
http://www.ncbi.nlm.nih.gov/pubmed/33778771
https://docs.opencv.org/master/d6/d00/tutorial_py_root.html
http://dx.doi.org/10.1023/A:1016610507833
http://dx.doi.org/10.14313/JAMRIS_1-2014/7
https://github.com/PX4/PX4-SITL_gazebo/blob/ffb87ef4a312564cf91791bd5a9d683aacd085a6/models/iris/iris.sdf.jinja
https://github.com/PX4/PX4-SITL_gazebo/blob/ffb87ef4a312564cf91791bd5a9d683aacd085a6/models/iris/iris.sdf.jinja
http://dx.doi.org/10.1016/j.eswa.2016.02.007
http://dx.doi.org/10.1109/CISDA.2013.6595424
https://github.com/PX4/PX4-Autopilot
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1007/978-3-030-20190-6_4
http://dx.doi.org/10.3390/s19153246
https://github.com/mavlink/qgroundcontrol
https://yuneec-futurhobby.com/yuneec-typhoon-h-pro-realsense


Appl. Sci. 2021, 11, 12093 27 of 27

98. 3DR Iris-The Ready to fly UAV Quadcopter. Available online: http://www.arducopter.co.uk/iris-quadcopter-uav.html (accessed
on 28 October 2021).

99. Tan, S.H.; Md Ali, J. Quartic and quintic polynomial interpolation. In Proceedings of the 20th National Symposium on
Mathematical Sciences: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation, Putrajaya, Malaysia, 18–20
December 2012; Volume 1522, pp. 664–675

100. Peréz-González, A. Andresperez86/CPP_GUI. 2021. Available online: https://github.com/andresperez86/CPP_GUI (accessed
on 29 October 2021).

101. Jordan, S.; Moore, J.; Hovet, S.; Box, J.; Perry, J.; Kirsche, K.; Lewis, D.; Tse, Z.T.H. State-of-the-art technologies for UAV inspections.
IET Radar Sonar Navig. 2018, 12, 151–164. [CrossRef]

102. Ghaddar, A.; Merei, A.; Natalizio, E. PPS: Energy-Aware Grid-Based coverage path planning for UAVs Using Area Partitioning
in the Presence of NFZs. Sensors 2020, 20, 3742. [CrossRef] [PubMed]

103. Öst, G. Search Path Generation with UAV Applications Using Approximate Convex Decomposition. 2012; p. 52. Available online:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77353 (accessed on 29 October 2021).

http://www.arducopter.co.uk/iris-quadcopter-uav.html
https://github.com/andresperez86/CPP_GUI
http://dx.doi.org/10.1049/iet-rsn.2017.0251
http://dx.doi.org/10.3390/s20133742
http://www.ncbi.nlm.nih.gov/pubmed/32635411
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-77353

	Introduction
	Materials and Methods
	Deep Learning (DL) Server for Segmentation
	Post Processing
	2D Coverage Path Planning Method in the GUI Interface
	Metrics

	Simulation and Validation Platform

	Results and Discussion
	Results with Deep Server, and OpenCV Functions
	Results of the CPP Method
	The Three First Experiments with a Typhoon UAV
	The Last Three Experiments with 3DR Iris UAV

	Discussion

	Conclusions
	Algorithm
	Tables of Typhoon UAV
	Tables of 3DR Iris UAV
	References

