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Abstract: In order to eliminate the calculation error of the Hertzian elastohydrodynamic contact stress
due to the asymmetry of the contact region of the helix raceway, a non-Hertzian elastohydrodynamic
contact stress calculation method based on the minimum excess principle was proposed. Firstly, the
normal contact stresses of the screw raceway and the nut raceway were calculated by the Hertzian
contact theory and the minimum excess principle, respectively. Subsequently, the Hertzian solution
and the non-Hertzian solution of the elastohydrodynamic contact stress could be determined by the
Reynolds equation under different helix angles and screw speeds. Finally, the friction torque test of
the double-nut ball screws was designed and implemented on a self-designed bed for validation of
the proposed method. The comparison showed that the experimental friction torque was the good
agreement with the simulated friction torque, which verified the effectiveness and correctness of the
non-Hertzian elastohydrodynamic contact stress calculation method. Under the large helix angle,
the calculation accuracy of asperity contact stress for the non-Hertzian solution was more accurate
than that of the Hertzian solution at the contact region of ball screws. Therefore, the non-Hertzian
elastohydrodynamic contact stress considering the asymmetry of the raceway contact region could
more accurately analyze the wear depth of the high-speed ball screws.

Keywords: ball screws; contact stress; minimum excess principle; elastohydrodynamic lubrication;
non-Hertzian contact

1. Introduction

With the improvement of machining efficiency and machining accuracy of the NC
machine tools, high-speed ball screws (BSs) are widely used in the machining field [1,2].
However, there is a calculation error problem of the Hertzian elastohydrodynamic contact
stress due to the asymmetry of the contact region of the helix raceway. Thus, it is essential
to investigate the non-Hertzian elastohydrodynamic contact stress of the BSs in these
properties, such as kinematics, force balance, and elastohydrodynamic contact mechanics.

In terms of the force and deformation characteristics of the double-nut ball screws
(DNBSs), many researchers studied the force balance equation and the torque balance
equation of the working ball. Liu et al. [3] proposed a static load distribution model of
the preloaded BSs considering geometric errors, which takes into account the influence of
non-loaded balls and the interaction between the elastic deformation of a screw/nut and
the Hertz contact forces of screw–ball/nut–ball contact areas. Lin et al. [4] established a
low order static load distribution model for BSs that incorporates lateral deformation and
geometric error effects to optimize the design parameters of BSs. Liu et al. [5] presented a
novel method to analyze the static load distribution of BSs, which takes into account the
nut position variation. The effects of axial load and original contact angle on load distri-
bution are obtained. Huang et al. [6] used the machine learning method to diagnose the
preload state of the BSs by monitoring the mechanical signals, such as the driving motion
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current, ball screw speed, linear scale positioning, and vibration. Zhen et al. [7] studied
the contact stress and fatigue life of the BSs with the outer cycling device, considering
the dimension errors of balls. Miura et al. [8] designed a ball screw with smaller balls,
which can decrease both the torque fluctuation and position deviation. Bertolino et al. [9]
established a multibody dynamic model of BSs to study the influence factors of the friction
torque, such as operating speed, temperature, and geometry, and an experimental test
bench was constructed to validate the model results. However, the non-Hertzian normal
contact stress of the BSs can be calculated more accurately by using the minimum excess
principle, which is not explored in the above research.

In the case of the elastohydrodynamic contact mechanics of the BSs, many scholars
studied the elastohydrodynamic lubrication (EHL) characteristics [10,11] of the lubricant
film. Clarke et al. [12] analyzed the elastohydrodynamic lubrication characteristics of gears,
considering the involute profile error of the surface, and the analyzed results quantified
the effects of measured profile deviations on the EHL lubricant film developed between
helical gears. Sharif et al. [13] proposed a wear prediction model for worm gears based on
the Archard wear law and determined the wear rate, considering the variation of stress
and film thickness over the contact region. In addition, the detailed wear pattern of worm
gear teeth [14] was obtained by the proposed model, and the wear scars on the gear teeth
were produced by the development way of the wear pattern. Wei et al. [15] analyzed the
kinematics and the transmission efficiency considering the oil lubrication of a single-nut
double-cycle ball screw, and the simulated results are consistent with the experimental
results. Otsu et al. [16] studied the shear properties of the polyisobutylene lubricant under
the different sliding speeds and the contact stresses. Fleischer et al. [17] proposed an
approach to increase the lifetime of the BSs by using the optimal amounts of lubricant.
The results were lubricant savings and significant increases in component-lifetimes of
approximately 70%. Xie et al. [18] established the mixed-lubrication model of the planetary
roller screw considering contact load, contact geometry of thread, surface roughness and
transient effects, and the influences of the rotational speed of the screw, axial load, and
surface roughness on lubrication were discussed. Oh et al. [19] proposed an explicit friction
torque model composed of an applied load and viscous friction terms for two-point contact
DNBSs, which can obtain the optimization design parameters of BSs by minimizing the
friction model. Nevertheless, the elastohydrodynamic contact stress of BSs considering
the asymmetry of the contact region of the helix raceway is not explored in the above-
mentioned research, but it is essential that the non-Hertzian elastohydrodynamic contact
stress can more accurately analyze the wear mechanism and the accuracy retention of the
high-speed BSs.

In order to eliminate the calculation error of the Hertzian elastohydrodynamic contact
stress due to the asymmetry of the contact region of the helix raceway, a non-Hertzian
elastohydrodynamic contact stress calculation method based on the minimum excess
principle was proposed. According to the contact mechanics, the normal contact stresses
of the screw raceway and the nut raceway were calculated by the Hertzian contact theory
and the minimum excess principle, respectively. Furthermore, the Hertzian solution and
the non-Hertzian solution of the elastohydrodynamic contact stress can be determined by
the Reynolds equation under different helix angles and screw speeds. The non-Hertzian
elastohydrodynamic contact stress can more accurately analyze the wear mechanism and
the accuracy retention of the high-speed BSs. Additionally, a friction torque test was
designed and implemented on a self-designed bed, and the proposed method was verified.

2. Materials and Methods
2.1. Analysis of Force and Motion

The positioning accuracy of DNBSs is determined by the preload provided by the
preloaded washer. When the preload is applied, the working balls in the left nut and right
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nut are in a fully preloaded state due to the contact deformation of the left nut and right nut,
respectively (Figure 1a). The static normal contact force at points A and B is expressed as

QA = QB =
Fpre

nbb/2 cos α sin β0
(1)
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Figure 1. Force analysis of ball screws. (a) Force balance analysis. (b) Contact mechanics analysis.

The DNBSs is operating at a constant speed; the working balls are in the balanced
state of the force and torque, which comprise normal contact force, friction, inertia force,
friction torque, and inertia torque. The balance equations of the force and torque of the ball
are determined as {

∑ F = 0 : QA + QB + FSA + FSB + FIH = 0
∑ M = 0 : MSA + MSB + MIH = 0

(2)

where QA and QB denote the normal contact force of the ball at the screw contact point A
and the nut contact point B, respectively. FSA and FSB indicate the friction of the ball at
the screw contact point A and the nut contact point B, respectively. FIH is the inertia force.
MSA and MSB are the friction torque of the ball at the screw contact point A and the nut
contact point B, respectively. MIH is the inertia torque. The parameters of DNBSs in the
operating state, such as βA, βB, QA, QB, FSA, and FSB, are obtained by Equation (2) using
the Newton iteration method. The specific solution process of the parameters of DNBSs
can be observed in the reference [20]. The structural parameters of DNBSs are shown in
Table 1.

Table 1. Parameters of double-nut ball screws.

Screw radius, r (mm) 16 Ball radius, rb (mm) 2.9765

Radius of the normal section
on the screw raceway, rS (mm) 3.215 Radius of the normal section

on the nut raceway, rN (mm) 3.215

Helix angle, α (◦) 5.68 Pitch, L0 (mm) 10

Initial contact angle β0 (◦) 40.26 Preload, Fpre (N) 1500

Screw speed, Ω’ (mm/s) 83 Number of working balls, nbb 168

Young’s modulus, E1 = E2 (GPa) 200 Density ρ0 (kg/m3) 970

Poisson’s ratio, υ1 = υ2 0.3 Viscosity η0 (Pa·s) 0.05

2.2. Non-Hertzian Normal Contact Stress Calculation

Due to the asymmetry of the contact region of the helical raceway of the high-speed
BSs, there is a big error in the calculation of the contact stress distribution and contact
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region in the screw raceway contact point A and the nut raceway contact point B by
using the traditional Hertzian contact theory. The non-Hertzian contact region between
the ball and raceway is inclined compared with the Hertzian contact region, which is
shown in Figure 1b. Based on the minimum excess principle, a method was proposed to
analyze and calculate the normal contact stress between the ball and the raceway of the
high-speed DNBSs.

In terms of the numerical solution process of the contact stress distribution between
the ball and raceway, the contact region and deformation compatibility equation should be
discretized. The contact gap and contact stress of the two contact surfaces should satisfy
the following equation [21].

ci,j = d0 + cgi,j + cri,j + Vi,j, 0 ≤ i ≤ I, 0 ≤ j ≤ J (3)

where c is the contact surface gap matrix. ci,j is the contact surface gap distribution in
the mesh region, which is the element of the contact surface gap matrix c. d0 denote the
approaching distance of the contact surface. cg is the contact surface geometry matrix. cgi,j
indicates the contact surface geometry in the mesh region, which is the element of the con-
tact surface geometry matrix cg. cr is the contact surface roughness matrix. cri,j is the contact
surface roughness distribution, which is the element of the contact surface roughness ma-
trix cr. V is the surface elastic deformation matrix. Vi,j is the surface elastic deformation
distribution in the mesh region, which is the element of the surface elastic deformation
matrix V . I and J indicate the mesh grid number in the x and y directions, respectively.

The discretized contact deformation equation is expressed as

Vi,j =
M

∑
k=0

N

∑
l=0

Ki−k,j−l pi,j (4)

where pi,j is the element of the contact stress matrix P. Ki − k,j − l is the element of deforma-
tion influence coefficient matrix K.

The boundary condition of the contact equation is expressed as

ci,j ≥ 0, pi,j ≥ 0 (5)

In the contact region, the boundary condition of the contact equation is ci,j = 0, pi,j ≥ 0;
Out of the contact region, the boundary condition of the contact equation is ci,j > 0, pi,j = 0.
According to the above two conditions, ci,j, and pi,j cannot be both zero, thus

ci,j pi,j = 0 (6)

The solution of the contact stress and the contact geometry is the key to the contact
equation. The contact equation between the ball and raceway can be expressed by a
matrix equation:

c =
¯
c + K ⊗ P (7)

ci,j ≥ 0, pi,j ≥ 0, ci,j pi,j = 0 (8)

ci,j = d0 + cgi,j + cri,j (9)

where ⊗ indicates cross product.
According to the variational principle, the contact problem described by Equations (7)–(9)

can be transformed to the conditional extremum problem of quadratic function, which is
derived by:

W(P) = cTP +
1
2

PTKP (10)

The boundary condition of Equation (10) is given by:

ci,j ≥ 0, pi,j ≥ 0, ci,j pi,j = 0 (11)
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The fast convergence of the contact Equation (11) in the cyclic iteration is achieved by
using the conjugate gradient method. The flowchart is shown in Figure 2. The detailed
derived process and iteration solution process of the non-Hertzian contact stress is listed as
follows [22]:

1. The initial normal contact stress P is given, pi,j ≥ 0. The normal contact stress
distribution pi,j is also satisfied in the mesh region.

2. The discretized normal contact deformation V is determined by Equation (4).
3. The contact gap c between the two contact surfaces is calculated by Equations (3)–(6),

and the contact gap is satisfied with the boundary condition.
4. According to the variational principle, the contact in Equation (7) can be transformed

by the conditional extremum of the quadratic function, the normal contact stress pi,j
is modified by Equation (10) satisfying the boundary condition in Equation (11).

5. The current relative error is determined by:

ε = dsQA
−1∑

i,j

∣∣∣pi,j − pold
i,j

∣∣∣ (12)

6. If ε ≥ ε0, the iteration solution process of the non-Hertzian contact stress continues
from steps (2)–(5), otherwise the iteration solution process ends.
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The classic solution between the ball and smooth plane can be determined by Hertzian
contact theory [23]; it is expressed as

pi,j =
3QA
2πab

[
1 −

( x
a

)2
−
(y

b

)2
]1/2

(13)

The comparison between the Hertzian solution and non-Hertzian solution of the
contact stress under the helix angle is zero is shown in Figure 3. As shown in Figure 3,
the non-Hertzian solution is in good agreement with the Hertzian solution in the contact
stress calculation results, which is verified the correctness of the non-Hertzian contact stress
calculation method.
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between the ball and the screw raceway.

2.3. Non-Hertzian Elastohydrodynamic Contact Stress Calculation

The viscosity flow behavior of the lubricant film between the ball and raceway can
be described by the Reynolds equation shown in Figure 4b. The initial film contact stress
distribution in the Reynolds equation is the non-Hertzian contact stress distribution, which
can further observe the variation of the elastohydrodynamic lubrication characteristics.
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Figure 4. Diagram of the elastohydrodynamic contact mechanics. (a) The fractal rough surface. (b) Elastohydrodynamic
contact mechanics.

The assumptions of the Reynolds equation in the analysis are as follows:

1. The lubricant and the solid are isothermal, and the contact stress and the film thickness
do not vary with time.

2. The curvature radius of the solid surface is much larger than the lubricant film thickness.
3. No relative sliding between the lubricant film and solid surface at the common interface.
4. Compared with the film shear stress, the inertial force and other bulk forces of the

lubricant film are negligible.
5. Due to the lubricant film thickness being very thin, it can be assumed that the film

contact stress remains constant along the film thickness direction, namely no squeeze
film effect.

6. The inlet of the contact region is flooded fully by the lubricant film.
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7. The lubricant is the Newtonian fluid and obeys Newton’s law of viscosity.

The coupling relationship of the elastohydrodynamic contact stress distribution p, film
thickness distribution h, film viscosity η, film density ρ, and film entrainment velocity us
could be accurately determined by the Reynolds equation [24], which is written as

∂

∂x

(
ρh3

η

∂p
∂x

)
+

∂

∂y

(
ρh3

η

∂p
∂y

)
= 6(u1 + u2)

∂(ρh)
∂x

(14)

where p denotes the non-Hertzian elastohydrodynamic contact stress in the contact re-
gion. u1 and u2 indicate the linear velocity of the ball and the raceway in the tangen-
tial direction (x-direction) of the helix raceway track, respectively. The entrainment ve-
locity of the lubricant film is us = (u1 + u2)/2. The output parameters of point A and
point B calculated by Equation (2), such as QA, βA, QB, and βB, are substituted into the
Reynolds Equation (14), the elastohydrodynamic characteristics of point A and point B can
be determined, respectively.

In terms of the elastohydrodynamic lubrication theory [25], the film thickness distri-
bution is expressed as

h(x, y) = h0 +
x2

2Rx
+

y2

2Ry
+ V(x, y) + ROU(x, y) (15)

The lubricant film viscosity proposed by Roelands [26] is written as

η = η0 exp
{
(ln η0 + 9.67)

[(
1 + 5.1 × 10−9 p

)0.68
− 1
]}

(16)

The lubricant film density from Dowson and Higginson [27] is shown in Equation (17).

ρ = ρ0

(
1 +

0.6 × 10−9 p
1 + 1.7 × 10−9 p

)
(17)

where h0 indicates the central film thickness in the contact region. η0 and ρ0 denote
the initial value of the film viscosity and density, respectively. ROU(x,y) indicates the
roughness of the contact surface calculated by the fractal theory [28] shown in Figure 4a.
The major parameters of the rough fractal rough surface are the fractal dimension D and
scale parameter G, D = 2.47, G = 0.41. The rough fractal surface is the contact region of
the raceway. The hardness range of the ball is 62–64 HRC higher than that of the screw
raceway 58–62 HRC; The processing technology of the working ball is mature, and the
surface of the working ball is smooth. According to the above two reasons, the ball contact
surface is regarded as a smooth surface. The surface roughness of the working ball is much
less than that of the screw raceway. Therefore, the surface roughness of the ball has little
effect on the calculation efficiency of this model.

Due to the film contact stress being largely influenced by the surface roughness, the
contact surface roughness should be considered in the elastohydrodynamic contact system
of BSs. In terms of the mature surface manufacturing technology of the ball, the ball contact
surface can be seen as the smooth surface, and the raceway contact surface is the rough
fractal surface (Figure 4a).

The boundary conditions of the Reynolds equation are written as
p(xo, y) = p(xe, y) = 0
p(x, yo) = p(x, ye) = 0
p(x, y) ≥ 0, (xo ≤ x ≤ xe, yo ≤ y ≤ ye)

(18)

where xo and yo are the entrance coordinates of the contact region of BSs, respectively, and
xe and ye are the exit coordinates of the contact region of BSs, respectively. The values of
these coordinate parameters have been given: xo = yo = −277 µm, xe = ye = 277 µm.
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The load balance condition of the Reynolds equation is expressed as
x

Ω

p(x, y)dxdy = Q (19)

Substituting Equations (15)–(19) into Equation (14), the film contact stress distribution
and the elastohydrodynamic contact stress distribution can be determined accurately by
using the finite difference method [29,30], please see the Appendix A.

3. Experiments and Verification

To validate the correctness of elastohydrodynamic contact characteristics of the DNBSs
by using the non-Hertzian contact stress calculation method. The friction torque of the
DNBSs is measured by the self-designed bed, and the experimental friction torques are in
good agreement with the simulated friction torques, which verifies the correctness of the
non-Hertzian elastohydrodynamic contact stress calculation method.

3.1. Experiments Procedures

The experimental setup of the DNBSs is shown in Figure 5. The DNBSs was only
applied with the preload in the experiment. The tension–compression sensor was mounted
on the nut by the dowel bar. The friction torque of the BSs was measured under the exper-
imental condition with constant preload Fpre = 1500 N, constant lubricating oil viscosity
η0 = 0.05 Pa·s, and the different screw speeds. The simulated friction torque of the BSs can
be expressed as

M = nbb(FSBt cos α + FSBb sin α)(r + rb cos βB) (20)

where FSBt and FSBb represent friction components at the directions of t and b in the Frenet–
Serret coordinate system Otnb at point B, respectively [31]. nbb denotes the number of
working balls.
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3.2. Experimental Results

The friction coefficient [32] of BSs can be written as

µ =
µaQa + Q f

Q
(21)
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x

Ah
τf (i,j)dAh(i,j) = Q f (22)

τf = τ0arcsinh
(

η∆u
τ0h

)
(23)

where Q is the total normal contact force, including the film bearing force Qf, and the
asperity bearing force Qa. The ratio of the asperity bearing stress is RS, RS = Qa/Q. µa is
the dry friction coefficient and µa = 0.1. τf is the film shear stress proposed by the Eyring
model [33]. Ah is the film hydrodynamic contact area, η is the film viscosity, ∆u is the
relative sliding velocity, and ∆u = u1 − u2. u1 and u2 are the same as that of Equation (14).
h0 is the film central thickness.

The results of the friction torque test are shown in Figure 6. The friction coefficient
curve of the DNBSs is indicated by the blue lines in Figure 6b, which is in good agreement
with the schematic Stribeck curve [34] shown in the green box (Figure 6a). The friction
coefficient is composed of the asperity friction coefficient and the hydrodynamic lubrication
friction coefficient. When the screw speed is lower than 502.65 mm/s, the BSs is in the
mixed lubrication state. When the screw speed is higher than or equal to 502.65 mm/s,
the BSs is in the hydrodynamic lubrication state. The comparison of the simulated and
experimental friction torque is shown in Figure 6c. The comparisons showed that the ex-
perimental friction torque was consistent with the simulated friction torque, which verified
the correctness of the non-Hertzian elastohydrodynamic contact stress calculation method.
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4. Results Analysis and Discussion
4.1. Comparison of the Normal Contact Stress between Hertzian Solution and
Non-Hertzian Solution

In order to determine the contact stress distribution of DNBSs accurately, the contact
stress distributions between the ball and raceway are calculated by the minimum excess
principle and Hertzian contact theory, respectively. The calculation results by the two
methods are analyzed comparatively.

The contact stress distribution of DNBSs is calculated under the preload Fpre is 1500 N,
and the helix angle α is 21.7◦. The contact stress comparison between the Hertzian solution
and non-Hertzian solution of BSs is shown in Figure 7. As shown in Figure 7, the difference
contour maps between the Hertzian solution and non-Hertzian solution at contact point A
and contact point B indicate the great difference between the two calculation methods. The
difference of the contact stress in the edge of the contact region is the largest, and the one
in the center of the contact region is the smallest. Thus, there is a big error of contact stress
distribution calculated by the Hertzian contact theory, and the contact stress distribution
calculated by the non-Hertzian solution is more accurate.
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(a) Contact stress solution at the ball/screw–raceway point A. (b) Contact stress solution at the ball/nut raceway point B.

4.2. Analysis of the Non-Hertzian Contact Stress with Different Helix Angles

In order to further analyze the effect of contact stress error calculated by the Hertzian
contact theory with the variation of the helix angle, the contact stress difference contour
maps at the screw raceway contact point A under the helix angle α are 5.68◦, 13.97◦,
and 21.71◦ are determined, respectively. The elliptical contact region of non-Hertzian
solution PA at the contact point A generates a deflection angle θs shown in Figure 8a. The
contact stress distribution difference PA-PAH between the non-Hertzian solution PA and
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the Hertzian solution PAH in the edge of the contact region is largest, and the one in the
center of the contact region is smallest shown in Figure 8b.
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Figure 8. The variation of the non-Hertzian contact stress with different helix angles. (a) Contour map of non-Hertzian
contact pressure distribution PA (Mpa). (b) Distribution difference between non-Hertzian contact pressure and Hertzian
contact pressure PA-PAH (Mpa).

Figure 9a,b shows that the central contact stress of the Hertzian solution does not
change with the increase in the helix angle; the central contact stress of the non-Hertzian
solution at contact point A decreases with the increase in the helix angle, and the one at
contact point B increases with the increase in the helix angle. As shown in Figure 9c, the
central contact stress errors of point A and point B increase as the helix angle. The central
contact stress error of point A is larger than the one of point B, and the gap of the central
contact stress error between point A and point B increases as the helix angle. The contact
region deflection angles of point A and point B increase with the increase in the helix angle
due to the difference of the structural parameters between the screw raceway and nut
raceway, which is shown in Figure 9d.

4.3. Analysis of the Elastohydrodynamic Contact Stress with Different Helix Angles

The elastohydrodynamic characteristics of point A under the preload are 1500 N and
the entrainment velocity is 1005.3 mm/s, which are shown in Figure 10. When the lubricant
film is entrained into the contact region, the secondary peak of the film contact stress in
the exit coordinates of the contact region is generated, as shown in Figure 10a. Figure 10b
shows the film thickness distribution of point A.
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Figure 9. Comparison of the Hertzian and non-Hertzian contact stress. (a) The central contact stress of the point A. (b) The 
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(c) Central elastohydrodynamic film thickness of point A. (d) Central elastohydrodynamic film thickness of point B. 

4.4. Effect of the Elastohydrodynamic Contact Stress under Different Screw Speeds 

Figure 10. Elastohydrodynamic characteristics using the non-Hertzian contact stress calculation method. (a) Elastohydrody-
namic contact stress distribution. (b) Film thickness distribution.

Figure 11a,b show that the variations of central elastohydrodynamic contact stress
calculated by the Hertzian solution and non-Hertzian solution with different helix angles,
respectively. The variation trends of the central elastohydrodynamic contact stress of point
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A and point B are the same. However, the values of the central elastohydrodynamic contact
stress are greater than that of the central contact stress of point A and point B.

Appl. Sci. 2021, 11, 12081 14 of 19 
 

  

(a) (b) 

Figure 10. Elastohydrodynamic characteristics using the non-Hertzian contact stress calculation method. (a) Elastohydro-

dynamic contact stress distribution. (b) Film thickness distribution. 

4 6 8 10 12 14 16 18 20 22

992

994

996

998

1000

1002

C
en

tr
al

 e
la

st
o

h
y

d
ro

d
y

n
am

ic
 c

o
n

ta
ct

 s
tr

es
s 

(M
P

a)

Helix angle α(°)

 Hertizan solution

 Non-Hertizan solution

 

4 6 8 10 12 14 16 18 20 22

978

980

982

984

986

988

C
en

tr
al

 e
la

st
o

h
y

d
ro

d
y

n
am

ic
 c

o
n

ta
ct

 s
tr

es
s 

(M
P

a)

Helix angle α(°)

 Hertizan solution

 Non-Hertizan solution

 

(a) (b) 

4 6 8 10 12 14 16 18 20 22

0.2702

0.2704

C
en

tr
al

 e
la

st
o
h

y
d
ro

d
y

n
am

ic
 f

il
m

 t
h

ic
k

n
es

s 
(μ

m
)

Helix angle α(°)

 Hertizan solution

 Non-Hertizan solution

 

4 6 8 10 12 14 16 18 20 22

0.2476

0.2478

C
en

tr
al

 e
la

st
o

h
y

d
ro

d
y

n
am

ic
 f

il
m

 t
h

ic
k

n
es

s 
(μ

m
)

Helix angle α(°)

 Hertizan solution

 Non-Hertizan solution

 

(c) (d) 

Figure 11. Comparison of the elastohydrodynamic characteristics between the Hertzian solution and non-Hertzian solu-

tion. (a) Central elastohydrodynamic contact stress of point A. (b) Central elastohydrodynamic contact stress of point B. 
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4.4. Effect of the Elastohydrodynamic Contact Stress under Different Screw Speeds 

Figure 11. Comparison of the elastohydrodynamic characteristics between the Hertzian solution and non-Hertzian solution.
(a) Central elastohydrodynamic contact stress of point A. (b) Central elastohydrodynamic contact stress of point B. (c) Central
elastohydrodynamic film thickness of point A. (d) Central elastohydrodynamic film thickness of point B.

Figure 11c,d show that the variations of central elastohydrodynamic film thickness
calculated by the Hertzian solution and non-Hertzian solution with different helix angles,
respectively. The elastohydrodynamic film thickness of non-Hertzian solution at point
A decreases as the helix angle, else the one at point B increases as the helix angle, which
indicates that the lubrication state of the nut contact point B is good than the screw contact
point A.

4.4. Effect of the Elastohydrodynamic Contact Stress under Different Screw Speeds

The central elastohydrodynamic contact stresses of the BSs under different helix an-
gles and different screw speeds are shown in Figure 12. As shown in Figure 12a, the
non-Hertzian solution is smaller than the Hertzian solution of the central elastohydro-
dynamic contact stress at contact point A. The central elastohydrodynamic contact stress
decreases with the increase in the helix angle and the screw speed, respectively. As shown
in Figure 12b, the non-Hertzian solution is greater than the Hertzian solution of the central
elastohydrodynamic contact stress at contact point B. The central elastohydrodynamic con-
tact stress increases as the helix angle increases, and decreases as the screw speed increases.
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Figure 12. Comparison of the elastohydrodynamic stress between the Hertzian solution and non-Hertzian solution under
different screw speeds. (a) Central elastohydrodynamic contact stress of point A. (b) Central elastohydrodynamic contact
stress of point B.

The wear depth and wear rate of the BSs are mainly influenced by the asperity contact
stress. The asperity contact stresses in the elliptical contact region of the BSs under different
helix angles and different screw speeds are shown in Figure 13. The law of the asperity
contact stress of points A and B is the same as that of the elastohydrodynamic contact stress
of points A and B. Under the helix angle of 21.71◦, the calculation accuracies of asperity
contact stress for the non-Hertzian solution are 2.93% and 3.01% more accurate than that of
the Hertzian solution at the screw-raceway contact region and the nut–raceway contact
region, respectively.
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5. Conclusions

Due to the obvious asymmetry of the raceway contact region of the high-speed
BSs, a non-Hertzian elastohydrodynamic contact stress calculation method based on the
minimum excess principle is proposed, and the conclusions below can be drawn:

(1) The normal contact stress error between the Hertzian solution and the non-Hertzian
solution increases as the helix angle, and the contact stress error of the screw raceway
contact region is always greater than that of the nut raceway contact region.

(2) The non-Hertzian elastohydrodynamic contact stress of the BSs show different
trends in the contact regions of the screw raceway and nut raceway with the increase of the
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helix angle and screw speed, respectively. The non-Hertzian solution is smaller than the
Hertzian solution of the central elastohydrodynamic contact stress at the screw raceway
contact region. However, the non-Hertzian solution is greater than the Hertzian solution of
the central elastohydrodynamic contact stress at the nut raceway contact region.

(3) The positioning accuracy of the DNBSs is obviously influenced by the wear of
the raceway due to the asperity contact problem. Under the helix angle of 21.71◦, the
calculation accuracies of asperity contact stress for the non-Hertzian solution are 2.93%
and 3.01% more accurate than that of the Hertzian solution at the screw raceway contact
region and the nut raceway contact region, respectively. Therefore, the non-Hertzian
elastohydrodynamic contact stress calculation method is essential to precisely analyze the
wear mechanism of the high-speed BSs.
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Glossary
a Major axis of the elliptical contact region/mm
b Minor axis of the elliptical contact region/mm
c Contact gap between the two contact surfaces/mm
d Approaching distance of the contact surface/mm
h Lubricant film thickness/µm
n Number of the working ball
p Normal contact stress/MPa
r Radius/mm
u Entrainment velocity/(mm/s)
x, y, z Coordinates in ball screws
A Area/(µm2)
D Fractal dimension
E Elasticity modulus/MPa
F Force/N
G Scale parameters
K Deformation influence coefficient/(mm/N)
I, J Total number in the x or y direction
L Pitch of the screw/mm
M Torque/(N/mm)
Q Load/N
R The ratio of the asperity bearing stress
ROU Profile of the rough surface/µm
V Contact deformation/mm
W Quadratic function
α Helix angle/◦

β Contact angle/◦

ε Iteration precision
θ Deflection angle of the contact region/◦

υ Poisson ratio
τ Lubricant film shear stress/MPa
ρ Lubricant film density/(kg/m3)
η Lubricant film viscosity/(Pa·s)
µ Friction coefficient
Ω’ Screw speed/(mm/s)
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Nomenclature

0 Initial value
1, 2 The two contact surfaces
a Asperity bearing
bb Ball
f Lubricant film bearing
g Contact gap
h Mesh region
i, j Column or row number
pre Preload
t, n, b Coordinates in OHtnb
o, e Entrance and exit coordinates of the contact region
A Contact point between ball and screw raceway
AH Contact point between ball and screw raceway with Hertzian contact
B Contact point between ball and nut raceway
BH Contact point between ball and nut raceway with Hertzian contact
IH Inertia
S Screw
SA Friction between ball and screw raceway
SB Friction between ball and nut raceway
N Nut

Abbreviations

BSs Ball screws
DNBSs Double-nut ball screws
EHL Elastohydrodynamic lubrication
NC Numerical control

Appendix A

The Finite Difference Method

The finite difference method is an approximation method for solving the numerical
solution for differential equations. The main principle of the finite difference method is to
make a direct difference approximation to the differential term in the differential equation,
thus transforming the differential equation into the algebraic equation for the solution.
Due to the advantages of conceptual clarity, generality, and ease of implementation on
computers, the finite difference method is widely used in the field of differential equation
solving. Therefore, the Reynolds equation describing the elastohydrodynamic contact
characteristics of the lubricant film of DNBSs under different operating conditions is
determined by the finite difference method in this paper.
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