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Abstract: Topology optimization problems pose substantial requirements in computing resources,
which become prohibitive in cases of large-scale design domains discretized with fine finite element
meshes. A Deep Learning-assisted Topology OPtimization (DLTOP) methodology was previously
developed by the authors, which employs deep learning techniques to predict the optimized system
configuration, thus substantially reducing the required computational effort of the optimization
algorithm and overcoming potential bottlenecks. Building upon DLTOP, this study presents a
novel Deep Learning-based Model Upgrading (DLMU) scheme. The scheme utilizes reduced order
(surrogate) modeling techniques, which downscale complex models while preserving their original
behavioral characteristics, thereby reducing the computational demand with limited impact on
accuracy. The novelty of DLMU lies in the employment of deep learning for extrapolating the results
of optimized reduced order models to an optimized fully refined model of the design domain, thus
achieving a remarkable reduction of the computational demand in comparison with DLTOP and
other existing techniques. The effectiveness, accuracy and versatility of the novel DLMU scheme
are demonstrated via its application to a series of benchmark topology optimization problems from
the literature.

Keywords: structural model order upgrading; topology optimization; DLTOP; deep belief networks

1. Introduction

As the size and complexity of numerical models used in structural analysis and design
are continuously augmenting and there is no analogous increase in the available computing
power, the advantages gained through the exploitation of soft computing techniques are
often investigated. In the case of gradient-based optimization algorithms, where sensitivity
analysis plays a significant role during the search process, up to 90% of the computations
are devoted to the solution of the equilibrium equations:

P = K× U (1)

whereas the respective percentage exceeds 97% in metaheuristic search algorithms. In
Equation (1), U and P denote the displacement and loading vectors, respectively, and K
refers to the stiffness matrix of the structural system. Therefore, the solution of real-world,
large-scale, complex structural optimization problems is a computationally demanding
undertaking.

Structural optimization problems can generally be distinguished into three categories:
sizing, shape and topology optimization [1–3]. The latter aims to identify the optimal
topological arrangement of the material over the design domain of a structural system, for
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a given set of load and support conditions. In principle, topology optimization supersedes
sizing and shape optimization, in the sense that its output is also optimal with respect to
sizing and shape criteria. The application of such approaches enables the establishment of
structural systems that are virtually optimal in shape, thus providing an invaluable guide
throughout the conceptual design phase [4,5].

Over the past decade, research on modern soft computing techniques drew significant
attention [6], leading to the development of new methods able to handle large amounts
of data and extremely complex problem definitions. The focus of the present study is on
the application of soft computing methods in the fields of optimal analysis and design
of structures, wherein recently there is a growing interest for exploiting deep learning
techniques to accelerate topology optimization procedures. A detailed state-of-the-art
review, along with a topology optimization via neural reparameterization framework, can
be found in the work of Zhang et al. [7].

Some of the most computationally demanding problems in structural optimization
are those that involve several solutions of the equilibrium equation (Equation (1)), as
factorizing the stiffness matrix is time- and resource-consuming. To overcome this limita-
tion, it is necessitated to resort to techniques that reduce the order of the stiffness matrix,
minimize the necessary iterations of the search process or achieve a combination of these.
This work aims to achieve both objectives, by virtue of establishing a novel model order
reduction scheme and minimizing the required number of iterations for the topology
optimization problem solution. The proposed scheme is labeled DLMU, which stands
for “Deep Learning-based Model Upgrading”, and is founded on the idea of using deep
learning to extrapolate results of small- to large-scale models without compromising the
solution quality.

The paper proceeds with providing an overview of deep learning procedures in
Section 2, followed by a description of the accelerated topology optimization concept in
Section 3. Subsequently, in Section 4 the proposed Deep Learning-based Model Upgrading
(DLMU) scheme is described in detail, and Section 5 contains the results of the numerical
tests performed to assess its efficiency in comparison with other acceleration techniques of
the solution process of the topology optimization problem.

2. Deep Learning

Deep belief networks (DBNs) are regarded as the pioneering model of deep learning
practices, as when first introduced [8,9] they were the first deep model that upon success-
ful training managed to outperform Support Vector Machines (SVMs) in a classification
problem [10]. DBNs represent generative models of probabilistic nature which contain a
population of latent, stochastic parameters. These parameters are used as characteristics
detectors of higher order correlations into the training/testing datasets.

The DBN is created when several Restricted Boltzmann Machines (RBMs) are stacked
in a sequential manner [11]. This architecture is formed by the principle that the hidden
layer of RBMi−1 becomes the seeable one for RBMi. Furthermore, note that in DBNs, all
layers have directed connections except for the last two which have undirected ones [12].
Let us consider a representation of such a network composed by five layers of size L1, L2,
L3, L4 and L5, respectively, where a quadruple of RBMs construct a DBN. RBM1 consists
of layers L1 and L2 while the remaining RBMs are determined correspondingly. Based
on the previous description, L2 is the hidden layer for RBM1 while it constitutes also the
visual one for RBM2.

As mentioned before, training of deep networks of such architecture was not possible
until the training methodology proposed by Hinton [10] was published. This methodology
consists of a two-step training procedure: in the first one, termed as pre-training, each
RBM of the DBN is trained according to an unsupervised manner, while in the second one,
labeled as fine-tuning, the whole DBN undergoes supervised training [10,13]. Pre-training
is performed by applying the contrastive divergence method in each RBM, sequentially.
For RBM1, the visible layer refers to the actual input while the hidden layer, once trained,
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will act as the visual layer in the training of RBM2 as described previously. The weight
coefficients (wij) of every RBM’s links are updated as follows:

∂ log p(v; θ)

∂wij
=
〈
vihj

〉
input −

〈
vihj

〉
model

wnew
ij = wij + e∆wij

(2)

where p() denotes the state probability of the network; θ represent the set of weight and
bias coefficients; vi and hj denote the state of ith and jth unit of the visible (v) and hidden (h)
layer, respectively; and e denotes the weight learning rate and defines the range of weight
changes. Fine-tuning is performed once pre-training is finished; the latter is performed
by means of the back propagation algorithm [14] combined with the conjugate gradient
algorithm [15].

A similar architecture to DBNs are the Deep Boltzmann Machines (DBMs), introduced
in 2009 [16], which also are probabilistic graphical models with multiple layers of stochas-
tic nodes. DBNs and DBMs share many common features in terms of architecture and
functionality, where there are no connections between nodes of the same layer and the
adjacent ones are fully connected, i.e., all nodes of a specific layer are linked to all nodes of
the next and previous layers.

The main difference is the fact that all layers of a DBM are undirected. Apart from the
first layer, also known as visible, all other layers of the network are hidden. A simple DBM
with five layers can be seen in Figure 1. As energy-based models, an energy function is
used for defining the joint probability distribution of the variables, similarly to DBNs [12].
The energy of a DBM like the one presented in Figure 1 can be calculated as follows:

E(v, h1, h2, h3, h4, h5; θ) = −vTW1h1

− h1W2h2 − h2W3h3

− h3W4h4 − h4W5h5

(3)

while the probability assigned to input v is defined by the following expression:

p(v; θ) =
1
Z ∑

h1 :h5

e−E(v,h1,h2,h3,h4,h5;θ)
(4)

where Z is calculated from the summation of all probabilities of existing pairs [1], θ
represents the weights and biases of connections between layers of the network. The
training of a DBM is accomplished with the use of a greedy layer-wise pre-training, as in
the case of DBNs, by decomposing the DBM into RBMs and using back-propagation.
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Figure 1. Deep Boltzmann Machine example.

3. Accelerated Structural Topology Optimization

Topology optimization (TO) aims at establishing the optimal material distribution
over the design domain with reference to performance objectives (e.g., compliance) [17],
subject to predefined loading and boundary conditions. Its application spectrum extends
over several fields, including implants manufacturing [18], aerospace engineering [19],
architectural engineering [20], design of materials [21], fluid mechanics [22], structural
engineering [4] and others.

Several approaches have been proposed for solving TO problems, the main ones be-
ing [17] (i) Level-Set method, (ii) Density method, (iii) Phase field method, (iv) Topological
derivative method and (v) Evolutionary method. SIMP is the most well-known variant of
the density method, which was proposed in the 1990s [23–25]. The general formulation of
a TO problem is summarized below:

Minimize F(x)

subject to :

K×U = P

g(x) ≤ 0

0 ≤ x ≤ 1

(5)

where F(x) denotes the criterion/objective (e.g., compliance of the structural system) to be
optimized, x refers the vector of unknowns, i.e., the FEs densities, K is the stiffness matrix
of the structural system, vectors P and U contain the loads and displacements, respectively
and g(x) is the vector of constraint functions (volume fraction, etc.).

3.1. The SIMP Approach

SIMP is conceivably the most commonly employed approach for solving TO problems.
In structural topology optimization (STO) problems, the system compliance C is the most
widely adopted performance indicator. If ne FEs are used to discretize the design domain
Ω, the distribution of material over Ω is expressed via xi, where i ∈ [1, 2, . . . , n] and
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xi ∈ (0, 1]. xi correspond to the density values of each FE: xi = 0 indicates no material
over the ith FE domain, while xi = 1 indicates that the ith FE domain is filled with material.
Therefore, Equation (5) can be written as follows:

Minimize C(x) = U(x)T × P

subject to :

K(x)×U(x) = P

V(x)
V0

= Vt

0 < x ≤ 1

(6)

where C(x) is the compliance for the current material distribution x, and V(x), V0 and Vt,
respectively, denote the volume values corresponding to the current and initial density
vectors x and x0, as well as the target volume value of the optimized domain. In SIMP, the
Young modulus E is associated via a power law to the density value of each FE as follows:

Ex(xi) = xp
i E0 ⇐⇒ Kx(xi) = xp

i K0 (7)

where the penalization parameter p is usually set equal to p = 3. Thus, compliance can be
expressed as follows:

C(x) = U(x)T × P ⇐⇒
C(x) = UT(x)× K(x)×U(x) ⇐⇒

C(x) =
n

∑
i=1

xp
i UT

i K0
i Ui

(8)

Accordingly, the formulation of Equation (6) can be expressed as

Minimize C(x) =
n

∑
i=1

xp
i UT

i K0
i Ui

subject to :

K(x) ∗U(x) = P

V(x)
V0

= Vt

0 < x ≤ 1

(9)

In the literature, various search algorithms have been used in conjunction with SIMP for
solving the optimization problem of Equation (9). The most commonly employed ones are
the Optimality Criteria (OC) algorithm and the Method of Moving Asymptotes (MMA).

3.2. The Deep Learning-Assisted Topology Optimization (DLTOP) Methodology

SIMP is one of the most widely employed, highly accurate and robust methodologies,
applicable to a wide spectrum of TO problems. Nonetheless, in the field of STO, the
required model scale, complexity and discretization level are continuously increasing, and
thus the application of SIMP to such problems encounters bottlenecks, even in modern
computing facilities, due to the substantial associated demand in computing time and
resources.

This insufficiency of SIMP motivated the development of DLTOP by the authors.
In cases of pattern recognition problems, DBNs are able to discover the different levels
of representation of the data nonlinearity. This capability of DBNs motivated the recent
development of the so-called Deep Learning-assisted Topology Optimization (DLTOP)
methodology by the authors of [1], which enables reducing the iterations required by
SIMP. The novelty of DLTOP lies in the use of deep learning techniques (DBNs) to propose
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a close-to-final optimized configuration of a structural system, based upon the system
configuration after only a few SIMP iterations. This eliminates the greatest portion of the
required SIMP iterations to obtain the final optimized structural topology, thus resulting in
a substantial reduction in the required computing time and resources, while overcoming
potential bottlenecks that would otherwise be encountered. The novel DLMU methodology
proposed in this paper partially relies on the idea of DLTOP; however, it is additionally
assisted by information provided by reduced models of the design domain, thus allowing
for further acceleration of SIMP. Before presenting the features and advantages of DLMU,
it is useful to provide here a detailed description of DLTOP.

DLTOP is a combination of SIMP and DBNs, where a DBN is trained to transform
the pattern of density fluctuation of FEs generated during the starting iterations of SIMP
to the final distribution of the density values xi over the design domain. DBN prediction
capability is built based on a training procedure performed once over benchmark TO
problems. The main advantage of DLTOP is that DBN needs not be trained again before
being applied to any STO problem, irrespective of the FE mesh configuration and type
(structured/unstructured), domain dimensions, target density, loading and boundary con-
ditions, SIMP implementation features (e.g., filter value), etc. This key feature of DLTOP is
attributed to its implementation such that every FE is handled separately, without requir-
ing information regarding its location over the domain, its specific boundary and loading
conditions, etc. The validation of DLTOP via several benchmark topology optimization
test examples indicates a reduction of the number of iterations originally required by SIMP
by more than one order of magnitude. Expectedly, the gain in computing time offered by
DLTOP is proportional to the TO problem size. DLTOP is described hereafter with the use
of a qualitative example.

Let us consider a design domain discretized with ne FEs. In every iteration t of SIMP,
the density values xi (that is also denoted as di ≡ xi) are being updated for every FE. The
fluctuation of the density value di of the ith FE can be expressed as a function of t as follows:

di = f (t) ∀ i ∈ [1, ne] (10)

The density value fluctuation with respect to the SIMP iterations varies drastically for dif-
ferent FEs [1], due to their relative position over the domain with respect to loads, supports,
etc. In this sense, each FE represents a different optimization history of density values with
respect to the SIMP iterations, analogous to a discrete time-series. An initially uniform
density value of 0.40 is specified for all FEs over the mesh, equal to the target volume ratio
of the system of 40%; this constitutes common practice in SIMP implementation [26,27].
The computational demand of SIMP depends on the number of FEs. Considerable demands
are posed even by moderately discretized domains, which becomes more pronounced in
finer 3D meshes. As an example, the STO problem of a 3D bridge test case, discretized with
a moderately dense mesh of 83,000 FEs, requires up to 7 h for performing 200 iterations
of SIMP in serial CPU execution and up to 1 h in parallel GPU environment [4]. The
DLTOP methodology can be applied to both serial or parallel, CPU or GPU execution
implementations.

DLTOP can be seen as a two-phase methodology. In the first phase, SIMP performs
a limited number of iterations; the histories of the density values generated during these
iterations are used as input data for the DBN. At the end of the first phase, DBN proposes
an optimized distribution of the density values over the design domain based on this
input data. Upon evaluation of the input data by the trained DBN, the latter performs
a discrete jump from the pool of density values of the initial iterations to a close to final
density for every FE. Subsequently, as part of the second phase, SIMP carries out a series of
limited additional iterations, which corresponds to a fine-tuning process over the DBN-
proposed distribution of optimized densities. A schematic representation of the two-phase
DLTOP procedure to a single, randomly selected FE is depicted in Figure 2, where the
abscissa correspond to the iterations performed by SIMP and the ordinate to the specific
FE densities.
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Figure 2. Implementation of the DLTOP methodology for a single finite element.

Classification represents a challenging problem class for predictive models. Compar-
ing the well-known regression predictive models with the classification ones, it is worth
mentioning that the latter require information related to the complexity of a sequence
dependence amid input parameters. For the STO problem, the density values of the early
SIMP iterations represent the sequence dependence information that needs to feed the
proposed (classification) methodology. The sequence of discrete-time data, i.e., the density
value for every FE and the maximum number of iterations T required for convergence by
SIMP, are generated by SIMP and stored in a density matrix D, as shown below:

D =


d1,1 d1,2 . . . d1,T
d2,1 d2,2 . . . d2,T

...
...

. . .
...

dne,1 dne,2 . . . dne,T

 (11)

A limited number of the iterations of the optimization procedure equal to the initial t
iterations are used as time-series input data for training the DBN while the vector of the
final SIMP iteration, i.e., the Tth column of D, is used as the target vector during the DBN
training. 

d1,1 d1,2 . . . d1,t d1,t+1 . . . d1,T−1 d1,T
d2,1 d2,2 . . . d2,t d2,t+1 . . . d2,T−1 d2,T

...
...

. . .
...

...
. . .

...
...

dne−1,1 dne−1,2 . . . dne−1,t dne−1,t+1 . . . dne−1,T−1 dne−1,T
dne,1 dne,2 . . . dne,t dne,t+1 . . . dne,T−1 dne,T


Training Sample Not Used Target

(12)

4. The Deep Learning-Based Model Upgrading (DLMU) Scheme

The novelty of DLTOP lies in the use of deep learning techniques (DBNs) to propose
a close-to-final optimized configuration of a structural system, based upon the system
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configuration after only a few SIMP iterations. This eliminates the greatest portion of the
required SIMP iterations to obtain the final optimized structural topology, thus resulting in
a substantial reduction in the required computing time and resources, while overcoming
potential bottlenecks that would otherwise be encountered. Within the scope of further
enhancing the computational efficiency of DLTOP, the authors envisioned a novel approach
that combines deep learning with reduced-order modeling, which led to the development
of the DLMU scheme presented in this paper. DLMU is based on DLTOP, however its
novelty lies in the application of DLTOP to reduced-order models of the original system,
instead of the system itself, and the subsequent extrapolation of their results to a full-scale
optimized configuration of the original system, using the same deep learning techniques
(DBNs). DLMU thus inherits the benefits of DLTOP and achieves equivalent accuracy,
but substantially outperforms it in respect of computing time and demand in computing
resources. In this section, the proposed DLMU scheme is described together with its
implementation features.

Starting with a topology optimization problem formulated with the desired mesh
density, five models with sparser meshes are generated, with identical structural and
topology optimization problem characteristics. Each finite element (FE) of the dense mesh
is linked with an element from each of the sparse meshes, based on their geometric center
proximity, which enables generating volume-density data for each element of the dense
mesh. Using two benchmark examples obtained from the literature, a deep belief network
(DBN) is trained, by feeding as input the final optimized shape obtained for the five TOPs
where the sparsely-meshed identical design domains were used, and as the target of the
DBN training the per element volume of a densely meshed identical design domain.

Towards implementing the DLMU scheme on topology optimization problems, the
user needs to apply the Solid Isotropic Material with Penalization (SIMP) approach assisted
by deep learning [1] on five identical but sparsely-meshed problems. The final volumes
per element and per mesh are fed as input to the previously trained DBN and the network
proposes an almost final volume value for each element of the dense meshed problem.
This output is then fine-tuned by the SIMP approach, by performing a limited number
of iterations. Note that the population of fine-tuning iterations is not user-defined, but
rather determined by the quality of the DBN output. The SIMP termination criterion is the
same with the typical SIMP approach. By upgrading reduced order models without the
requirement to retrain the DBN, DLMU achieves a substantial reduction in the computing
time of topology optimization problems, regardless of the problem formulation, as will be
shown in several numerical tests presented in the numerical tests section.

As a result, SIMP can be applied on a reduced order model until the termination
criterion is reached. The output is read by the trained Convolutional Neural Network
(CNN) which enhances the “resolution” of the SIMP results and provides a close to final
result for the same problem but with a significantly finer mesh. This CNN output is
fine-tuned by SIMP. As evident in all 2D test cases examined in numerical tests section,
the application of CNN-assisted procedures in various topology optimization problems
leads to drastic reduction in the required time without compromising the quality of the
final result. Again, the population of fine-tuning iterations is not user-defined, but rather a
result of the quality of the CNN output.

4.1. The Methodology

An STO problem TOP f , where subscript f stands for the fully refined FE model, is
defined by its problem properties [L f

xyz, ne f , S f
c , P f

c , V f
t ], which, respectively, stand for

the design domain dimensions, number of FEs adopted for the discretization of the model
to be optimized, support conditions, loading conditions and target volume ratio, where in
cases of a structured mesh ne f = ne f

x × ne f
y × ne f

z . STO problems, associated with models
of reduced order with respect to the number of FEs (ne) and identical properties otherwise,
can be described as TOPR

(i) : [L f
xyz, neR

(i), S f
c P f

c , V f
t ], where superscript R stands for the
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reduced order model and subscript i denotes the id of the reduced order model. The core
part of the DLMU scheme is described hereafter.

4.1.1. Step 1: Solving the STO Problem Based on Reduced Order Models

Let us assume that TOP f denotes the STO problem that is to be solved. The first
step involves the generation of a number nROMs of reduced order models (ROMs) (five in
this study) along with the formulation of the corresponding (TOPR

(i)) problems
(i = 1, 2, . . . , nROMs). With regard to the problem formulation, the only difference be-
tween each one of them and TOP f is the number of FEs used for discretizing the design
domain. The number of FEs used for the nROMs = 5 problems follows the rule

neR
1 < neR

2 < neR
3 < neR

4 < neR
5 << ne f (13)

A set of matrices DR
(i), (i = 1, 2, . . . , nROMs), contains the list of the domains generated

during solution of the corresponding (TOPR
(i)) problems. The solution is performed by

means of the DLTOP methodology, which is implemented independently for each of the
nROMs STO problems of the ROMs. For each (TOPR

(i)) problem the procedure is terminated
when DLTOP converges, i.e., the termination criterion (percentage of change) of the refine-
ment part performed by SIMP is fulfilled. The output consists of the optimized domain
DR
(i),OPT for each one of the nROMs STO problems. Without loss of the generality of the

DLMU scheme, let us assume that the STO problem TOP f to be solved refers to a 2D design
domain discretized with a structured mesh, and thus the optimized domains DR

(i),OPT of

the TOPR
(i) problems can be described as follows:

DR
(i),OPT =



dopt
1,1 dopt

1,2 . . . dopt
1,neR

(i),x

dopt
2,1 dopt

2,2 . . . dopt
2,neR

(i),x
...

...
. . .

...
dopt

neR
(i),y ,1

dopt
neR

(i),y ,2
. . . dopt

neR
(i),y ,neR

(i),x


(14)

where dopt
l,k , with l = 1, 2, . . . , neR

(i),y and k = 1, 2, . . . , neR
(i),x, denotes the material density of

the (l, k) element of the neR
(i),x × neR

(i),y structured mesh.

4.1.2. Step 2: Definition of the Initial Design

In the second step, the initial design D f
(0) that will be used for solving the TOP f prob-

lem is created based on the DR
(i),OPT by means of extrapolation, for every i = 1, 2, . . . , nROMs,

where

D f
(0) =



d(0)1,1 d(0)1,2 . . . d(0)
1,ne f

x

d(0)2,1 d(0)2,2 . . . d(0)
2,ne f

x
...

...
. . .

...
d(0)

ne f
y ,1

d(0)
ne f

y ,2
. . . d(0)

ne f
y ,ne f

x


(15)

In particular, every optimized design DR
(i),OPT is used for generating an optimized topology

of D f via interpolation from scale neR
(i) to ne f . This provides a dataset DTOP of nROMs

optimized topologies for the TOP f problem, which can be represented as
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DTOP =



T(d)
1,1 T(d)

1,2 . . . T(d)

1,ne f
x

T(d)
2,1 T(d)

2,2 . . . T(d)

2,ne f
x

...
...

. . .
...

T(d)

ne f
y ,1

T(d)

ne f
y ,2

. . . T(d)

ne f
y ,ne f

x

 (16)

where

T(d)
i,j =

[
{dk,l}

opt
TOPR

1
, {dm,n}opt

TOPR
2

, . . . , {db,c}
opt
TOPR

5

]
, (17)

and

i ∈ [1, ne f
y ], j ∈ [1, ne f

x ], k ∈ [1, neR
1,y], l ∈ [1, neR

1,x], . . . , b ∈ [1, neR
5,y], c ∈ [1, neR

5,x] (18)

As can be observed in Equation (16), ne f vectors T(d)
i,j are generated, containing the density

values of the FE in each DR
(i),OPT that is closest in terms of centroidal distance to the FE of

TOP f that T(d)
i,j describes.

4.1.3. Step 3: Prediction

In the last step of the DLMU scheme, a DBN is implemented for deriving a final
density value for each of the ne f FEs of the TOP f problem, based on its T(d) information
accompanied by a convolution step. The output of the DBN-convolution procedure is used
as input for the refinement that is implemented by SIMP, where the required iterations for
convergence are performed. The schematic representation of the DLMU scheme is given in
Figure 3. In order for DBN to be able to discover a correlation between T(d) of each FE and
its final density value in TOP f

OPT , a calibration procedure needs to be performed after first
creating a training dataset.

4.2. DBN Calibration—Training Dataset

The training dataset required for training the DBN used in the 3rd step of the DLMU
scheme consists of the results taken for two benchmark test problems presented in a recent
study by the authors [1]: a cantilever beam and a simply supported beam. The required
form of the dataset is described in Equation (19).
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(19)

For each of the two test examples, the number of FEs required for the formulation of the
fully refined TOP f problem is chosen as 200,000. Additionally, consideration is given to
five different combinations of reduced order models and corresponding TOPR

(i) problems.
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The respective number of FEs for each combination of TOPR
(i) problems is given in the

matrix of Equation (20) for test example m:

DATm =


1000 2000 3000 4000 5000
2000 3000 4000 5000 6000
4000 5000 6000 7000 8000
2000 5000 7000 8000 10,000
6000 7000 8000 9000 10,000

 (20)

where m = 1 for the cantilever beam and m = 2 for the simply supported beam. Both
matrices DAT1 and DAT2 are combined to formulate the training dataset, which consists
of nearly 1,500,000 training patterns of [T(d) → di,TOP f ]. Once the calibration is completed,
the DLMU scheme can be applied for solving any STO problem without the need for
recalibration, as density fluctuations of any FE with respect to model upgrading are
examined. The performance of the DLMU scheme is evaluated against five well known
test examples in the next section.

Figure 3. Flowchart of the DLMU scheme.

5. Numerical Tests

The performance evaluation of the DLMU scheme is conducted based on five 2D test
examples (see Figure 4) taken from the literature. The topology optimization is performed
using the SIMP approach and record is kept of the necessary iterations for convergence,
objective function value and execution time. Without loss of generality, the compliance is
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used as the objective function to be minimized. The same test examples are also optimized
with the use of the proposed DLMU scheme and the same records are kept. As on the basis
of the DLMU scheme iterations are performed on domains with less dense meshes, the
comparison is based solely on the execution time, whereas iterations are mentioned for
completeness and refer to those performed for the fine meshes. In the case of SIMP, the
total time from the domain definition up to the end of the final iteration is recorded. In the
case of the DLMU scheme, the time from the definition of DR

(i),OPT to the end of the final

iteration of D f
(0) is recorded. The DLMU scheme requires the formulation of five domains

with reduced number of FEs per test case for creating DR
(i),OPT , where the specified neR

(i)
are equal to [5000, 7000, 10,000, 15,000, 20,000], respectively. Regarding the number of
FEs in the final domain of each test example, four different cases are examined to evaluate
the performance of DLMU scheme: [75,000, 100,000, 150,000, 200,000]. At the last part
of the comparative study the DLMU scheme is additionally compared with DLTOP [1]
and DL-SCALE [28] methodologies for the case of 200,000 FE. The five test-examples are
described hereafter.

Figure 4. Schematic representation of five test examples.

Regarding the computational environment, it should be noted that both SIMP runs
and network built were performed in Matlab, SIMP runs were implemented in CPU and
training was implemented both in CPU and GPU environment. The CPU and the GPU that
were used for performing the training part are an Intel i9-9920x and an Nvidia Titan RTX
while RAM was equal to 64 Gb.

5.1. Description

The geometric configuration of the five design domains, along with the boundary and
loading conditions considered for the test examples are presented in Figure 4. Without
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loss of the generality of the proposed scheme, a structured FE mesh discretization was
used, the corresponding ratio ney/nex and the target volume fraction Vt for each of the
test examples are as follows. Test example A: ney/nex = 1/3 , Vt = 30%. Test example
B: ney/nex = 1/2, Vt = 30%. Test example C: ney/nex = 1/2, Vt = 45%. Test example
D: ney/nex = 1/3, Vt = 30%. Test example E: ney/nex = 1/3, Vt = 30%. For all five test
examples, a sensitivity filter was used for the SIMP implementation with radius equal to 3.

5.2. Performance of the DLMU Scheme

This section discusses the performance of the DLMU scheme in the five test-examples,
for the five fully refined discretizations considered, i.e., [75,000, 100,000, 150,000, 200,000].
For each test example, the performance of the DLMU scheme is compared with the cor-
responding implementation of SIMP, with respect to the time and number of iterations
required for the fully refined discretization, as well as the solution quality, as inferred by
the objective function value. For the finer discretization with 200,000 FEs, a comparative
evaluation of the DLMU scheme and the DLTOP methodology is further conducted. The
computing effort required by DLMU refers to the time needed for implementing Steps 1,
2 and 3 of the scheme. All recorded data for test example A are given in Table 1. DLMU
achieved a maximum reduction of computational time equal to 80.64% for the case of
200,000 FEs in D f

(0) with respect to SIMP, while the objective function value slightly in-
creased by 0.73%. The final optimized topologies generated by SIMP and DLMU for the
finer discretization with 200,000 FEs are shown in Figure 5a,b, respectively.

Table 1. Test example A—Performance of the DLMU scheme.

ne
SIMP DLMU

Acceleration (%) Reduction (%)
Iterations Objective Time (s) Iterations Objective Time (s)

75,000 251 248.41 404.89 80 249.40 219.40 45.87 −0.40
100,000 331 246.46 736.53 61 247.37 224.06 69.58 −0.37
150,000 340 243.52 1203.95 72 245.15 337.66 71.95 −0.67
200,000 521 242.62 2559.05 86 244.39 495.55 80.64 −0.73

Figure 5. Optimized domain for test example A for the case of 200,000 FEs discretization: (a) SIMP
output and (b) DL-SCALE output.

Accordingly, all recorded data for test example B are given in Table 2. Similar to
the previous case, DLMU achieved a maximum reduction of computational time equal
to 56.91% for the case of 200,000 FEs in D f

(0) with respect to SIMP, while a decreased
objective function value by 0.58% was achieved. The final optimized topologies generated
by SIMP and DLMU for the finer discretization with 200,000 FEs are shown in Figure 6a,b,
respectively.
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Table 2. Test example B—Performance of the DLMU scheme.

ne
SIMP DLMU

Acceleration (%) Reduction (%)
Iterations Objective Time (s) Iterations Objective Time (s)

75,000 401 159.86 505.88 79 158.83 292.43 42.19 0.64
100,000 444 158.44 774.02 58 157.83 291.76 62.31 0.38
150,000 514 156.35 1438.26 98 155.73 461.50 67.91 0.40
200,000 367 156.01 1382.55 107 155.10 595.76 56.91 0.58

Figure 6. Optimized domain for test example B for the case of 200,000 FEs discretization: (a) SIMP
output and (b) DL-SCALE output.

Subsequently, all recorded data for test example C are given in Table 3. Similar to the
previous cases, DLMU achieved a maximum reduction of computational time equal to
78.69% for the case of 200,000 FEs in D f

(0) with respect to SIMP, while the objective function
value slightly increased by 0.11%. The final optimized topologies generated by SIMP and
DLMU for the finer discretization with 200,000 FEs are shown in Figure 7a,b, respectively.

Table 3. Test example C—Performance of the DLMU scheme.

ne
SIMP DLMU

Acceleration (%) Reduction (%)
Iterations Objective Time (s) Iterations Objective Time (s)

75,000 131 109.84 225.78 61 109.73 196.48 12.98 0.10
100,000 438 111.53 1025.44 65 111.03 243.43 76.26 0.45
150,000 509 111.52 1888.79 74 21.62 321.29 61.44 0.09
200,000 556 112.51 2838.85 101 112.63 604.94 78.69 −0.11

Figure 7. Optimized domain for test example C for the case of 200,000 FEs discretization: (a) SIMP
output and (b) DL-SCALE output.

All recorded data for test example D are given in Table 4. Similar to the previous cases,
DLMU achieved a maximum reduction of computational time equal to 60.58% for the case
of 200,000 FEs in D f

(0) with respect to SIMP, while the objective function value is almost the
same with that achieved by SIMP. The final optimized topologies generated by SIMP and
DLMU for the finer discretization with 200,000 FEs are shown in Figure 8a,b, respectively.
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Table 4. Test example D—Performance of the DLMU scheme.

ne
SIMP DLMU

Acceleration (%) Reduction (%)
Iterations Objective Time (s) Iterations Objective Time (s)

75,000 261 21.30 330.54 74 21.22 204.30 38.19 0.38
100,000 326 21.45 559.69 79 21.38 252.59 54.87 0.33
150,000 310 21.60 833.30 74 21.62 321.29 61.44 −0.06
200,000 358 21.79 1306.80 99 21.79 515.14 60.58 −0.01

Figure 8. Optimized domain for test example D for the case of 200,000 FEs discretization: (a) SIMP
output and (b) DL-SCALE output.

All recorded data for test example E are given in Table 5. Similar to the previous cases,
DLMU achieved a maximum reduction of computational time equal to 67.48% for the case
of 200,000 FEs in D f

(0) with respect to SIMP, while the objective function value slightly
increased by 0.77%. The final optimized topologies generated by SIMP and DLMU for the
finer discretization with 200,000 FEs are shown in Figure 9a,b, respectively.

Table 5. Test example E—Performance of the DLMU scheme.

ne
SIMP DLMU

Acceleration (%) Reduction (%)
Iterations Objective Time (s) Iterations Objective Time (s)

75,000 314 23.71 462.43 80 23.72 246.44 46.71 −0.05
100,000 393 23.79 813.58 114 23.78 261.53 55.56 0.08
150,000 429 23.99 1396.71 183 23.87 718.71 48.54 0.49
200,000 573 24.16 2538.61 156 23.97 820.53 67.68 0.77

Figure 9. Optimized domain for test example E for the case of 200,000 FEs discretization: (a) SIMP
output and (b) DL-SCALE output.

5.3. Comparison with the DL-SCALE and DLTOP Methodologies

Recently, a new methodology named DL-SCALE [28] has been proposed by the
authors that also aims to reduce the computational demand of topology optimization with
the use of deep learning under a reduced order modeling framework. In this section, the
efficiency of the proposed DLMU scheme is assessed in terms of computing time and
objective function value over the past ones proposed by the authors (i.e., the DLTOP [1]
and DL-SCALE [28] methodologies) for the case of 200,000 number of FEs. The comparison
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is presented in Table 6. The final optimized configuration achieved by any of the three
methodologies (DLMU/DL-SCALE/ DLTOP) is more or less identical to the one obtained
using SIMP, and thus a comparison of the results is made only in respect of iterations,
objective function value and running time.

Regarding the implementation details, DLTOP requires performing 36 conventional
steps of SIMP, then the already trained DBN is used to perform a close to final density
distribution for the case of three classes classification (i.e., 0, 0.5 and 1), followed by the
refinement steps. Regarding the DL-SCALE methodology, its implementation requires
a set of nprobs auxiliary STO problems that rely on reduced order models compared to
the fully refined TOP f one. Based on the investigation performed in [28], the number
of these problems is equal to nprobs = 5 and the number of FEs used to discretize these
coarse meshes are equal to [3000, 4000, 5000, 7000, 10,000] elements, respectively. Evidently
both DLMU and DL-SCALE outperform DLTOP in all test examples considered, both in
terms of acceleration and reduction of the objective function value, all compared with
the time required and the result obtained by the corresponding implementation of SIMP
approach. Furthermore, DLMU slightly outperforms DL-SCALE in terms of the quality of
the solution achieved as denoted by the reduction of the objective function value compared
to the reference one obtained by SIMP.

Table 6. Comparison of the DLMU scheme with the DL-SCALE and DLTOP methodologies for the case of 200,000 number
of FE.

SIMP DLMU/DL-SCALE/DLTOP
Acceleration (%) Reduction (%)

Iterations Objective Time Iterations Objective Time

Example A

DLMU 86 244.39 495.55 80.64 −0.73
DL-SCALE 107 246.82 670.52 73.80 −1.73

DLTOP
521 242.62 2559.05

141 244.96 765.96 70.07 −0.97

Example B

DLMU 107 155.10 595.76 56.91 0.58
DL-SCALE 90 156.08 539.94 60.95 −0.04

DLTOP
367 156.01 1382.55

115 161.65 639.29 53.76 −3.61

Example C

DLMU 101 112.63 604.94 78.69 −0.11
DL-SCALE 88 112.79 561.89 80.21 −0.25

DLTOP
556 112.51 2838.85

121 110.56 696.58 75.46 1.73

Example D

DLMU 99 21.79 515.14 60.58 −0.01
DL-SCALE 86 21.76 480.23 63.25 0.12

DLTOP
358 21.79 1306.8

165 21.82 848.38 35.08 −0.15

Example E

DLMU 156 23.97 820.53 67.68 0.77
DLSCALE 132 24.82 737.59 70.95 −2.73

DLTOP
573 24.16 2538.61

220 26.35 1156.65 54.44 −9.07

6. Discussion

SIMP is considered as one the most widely used approaches for solving TO problems,
that, like every structural optimization procedure, is associated with increased demand
in computing time and resources. The DLTOP methodology previously developed by the
authors of [1], motivated by the insufficiency of SIMP approach, employs deep learning ap-
proaches to reduce the number of SIMP iterations, thus achieving a substantial acceleration
of the STO problem solution procedure. Specifically, a great amount of SIMP iterations is
eliminated by employing a trained DBN, which uses the data generated during the first
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few iterations to propose a close to final optimized configuration of the design domain, that
is then fine-tuned with only a few additional iterations of SIMP. The efficiency of DLTOP
stems from the fact that the DBN needs only be trained once and can be subsequently
applied to any 2D or 3D STO problem, irrespective of its specifications. Within the scope
of further enhancing the computational efficiency of DLTOP, the authors envisioned a
novel approach that combines deep learning with reduced-order modeling, which led to
the development of the DLMU scheme presented in this paper. Building upon the main
principle of DLTOP, the novel DLMU scheme further employs deep learning to extrapolate
the results of reduced order models to the full model of the design domain. DLMU thus
inherits the benefits of DLTOP, in respect of training and calibrating the DBN only once,
while also achieving further acceleration of SIMP via the employment of reduced order
models, without compromising the solution quality.

The conclusions drawn regarding the DLMU scheme performance, based upon its
application to a series of benchmark STO problems from the literature, as well as its
comparison to SIMP, DLTOP and the novel DLSCALE approach also proposed by the
authors [28], are summarized hereafter: (i) DLMU achieves a remarkable acceleration of
SIMP, of the order of 40–80%; (ii) the acceleration of SIMP offered by DLMU becomes
more pronounced with increasing mesh density, as a result of the enhanced reduced order
modeling efficiency (acceleration increases by 15–65% between 75,000 and 200,000 FEs);
(iii) DLMU does not compromise the solution quality offered by SIMP, irrespective of
the employed mesh density (less than 1% reduction of objective function value for all
test examples and mesh densities); (iv) DLMU, DLTOP and DL SCALE outperform SIMP,
achieving similar acceleration values of the order of 35–80%, with negligible impact on the
solution quality (less than 2% reduction of objective function value for all test examples and
mesh densities); (v) in the majority of cases (test examples B, C, D, E), DLMU marginally
underperforms DL SCALE; and (vi) in all cases DLMU and DL SCALE outperform DLTOP,
which highlights the efficiency enhancement stemming from the employment of a reduced
order model framework.

The future work is oriented towards the development of a web application where the
two trained machine learning components of the proposed scheme will be provided for free.
With regard to the topology optimization part, in order to replicate the results presented
above, TOP88 needs to be used (freely available). With regard to the deep learning part of
the work, the reader should contact the corresponding author (nlagaros@central.ntua.gr)
for providing the trained DBM networks.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Networks
DBN Deep Belief Network
DBM Deep Boltzmann Machine
DLMU Deep Learning-based Model Upgrading
DLTOP Deep Learning-assisted Topology Optimization
FE Finite Element
RBM Restricted Boltzmann Machine
SIMP Solid Isotropic Material with Penalization
STO Structural Topology Optimization
TO Topology Optimization
TOP Topology Optimization Problem
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