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Abstract: Despite recent Artificial Intelligence (AI) advances in narrow task areas such as face
recognition and natural language processing, the emergence of general machine intelligence continues
to be elusive. Such an AI must overcome several challenges, one of which is the ability to be aware of,
and appropriately handle, context. In this article, we argue that context needs to be rigorously treated
as a first-class citizen in AI research and discourse for achieving true general machine intelligence.
Unfortunately, context is only loosely defined, if at all, within AI research. This article aims to
synthesize the myriad pragmatic ways in which context has been used, or implicitly assumed, as a
core concept in multiple AI sub-areas, such as representation learning and commonsense reasoning.
While not all definitions are equivalent, we systematically identify a set of seven features associated
with context in these sub-areas. We argue that such features are necessary for a sufficiently rich theory
of context, as applicable to practical domains and applications in AI.

Keywords: context; artificial general intelligence; context-rich AI; knowledge graphs; commonsense
reasoning; semantic web; explainable AI; representation learning

1. Introduction

Artificial Intelligence (AI) has made enormous strides in the last several years both
due to the advent of technologies such as deep learning [1], and the cost-effectiveness
and pervasiveness of supporting infrastructures, such as the evolution of GPUs [2], cloud
computing [3], and open datasets and software [4]. In a number of well-defined and
significant tasks, including face recognition [5], machine translation [6], and question
answering [7], achieving or even crossing human-level performance is considered inevitable
by mainstream researchers. It has even been argued that due to the success of AI in these
individual applications, the achievement of Artificial General Intelligence (AGI) may be
closer than expected. The challenges in truly accomplishing AGI are formidable, and has
always been recognized by the experts. For example, in interviews conducted in 2018 with
23 prominent researchers and stakeholders working in AI today (including Google AI chief
Jeff Dean and Stanford AI Director Fei-Fei Li), Martin Ford reports in their book that, among
the 18 who answered, the average estimate was that AGI was still at least 80 years away [8].
A primary reason cited was that we were still missing the fundamental breakthroughs
needed for machines to achieve a general and powerful model of intelligence [9].

Before AGI or any intelligent system that interfaces with humans in complex problem
settings can be developed and deployed, the system must be capable of understanding
context. Imbuing AI with context is an important milestone in realizing the broader goal of
building adaptive architectures that can interact with humans naturally and seamlessly.
Unfortunately, while many ‘dictionary’ (and in a few cases, academic) definitions of context
exist (as further detailed in Section 2), and there is commonsense understanding of the
word, there is lack of clarity between how such definitions map to current research and
practice in the AI community.

With this motivation in mind, we argue that context needs to be conceptualized as a
novel class of information in intelligent systems. Only through a direct discussion of context
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can we start to distinguish between the different kinds of context, and disambiguate the
varying, conceptually overloaded ways in which context is used as a term in professional
practice. To this end, we discuss how context is understood and applied in various influ-
ential sub-fields in AI, including representation learning, Semantic Web, and explainable
AI (Section 3). Based on this discussion, we distill seven key domain- and application-
independent features that we argue to be important aspects of any theory of context that is
sufficiently general (Section 4).

Context-rich AI is starting to witness a growing body of attention in industry, govern-
ment and academia. Nevertheless, context is still not recognized as a fundamental kind of
information. Most discussions on context, including the use of the word in AI publications
and books, has been informal or even implicit. We argue that, because there is increasing
interest from the community in context-rich AI, this is a productive time for researchers to
be making progress on the theory and practice of context (Section 5). The article concludes
in Section 6.

This article is not an attempt to present an actual theory of context. Indeed, it is not
evident that a single theory of context can even be applied to all AI systems. A preliminary
and informal version of some of the arguments in this article was also published earlier by
the author in a blog post: https://mkejriwal1.medium.com/artificial-intelligence-needs-
to-be-more-context-aware-ecc3097ee2ea (accessed on 1 November 2021). Rather, our more
modest goal is to systematically discuss context, as a first-class citizen and novel class of
information, in AI systems and applications that are expected to interface and interact with
humans in complex problem domains, and that continue to be active subjects of research.

2. Background on Context: Definitions and Example Usage

While AI research has now been maturing for almost 60 years since the famous
Dartmouth conference [10], interestingly, task-specific development of AI (or what is
now popularly referred to as Artificial Narrow Intelligence (ANI), in contrast with AGI)
was not the most compelling research area at the time. Instead, the goal was to build
machines that exhibited true intelligence, and had a degree of generalizability that could
potentially make them indistinguishable from humans. There was an optimistic belief
that such breakthroughs were on the horizon, but an analysis of AI history shows that
the field has tended to go through ebbs and flows, with several AI winters having come
and gone over the decades, many involving neural networks and their promise [11]. To
make meaningful progress, and advance the research agenda, the last three decades have
witnessed a particularly increased development in building algorithms and systems that
could do well in specific tasks including face recognition [12], machine translation [13],
sentiment analysis [14] and information extraction [15], to only name a few.

However, now that excellent progress has been achieved on some of those tasks,
researchers are again starting to come around to the development of more ‘general’ and less
‘task-centric’ AI, particularly in the NLP and computer vision communities. In Section 3,
we describe research in specific sub-areas in AI to bolster the claim that context is an
important part of this discussion. However, despite this interest, a standard definition
of context has proven to be surprisingly complex. Oxford Languages defines it as the
“circumstances that form the setting for an event, statement, or idea, and in terms of which
it can be fully understood and assessed.”

More academic treatments, such as in areas within the social sciences and humanities
(e.g., anthropology and sociology), generally understand context to refer to objects or
entities surrounding a “focal event” e.g., that it is a “frame that surrounds the event and
provides resources for its appropriate interpretation” [16]. Table 1 provides a sample of
definitions and studies from both common and academic sources. We are not aware of
context ever having been defined in an AI paper, although it is in common use today in
many applications and sub-communities (as subsequently shown).

https://mkejriwal1.medium.com/artificial-intelligence-needs-to-be-more-context-aware-ecc3097ee2ea
https://mkejriwal1.medium.com/artificial-intelligence-needs-to-be-more-context-aware-ecc3097ee2ea
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Table 1. Example definitions and studies of context from six independent sources. We quote from
the sources directly in the table, except where indicated in italics.

Definition / Study Source

The circumstances that form the setting for an event, statement, or
idea, and in terms of which it can be fully understood and assessed.

Oxford Languages

An early survey of context in AI in the late 1990s, including context
in knowledge acquisition, context in communication, and context in
ontologies, to only name a few.

[17]

Any information that can be used to characterize the situation of an
entity (whereby) an entity is a user, a place, or a physical or computa-
tional object that is considered relevant to the interaction between a
user and an application, including the user and application themselves.

[18]

(i) The parts of a discourse that surround a word or passage and can
throw light on its meaning; (ii) The interrelated conditions in which
something exists or occurs.

Merriam-Webster

(i) Applying context to a situation, task, or system state provides mean-
ing and advances understanding that can affect future decisions or
actions; (ii) Integration of context-driven AI is important for future
robotic capabilities to support the development of situation aware-
ness, calibrate appropriate trust, and improve team performance in
collaborative human–robot teams.

[19]

Domain-specific usages include: “a probability distribution over the con-
cepts in an environment [20], a set of relationships between objects [21],
logical statements that represent cause and effect [22], or a function to
select relevant features for object recognition [23].”

Quote is from [19], with
cited sources
including [20–23]

No matter the definition adopted, we could well argue that, at an intuitive level,
these definitions share many common threads, including the relativistic nature of context.
Beyond a definition, it is important to explicitly address the question: why is context
important for AI? We believe that the most effective way to answer this question is to
present some representative examples below where context is shown to be vital for human
thinking, reasoning and navigation of everyday situations. For an AI to successfully
interact with humans, or replicate (or even supersede) these abilities, it must be both aware
of context, and be able to handle it appropriately, which may or may not mirror human
cognition. We designate such an AI as a ‘context-rich AI’. Subsequently, in Section 3, we
study various sub-areas of current AI research to understand how context is drawn upon
in such areas, directly or indirectly. Based on this study, Section 4 enumerates and makes
a case for essential features that a theory of context must incorporate and address, as
applicable to AI research.

2.1. Example Usage: Context in Conversation

Philosophers of language, and cognitive scientists, are familiar with the conversational
maxims proposed by [24] as a model for why (and how) most people are able to make
sense of conversation even when so much is left unsaid. Conversations rarely happen in a
vacuum, but are situated in a context. The most immediate context might be the previous
‘sentence’ that was spoken, but it is only a small part of the conversational context. The
people who are conversing, their roles in the conversation (e.g., an individual talking to
another as a friend versus as a colleague), their individual goals in the conversation and
the circumstances of the conversation (e.g., planned versus serendipitous) as well as the
history of past conversations and shared assumptions, all constitute the context around a
particular conversation, although some aspects may dominate over others. One kind of
AI that attempts to maintain and remember such long histories is a never-ending learning
system such as NELL [25], but it has not been shown to be proficient at navigating in, or
designed for, such personalized contexts. Chatbots that are currently being developed in
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industry would be the greatest beneficiaries of context-rich AI research that is able to take
Grice’s maxims and conversational contexts more fully into account [26,27].

2.2. Example Usage: Context as Background Knowledge

Background knowledge helps us navigate everyday life in more ways than we con-
sciously realize [28]. The example above also relied on background knowledge as a
contextual aspect of conversation, at least to an extent. However, beyond conversation,
background knowledge plays an important role in more abstract tasks such as planning [29].
For example, when setting our calendars, we choose not to make business calls on Sunday
because we know (or suspect) that the business might be closed on that day. Similarly, we
plan ahead for summer vacations because experience has taught us that the summer is a
heavy-demand period for vacations, and that we will not get good deals (or any deals) if
we book closer to the anticipated vacation.

The influence of personal experience on background knowledge is an interesting one
that is not completely settled, and is not deeply relevant to the topic at hand. There is
ample evidence that some background knowledge is coded at the level of instincts and may
have genetic or evolutionary origins [30] (e.g., fear of snakes, but not electricity). Others
are learned from experiences, while yet others are a combination of nature and nurture [31].
This is generally true for many aspects of human cognition and is unlikely to be settled
anytime soon. For AI research, the question is more pragmatic. Namely, for an AI to
have a relatively complete ‘model’ of background knowledge and use it in a context-rich
fashion, should it learn the model from large quantities of data, as language representation
learning models, such as GPT-3 and BERT [32], in the NLP community, try to do, or should
it instead apply powerful reasoning techniques on a core set of principles, common entities
and relations? Proponents of deep learning believe in the former, but more recently, some
researchers have started to explore the benefits of combining or encoding top-down AI
principles in neural architectures [33]. In the foreseeable future, such hybrid approaches,
properly founded on a rigorous theory of context, may yield many insights that could
lead in smaller, more powerful models that are more explainable (see Section 3.4) and
context-rich, but without having billions of parameters, such as GPT-3 [34].

2.3. Example Usage: Expression and Behavior Adaptation in Social and Emotional Contexts

Human beings are able to adapt their behavior in varying social and emotional con-
texts [35]. For example, an ordinary human being would not crack a joke at a funeral, and
would be more conservative with humor in a work party than in a party with close friends.
While humor is just one aspect of outward social interaction [36], many other examples
can be construed that are similar, including formality of conversation, use of sarcasm [37],
emotional intensity, choice of verbiage (e.g., explaining a concept to a layperson versus a
scientific audience of experts) and even modality of expression (e.g., text message versus
email) [38]. Currently, even AIs that are trained to produce conversation or text (including
chatbots, and automated email and sentence completion) only work properly in a very
specific context, and are not able to adapt seamlessly with changing social and emotional
context. An AI guided by an appropriate theory of context may be more human-like in its
assessment of, and adaptation to, complex real-world settings.

3. Research in Context-Rich Artificial Intelligence

While context-rich AI continues to be actively researched in the AI community, it is
already beginning to achieve a degree of maturity in several sub-communities [19]. In
this section, we describe four representative areas of AI research that significantly rely on
context, as defined in Section 2, to achieve their goals, some more directly than others.
While we do not claim that these are the only areas pertinent to the research of context-rich
AI, we use them as our primary basis for enumerating the requirements that a potential
theory of context must fulfill to be generalizable to several AI areas that rely on context.
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3.1. Representation Learning

Representation learning is intimately connected with the growth and success of deep
learning [39,40]. In the early days of machine learning, and even as recently as a decade ago,
the primary machine learning workflow involved ‘feature engineering’ as a core step [41].
The importance of feature engineering was so well recognized that it was, at times, difficult
to gauge whether an improvement in state-of-the-art performance on some task, such as
sentiment analysis [42], was due to an algorithmic or model innovation, or due to better
feature engineering [43].

Today, representation learning has largely, although not completely, eliminated the
need to painstakingly engineer and evaluate sets of features. The core idea behind learning
a representation of a “data item” (whether it is an image, a document, or even a character in
a long string of text) is to “embed” it in a real-valued, low-dimensional vector space using a
neural architecture. The argument is that such “embeddings” capture key properties of the
data using a small set of real numbers, without requiring manual feature engineering [40].
Beyond improvements in performance that have been achieved using these methods, an
impressive early finding, especially in the NLP community [44], was that such methods
could capture analogies and other abstract relations that are evident in human cognition,
e.g., the word2vec model [45] could automatically complete analogies such as King is to man
as Queen is to woman, despite never having been trained explicitly to do well on such tasks.

We note that the embedding of data in low-dimensional spaces is itself not novel:
previously, topic models such as Latent Dirichlet Allocation (for text) [46], and other
classic dimension-reduction methods (for data that was represented more abstractly or was
otherwise vectorized already) had already achieved some breakthrough innovations in this
area. Today, however, representation learning is almost exclusively associated with neural
representation learning. The topic receives wide coverage in the top machine learning
conferences, including NeurIPS (https://nips.cc/, accessed on 1 November 2021) and the
International Conference on Learning Representations (ICLR) (https://iclr.cc/, accessed
on 1 November 2021).

In practice, representation learning is a broad area of research, and different communi-
ties approach it in different ways. In the computer vision community, the neural network
itself learns the representations (given just raw inputs of pixels) that is task-optimal. The
last layer of a convolutional network trained in a supervised setting, for example, could be
used for getting learned representations of an image, including an unlabeled image [47].

In the NLP community, the earliest representation learning algorithms following
the advent of neural networks have assumed a local definition of context. For example,
models based on word2vec (skip-gram and continuous-bag-of-words) typically slide a
“window” of a pre-specified size over the text, and use the words in the window flanking
the target word as co-context [48]. Similarly, the GloVE model uses a matrix of co-occurring
words [49]. In the data mining community, researchers have shown that the premise behind
word2vec can even be applied to graphs, and have used it to learn representations for the
nodes in a graph, such as a social network [50,51], or even a geospatial network [52]. When
this was first proposed in the mid-2010s, state-of-the-art performance was achieved for
important data mining tasks such as link prediction, using considerably simpler systems
than had been previously proposed.

Gradually, the definition of context has broadened, along with (not coincidentally)
the advent of more powerful and novel neural network models such as transformers,
which have led to new-age embedding models such as BERT, RoBERTa and, more recently,
GPT-3 [32,34]. Among other capabilities, such models have the capability of retrieving
different embeddings of the same word based on the sentence in which the word is situated.
Context has, therefore, started to play a more direct role, even after the training is finished.
Transformers are inherently (and explicitly) more context-friendly than some of the other
models that came before them. Research on transformers continues at a frenetic pace,
and more recently, they have even been applied in computer vision, with promising
results [53]. Locality, but also selective activation of data items or elements that are salient

https://nips.cc/
https://iclr.cc/
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to the target for which an embedding is being learned (sometimes achieved through
“attention” mechanisms, such as in [54]), are both important features in the definition of
context employed in the representation learning literature. In Section 4, we discuss these
features further.

3.2. Commonsense Reasoning and Knowledge

Commonsense reasoning involves processing information about a scenario in the
world, and making inferences and decisions by using not only the ‘explicit’ information
available to the senses and conscious mind, but also context and implicit information that
is based on our “commonsense knowledge” [55,56]. Commonsense knowledge is difficult
to define precisely but it may be assumed to be a broad body of knowledge of how the
world works. While interesting also to cognitive scientists and philosophers, commonsense
reasoning is intriguing to specialists in AI because it has also revealed potential pitfalls in
the manner in which such reasoning systems are traditionally evaluated, i.e., using one or
more multiple choice question answering or QA benchmarks [57]. Two assumptions have
come under attack in the AI community in the last two years: first, that multiple choice
questions are adequate for assessing commonsense reasoning capabilities, and second, that
simple ‘one-off’ question answering itself is enough to evaluate commonsense reasoning,
as opposed to other tasks such as storytelling and abstractive summarization [58] that
are more context-rich, and also seem to rely heavily on commonsense knowledge in the
real world.

To address some of these concerns, generative QA tasks have already been proposed
and are slated to grow in popularity [59]. A critical issue that the community is looking
at is a reliable mode of evaluating system performance on such tasks. Because generative
QA can result in open-ended answers, more innovation is needed on how to evaluate the
“goodness” of a system’s answers without always relying on human annotation that is
available on-demand, such as in a crowdsourcing framework.

True commonsense reasoning in machines requires a theory of context, especially
for enabling some of the example usages we described in Section 2. Recent work has
attempted to build a theory of commonsense [60], which could potentially be used for
deriving a theory of context. However, recent work has shown that the theory may have
to be supplemented with additional terms, since it does not always definitively map
to human annotations [61]. Because commonsense includes both intuitive physics and
intuitive psychology, advances in machine commonsense will likely have to draw on a
broad and holistic definition of context, including understanding how events relate to one
another, relational dependencies between objects and events, and appropriate framing of
goals and assumptions given a task as input. We discuss some these features in more detail
in Section 4.

3.3. Knowledge Graphs and Semantic Web

Graphs have been ubiquitous in AI since its founding, but have tended to be more
associated with the planning community [62,63]. With the publishing of Google’s influential
post on “things, not strings” in 2011 [64], knowledge graphs (KGs) have come to be
recognized as a flexible and data-driven way of modeling a domain using entities, relations,
and events, rather than as collections of primitives (e.g., strings and numbers) that are
lacking in semantics. Figure 1 above illustrates a simple domain-specific knowledge graph
over the Books domain. Companies such as Google and Microsoft have taken this concept
much further [65], and the Google Knowledge Graph is known to be a web-scale graph
constructed in a data-driven fashion from numerous sources and over broad domains.
The Google Knowledge Graph underlies at least some of the search artifacts (such as a
knowledge panel) that are produced in response to queries such as “Leonardo da Vinci”.
Knowledge graphs have led to enormous advanced in both generic and domain-specific
(e.g., e-commerce) search [66], and are being constructed in some form in almost all the big
technology companies. COVID-19 knowledge graphs were even constructed in the earliest
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days of the pandemic [67]. Typically, KGs are constructed over text and Web data, though
more recently, multi-modal and domain-specific KG construction has started to become
popular [68,69].

Figure 1. An example knowledge graph (KG) fragment from the Books domain.

KG research has a closer connection to context-rich AI than may initially meet the eye.
First, KGs are (typically) populated according to a domain model, called an ontology, that
contains the concepts, constraints and relations that serve to define both the scope and
vocabulary of a domain. It would not be incorrect to say that a KG exists in the context of a
domain and a task (or set of tasks), with the former defined using frameworks such as the
Web Ontology Language (OWL) [70]. For example, the ontology underlying the KG in the
figure may contain concepts such as “book”, “person” and “publisher” (among others),
and relations such as “author_of” and “publisher_of”. Concepts and relations may have
sub-concepts and sub-relations; for example, an “author” concept that is a sub-class of
‘person’ could be declared in the ontology. These relations connect the entities, which are
formally instances of concepts, in the KG. Constraints, which are not visible on the surface,
prevent unwanted declarations in the KG, e.g., one reasonable constraint might be that the
range of the “author_of” relation must be an instance of a “person” concept.

The Semantic Web community has conducted much research over the years on rigor-
ous ways to formally express ontologies and knowledge graphs [71], and has even devel-
oped reasoning engines to infer more facts than are explicitly declared in the KG. More
recently, KG research has intersected with both representation learning and commonsense
reasoning [72]. Within the Semantic Web community, context is therefore often associated
with correctly inferring knowledge that is implicit and possibly, only approximately cor-
rect. Recent advances in neuro-symbolic AI aim to combine the benefits of symbolic and
logic-based AI, and machine learning methods such as deep neural networks [73].

3.4. Explainable AI

Explainable AI has witnessed a resurgence in the last 5–7 years [74,75], both due to
interest from the community and well-funded programs such as the Explainable AI (XAI)
program that was instituted by the United States Defense Advanced Research Projects
Agency (DARPA) in 2016 [76]. According to the program’s website, its central goal is to
‘produce more explainable models, while maintaining a high level of learning performance.’
The definition of explainable AI is more straightforward and less controversial than com-
monsense reasoning, where agreement on a single definition and set of tasks has been
lacking, although there has been convergence over the last two years.

While the direct connection between explainable AI, and some of the other research
areas such as knowledge graphs, representation learning and commonsense reasoning, is
not fully evident, the argument is that any AI system that exhibits the kind of robustness
that would be expected of human intelligence should have the capacity to explain itself [77].
For example, an explanation-capability ought to be a defining feature of a commonsense
reasoner that is asked to provide a justification for an answer or action. Current language
models that have achieved state-of-the-art performance in commonsense QA tasks do not
seem to have this capability (at least in their current state), although recent work has made
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progress on this issue [78]. An advantage of an explanation-capability is that it makes
the AI more trustworthy to non-developers and domain scientists who can probe the AI
for the reasoning behind its decisions. Such a capability would be obviously critical in
an HMI system deployed in the real world. The DARPA XAI program mentioned above
also mentions as its the goal the development of a suite of machine learning techniques
that ‘enable human users to understand, appropriately trust, and effectively manage the
emerging generation of artificially intelligent partners.’

At least in part, an explainable AI can generate convincing explanations by lever-
aging its task-context and background knowledge, and by activating the elements in its
background knowledge that are relevant in the context of the task. For example, when
answering a question such as why will not an elephant fit through my kitchen door? the salient
element that must be activated in the context of the question is size since an elephant is
too big to fit through the kitchen door. However, along with possessing such an activation
capability, the AI must also have the requisite background knowledge about the typical
sizes of kitchen doors and elephants.

4. Understanding Context in Practical AI Research

Based on the discussion in the previous section, we synthesize seven features that
encompass a wide range of context-rich AI applications. These features are neither mu-
tually exhaustive nor completely non-overlapping, but each has distinctive elements. At
minimum, a theory of context must accommodate these seven features, although there may
be domain-specific exceptions.

1. Locality: Locality is usually an important aspect of context, especially in “embedding”
or representation learning algorithms. For example, in the word2vec architecture [45],
and others inspired by it [48,49], only words within a certain window of the target
word are ‘activated’ and considered as the context of that word. Similar notions
apply in graph and network embeddings [50,52]. However, more recently, context has
become less local due to the use of powerful features such as biased random walks
when training graph embeddings [51,79,80].

2. Selective Activation of Salient Elements: Whether local (such as in the applications
above) or non-local, context involves selective activation of salient elements. In the
case of using random walks for embeddings, the nodes and edges in the walk may
be considered to be the salient elements, even though they may not be considered
local to the target node. In cognitive and agent-based architectures, certain kinds
of long and short-term memory retrieval may be used to selectively activate salient
elements [81].

3. Relational Dependencies: In the definitions in Table 1, we noted indications of rela-
tional dependencies between elements or objects when context is invoked. Specifically,
depending on the application, context may be defined as (emphasis ours) “a probabil-
ity distribution over the concepts in an environment [20], a set of relationships between
objects [21], logical statements that represent cause and effect [22], or a function to select
relevant features for object recognition [23].” Another kind of relational dependency
may arise due to the application. On social media, for example, the context for train-
ing a tweet embedding may include metadata (such as the user posting the tweet)
rather than just the content in the tweet [82,83]. This metadata expresses the relation
between a user profile and between the actual tweet content, both of which can exist
independently, but which need to be related to each other to learn good embeddings
for either.

4. Implicitness: Especially in common sense reasoning and explainable AI research,
certain pieces of information are considered implicit. Grice’s conversational maxims
are good examples of statements that explain some of the implicitness in conversa-
tion [24]; however, other similar maxims, or a generalization of the original maxims,
may be necessary to categorize and explain implicitness in domains such as computer
vision that are non-linguistic.
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5. Open-World Environments: As AI systems are implemented in organizations and
customer-facing applications, they must increasingly adapt to the “open world”.
An open world environment is one where either the structure or parameterization
(or both) is unknown or unknowable [84]. An example of the latter is a chaotic
system with a high degree of uncertainty around the initial conditions [85]. One can
probabilistically reason about the outcomes given the laws governing the dynamics
of the system, but the outcome at a given point of time may be largely unknown
with any reasonable confidence. The real world, and complex systems in the real
world, are good examples of open worlds that are (at best) partially unknown, at
least in practice, and (at worst) may not be completely knowable, even in theory.
Philosophers have long argued about whether complete and provable knowledge
is even possible in such systems, due to uncertainty [86], vagueness [87], and the
circularity of induction [88].
An important aspect of open worlds is that, due to their (partially) unknown parame-
terization and structure, unexpected situations and “novelties” might occur [89]. The
COVID-19 pandemic is a good example of a global novelty that may have profound
long-term consequences, long after the pandemic. If interactions between human
or machine agents are occurring in an open world, an instantiated theory of context
will likely have to rely on powerful representational techniques, such as open sets
and infinite-state Markov processes [90,91]. We hypothesize that early theories of
context will likely make the closed-world assumption, with a proper framing of tasks,
goals and assumptions (as discussed below). Research on open worlds is still in its
infancy in the AI community, although recent progress on open-world learning has
been impressive [92]. We posit that a theory of context in open-world environments
may be necessary for building a sufficiently powerful AGI.

6. Event-Driven Triggers: While real life, and aspects of human–human interaction often
seems to proceed seamlessly and “naturally”, there are epistemic and behavioral
transitions in most non-trivial interactions. In other cases, a specific event (such as a
disagreeable statement) may trigger such a transition explicitly. When two friends are
having a casual conversation, and one of the friends receives an urgent phone call
from her child’s school, the event triggers stress and causes the other friend to elicit
concern, sometimes non-verbally. In most real world and open world environments,
unexpected events will occur with non-vanishing probability, as argued earlier. Such
events could potentially alter the terms of an interaction, which must be accounted
for by a robust theory of context [93,94].

7. Framing of Tasks, Goals and Assumptions: Contextualization often occurs in the
presence or ‘frame’ of one or more tasks, goals and assumptions. In cognitive science,
such framing is considered vital for human interaction [95,96]. Some or all of these
may be implicit. When having a written dialog with a human individual, a machine is
implicitly assuming that the person can read and understand the language in which
the machine is outputting dialog. Moreover, in the context of a customer service
dialog, the machine may assume that the customer has a specific need or problem,
and the conversation is occurring with the goal of solving the problem. The task is
then sequential and multi-step: to first understand the need of the customer, and
to then devise a solution for it, without recourse to a human operator, if possible.
Within a specific application, therefore, an instantiation of a ‘good’ theory of context
must formalize and epistemically represent the tasks, goals and assumptions for
all agents (human and machine) interacting in an environment. For example, if
these epistemic states are considered continuous, rather than discrete, the theory
may rely on Markov processes and differential equations, whereas workflow-like
models [97,98] may suffice if there is only a small set of tasks, goals and assumptions.

We note that this list is intended to be suggestive, not exhaustive. There may very well
be other features that a full theory of context could attempt to incorporate and organize.
At least one utility of such a theory would be to provide an account (which could be
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descriptive or quantitative) of whether one or more contextual assumptions can be used in
the system design process, including in such steps as training-data acquisition, to improve
key-performance indicators, such as efficiency and generalization. Another explanatory
role would be to understand the relative importance of each feature during the design
(‘offline’) phase versus real-time use (‘online’). We also suspect that such a theory would
have communicative utility, since it would help all stakeholders clearly demarcate (and
document) the contexts in and around system usage using specific, consistent terminology
defined within the confines of the theory.

Finally, the theory could be used to formulate and assess hypotheses, whether using
computational tools, social science methodologies, arguments, or other modalities of
hypothesis exploration, as deemed appropriate. For example, we hypothesize that, in
an HMI setting involving a pre-trained intelligent architecture, designed for the average
working-age adult, features (4) and (6) in the list above are more relevant than (3). We
also suspect that feature (5) increases in importance the more the system interacts with
someone. In contrast, features (1) and (2) may be particularly important in HMI settings
where a physically embodied architecture (such as a robot) is involved. To rigorously
test such hypotheses, clear guidelines and metrics may have to be proposed (which may
themselves be field- and architecture-specific) to measure “intuitive”-sounding terms such
as “importance”.

5. Supporting Ecosystems and Social Factors

A range of supporting ecosystems, both in industry and through governmental bodies
such as national funding agencies, are currently geared toward supporting some of the
areas we covered in Section 3, and a few consider context as a central concept in the future
development of AI. Before describing some of these programs, we note the importance of
ecosystems and social factors for enabling research in context-rich AI, both theoretically
and empirically. In an economy with heavy competition for resources, it is difficult to
rally interest in a field unless there are incentives and supporting infrastructures in place.
The fact that funding opportunities for developing more context-rich AI already exist
(with some having been launched very recently) is an encouraging finding, suggesting
that context-rich AI will get the attention it deserves. We focus primarily on supporting
ecosystems in the United States, although similar findings apply both in China, where AI
research has accelerated immensely over the last few years, and also the European Union.

In the United States, the National Science Foundation (NSF), has instituted multiple
programs where context-rich AI is going to play a key role, although the development of
such an AI is not the “direct” aim of the effort. One example is the relatively recent call
for “AI Institutes”, a joint government effort [99] between NSF, the U.S. Department of
Agriculture (USDA) National Institute of Food and Agriculture (NIFA), the U.S. Depart-
ment of Homeland Security (DHS) Science and Technology Directorate (S&T), and the U.S.
Department of Transportation (DOT) Federal Highway Administration (FHWA). It also
involves significant industry participation from the likes of Amazon and Google (among
others). Simply put, these institutes are meant to facilitate “new and sustained research in
AI to drive science and technology progress”. Teams comprising one or more organizations
can submit proposals to one of eight themes. One of these themes is “human–AI interaction
and collaboration”. In both Sections 2 and 3, we argued that, for seamless human–AI
interaction and collaboration to occur, an AI must necessarily (although not sufficiently) be
context-rich.

Some other themes also have relevance to context-rich AI, including AI-Augmented
Learning [100]. While this is the most direct and well-funded example of context-rich AI
enablement (with an anticipated funding of USD 128 to 160 million over eight institute
selections), in recent years, other similar but smaller-scale multi-disciplinary AI programs
have also been announced.

The relevance of context-rich AI to military applications and the United States De-
partments of Defense (DoD) cannot be underestimated. Multiple DARPA programs have
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been instituted in the last few years that involve context, either directly or indirectly. Many
of these programs are described as “third-wave AI” programs [101] that combine (and
improve upon) the best of first-wave AI (logical, rule-based and/or expert systems) and
second-wave AI (machine learning and other ‘inductive’ architectures). We mentioned the
DARPA XAI program earlier [76], but another one is the DARPA Machine Common Sense
(MCS) program [102] that directly funds research and development in commonsense AI,
which must be context-rich and context-aware to achieve its full potential.

Yet another example is the DARPA Science of Artificial Intelligence and Learning
for Open-world Novelty (SAIL-ON) program [89], which attempts to build AI systems
that can ‘act appropriately and effectively in novel situations’ that occur in open worlds,
of which the real world is an example. Context and novelty go hand-in-hand, since an
event is typically novel with respect to its context. For example, if someone starts shouting
in the middle of an examination, that would (generally) be considered more novel than
if someone started shouting in a political rally or a protest. We argued in Section 4 that
open-world environments are an essential feature that must be accounted for in viable
theories of context.

However, despite the interest from national funding agencies and the Department of
Defense, we believe that industry will be among the greatest beneficiaries of the coming-
of-age of context-rich AI, including AI applications built on rigorous theories of context.
Chatbots and autonomous interfaces (e.g., website “assistants”) are becoming more preva-
lent throughout modern business [26], and not just limited to the “Big Tech” enterprises.
Similarly, knowledge graphs and Semantic Web technologies are starting to become in-
creasingly popular in mainstream applications, including finance and medicine [67,103].
Industry-academic cooperation and funding opportunities have been increasing through-
out AI, and industry researchers are fairly prominent in the key data mining and machine
learning conferences. Another beneficiary of this research will be non-profit and gov-
ernment, especially in topical areas such as disaster relief and crisis management [104].
Building trustworthy AI is an especially important goal if the technology is to witness
greater uptake in government agencies and the non-profit sector. We noted earlier the close
connection between explainable AI and trustworthy AI, and the belief that context-rich AI
will be necessary for achieving both of these goals. A complete and self-consistent theory of
context may help us to better understand these issues, especially when it comes to building
sophisticated AI systems that need to communicate and collaborate with humans in natural
and intuitive ways.

6. Conclusions

In this article, we explored the different definitions of context, and argued that, despite
the prevalence and maturity of context-rich AI research, context is still treated implicitly
in much of this research. In addition to presenting multiple definitions of context, we
distilled seven key features of context by studying how context is viewed in several sub-
areas of AI. These features include simple constructs such as relational dependencies
(dependencies between elements or objects when context is invoked), to higher-order
environmental constructs such as open-world environments, of which either the structure
or parameterization is unknown (or unknowable).

We argued that a theory explaining context in human–machine interactions in a
structured, domain-independent manner must, at minimum, instantiate and incorporate
these features in addition to other features that may be more domain-specific. We did not
claim that these seven features were complete or even mutually exhaustive. Determining
and quantifying these relationships more formally is a valuable area for future research into
theories of context as understood in AI and Human–Machine Interaction (HMI) research.

Finally, we suggested that the current time is just right for investigating context in
depth, due to a confluence of favorable factors, including sufficient maturity of underlying
technologies, interest from various communities (especially those coming off of recent
successes in deep learning and applied AI), and supporting ecosystems that see advanced
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AI research as geo-politically necessary. We provided examples of currently funded efforts
that are seeking to conduct such advanced research, and where context plays an important
role. This confluence of factors is an important practical step toward realizing the vision of
a more contextualized AI that can be deployed with ease in many real-world applications.

Without a full exploration of context as a first-class epistemological citizen, it will be
difficult to realize such an AI, especially in complex applications where humans and AI
must work, interact and make decisions together. A more complete, empirically falsifiable
theory of context within AI research is a promising future direction for investigation.
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