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Abstract: One of the main issues hindering the adoption of parts produced using laser powder bed
fusion (L-PBF) in safety-critical applications is the inconsistencies in quality levels. Furthermore, the
complicated nature of the L-PBF process makes optimizing process parameters to reduce these defects
experimentally challenging and computationally expensive. To address this issue, sensor-based
monitoring of the L-PBF process has gained increasing attention in recent years. Moreover, integrating
machine learning (ML) techniques to analyze the collected sensor data has significantly improved the
defect detection process aiming to apply online control. This article provides a comprehensive review
of the latest applications of ML for in situ monitoring and control of the L-PBF process. First, the main
L-PBF process signatures are described, and the suitable sensor and specifications that can monitor
each signature are reviewed. Next, the most common ML learning approaches and algorithms
employed in L-PBFs are summarized. Then, an extensive comparison of the different ML algorithms
used for defect detection in the L-PBF process is presented. The article then describes the ultimate
goal of applying ML algorithms for in situ sensors, which is closing the loop and taking online
corrective actions. Finally, some current challenges and ideas for future work are also described to
provide a perspective on the future directions for research dealing with using ML applications for
defect detection and control for the L-PBF processes.

Keywords: machine learning; in process monitoring; online control; Laser powder bed fusion;
sensors

1. Introduction

The unmatched ability of metal additive manufacturing (AM) to produce customized
parts with complex geometries has led to increased demand for these processes. According
to the ISO/ASTM 52900 international standard, the most adapted metal AM technologies
are directed energy deposition (DED) and powder bed fusion (PBF). Both processes use a
laser or an electron beam to selectively melt the metal and build the part in a layer-by-layer
method. Powder bed fusion (PBF) processes include direct metal laser deposition (DMLS),
selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM),
and selective heat sintering (SHS) [1]. The laser powder bed fusion (L-PBF) process has
better surface quality and higher dimensional accuracy than other metal AM processes [2].

The laser powder bed fusion (L-PBF) process produces complex geometries and lattice
structures with high feature resolution [3,4]. Compared to conventional manufacturing
processes, AM processes do not use expensive tooling or dies, which helps to reduce the
lead time for parts manufactured using AM processes [5]. Moreover, L-PBF processes
help reduce the need for assembly, thus decreasing the total number of parts in a single
component [6]. The capabilities for weight reduction have been the main driver for
aerospace industries to invest in L-PBF processes heavily [4]. Furthermore, the ability
to customize implants to each patient-specific anatomy and produce a complex lattice
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structure was vital for the biomedical industry’s interest in L-PBF parts [7]. In addition, the
tools and dies industries have used the advantages of the L-PBF process to manufacture
dies with conformal cooling channels, which significantly improves the performance of
these components [8]. Instead of having traditional drilled cooling channels, the cooling
channels are custom-made to each cavity, thus reducing cooling and cycle times and
improving the overall process performance.

Despite the many technological developments that have taken place in L-PBF pro-
cesses in the past 20 years, they still suffer from poor process repeatability [9,10]. Although
some L-PBF components have already begun their certification routes, parts intended
to be used in highly critical applications are still at the early stages of development and
certifications [11]. Significant research effort has been directed towards experimentally
optimizing the process parameters by understanding the process–structure–property rela-
tionships [12–15], while other research studies mainly focused on physics-based numerical
models to predict the properties of the manufactured parts and attempt to prevent de-
fects [16–18]. Both experimental and numerical efforts have laid a good foundation for
enhancing the understanding of the process. However, these efforts are time-consuming
and computationally expensive [19]. To face the challenges of poor repeatability of L-PBF
processes, developing in situ monitoring systems and feedback control strategies has been
a priority research interest [20]. The ultimate objective of applying in situ L-PBF process
monitoring is developing closed-loop feedback systems [21] that would be able to detect
defects in a suitable response time to take corrective action and eventually improve the
parts’ repeatability and reproducibility.

The development of sensor technologies has led to a significant increase in the amount
and dimensionality of data collected during the L-PBF [22]. An operator will not be ca-
pable of manually screening and modeling the massive amount of data using statistical
methods or a design of experiment approach. As such, a suitable approach to overcome
the challenges in handling the L-PBF data is applying artificial intelligence (AI) solutions
such as machine learning (ML) methods [23]. ML algorithms help identify patterns and
regularities in large datasets with limited process knowledge. The models learn from
data without the need for explicit programming and thus are suitable for in situ moni-
toring of L-PBF processes. Previous research reviewed the advantages of applying ML
in general in manufacturing and highlighted its significance for monitoring and control
applications [23–25]. The integration between ML algorithms and modern in situ sensors
can provide an optimum solution for enhancing the quality of L-PBF processed parts to
meet the requirements of critical applications.

Several review papers have been published in the area of in situ monitoring and control
of metal AM processes. Some review articles focused mainly on sensors integration with
L-PBF processes. For example, Everton et al. [20] focused on reporting efforts in monitoring
and in situ metrology for metal additive manufacturing technologies. Yadav et al. [26]
reviewed the types of process defects that can be monitored via process signatures. Other
articles focused on the general application of ML algorithms in the additive manufacturing
lifecycle. For example, Wang et al. [27] provide a state-of-the-art review on the applications
of ML techniques in various AM technologies. The authors focus on three categories,
namely, design for additive manufacturing, different processes, and production. The
authors concluded that most of the literature focuses on design and engineering, while very
limited research covers science and technology aspects. Therefore, the authors suggested
some new ML application subfields in AM, such as microstructure characterization, new
material development, and topology optimization.

Razvi et al. [22] identified the application of ML in the areas in the AM lifecycle,
including design, process plan, build, postprocessing, and testing and validation. The
authors identified that more research regarding in situ data fusion is needed, not just in
terms of sensor data fusion, but also in correlating in situ and ex situ data. The authors
also highlighted how ML models could be used in design for additive manufacturing to
optimize the part mass, support structure, and build time. Meng et al. [19] focused on
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describing the ML algorithms and classifications in AM technology in general. Examples
from supervised and unsupervised ML models were compared, and the application of
using these models was highlighted. The authors recommended investing more effort
in ML algorithms that would be suitable for AM processes, specifically active learning
techniques.

It was found that limited review articles cover the application of ML for in situ moni-
toring and control of L-PBF processes [28]. In addition, as various research is published on
the application of ML in monitoring the L-PBF process, there was a need to summarize
and compare the relationships of different sensors and the most common ML algorithms
used in this area. This study gives an overview of the need for in situ monitoring of L-PBF
and how different sensors can monitor different process signatures. Furthermore, it high-
lights how ML algorithms can be used to assess the collected data and generate corrective
signals to the process. This paper also classifies the ML algorithms used in L-PBF process
monitoring according to sensor types and highlights the different process signatures that
can be monitored in each case.

The article is organized as follows: first, an overview of the L-PBF process, process
signatures, and defects are described. Then, a description of the different sensors that are
integrated into the L-PBF machine is given. Then, a theoretical background on the different
ML algorithms that can be applied for in situ monitoring and control of L-PBF is presented.
Then, several examples of the application of ML algorithms for in situ monitoring and
control from the literature are reviewed. Finally, the gaps in the literature and future
research recommendations are discussed.

2. Overview of the L-PBF Process

The L-PBF process comprises a powder chamber and a build chamber placed on
movable stages, as illustrated in Figure 1. The process is started by evacuating the chamber
from oxygen and filling the chamber with inert gas, thus preventing heated metals from
oxidation [29]. Then, the building platform is heated if required, and the first layer of
powder is spread on the building platform using a recoater. This recoater can have different
geometries (flat, round, or sharp) [30] and materials (ceramic, high-speed steel, or carbon
fiber brush) [31]. Then, the laser starts scanning specific locations in the powder bed ac-
cording to the part’s geometry. As a result, the powder gains energy and starts transferring
from a solid state to a liquid state, forming a small molten pool referred to as meltpool [32].
The cooling rate of this meltpool is around 103–108 K/s. Therefore, the layer being melted
cools down very rapidly, forming a fine uniform microstructure [12]. The build platform
then moves one layer downwards, while the powder dispenser moves one layer upwards.
The recoater then spreads a fresh layer of powder on the previously solidified layer, and
the process repeats until the whole part is manufactured layer by layer. The following
sections are dedicated to discussing the process parameters, the process signatures, and
the most common defects resulting from the L-PBF process.
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Figure 1. A typical setup of an L-PBF process.

2.1. Process Parameters

The L-PBF process involves many process parameters that can be categorized as
preprocessing, in-process, and postprocess parameters [13]. The process parameters can
also be classified according to their sources, such as feedstock, equipment (hardware),
design selection, and process [3]. The in-process parameters are of greater interest when
in situ monitoring is involved. These parameters are usually combined in the equation of
volumetric energy density (VED), as shown in Equation (1):

VED =
P

v × h × t
(1)

where “P” is the laser power, “v” is the scan speed, “h” is the hatch distance, and “t” is
the layer thickness of the powder. The VED defines the amount of energy delivered to the
powder per volume. Therefore, it influences the melting mode and defect formation. Thus,
VED can be regarded as a broad guideline for parameter selection, as it can be compared to
the theoretical energy required to melt metallic powder effectively [30].

2.2. Process Signatures

The process signatures describe the dynamic characteristics of the melting and solidi-
fication process during the laser/powder interaction [33]. There are several classification
methods for the L-PBF process signatures in the literature. Mani et al. [33] classified them
into observable and derived signatures, while Grasso et al. [3] classified them according
to their level of detail (size of the smallest feature). Figure 2 describes the four levels
considered in this review article based on the level of details used for in situ monitoring
for the L-PBF process. The signatures considered in this review article are meltpool, laser
tracks, scanned layer, and powder bed. Meltpool sizes depend on many factors, such as
laser power, laser type, and powder absorptivity, for example. The laser tracks size also
depends on meltpool size, as they are essentially a combination of consecutive meltpool.
The scanned layer and powder bed are usually measured across the build-plate dimension,
which depends on the type and model of the L-PBF machine.

The meltpool is produced due to the laser interaction with the powder metal [34],
illustrated in Figure 2a. The interaction occurring in this area is considered the lowest
level of detail among the L-PBF process signatures. The meltpool shape, size, temperature,
and stability depend on the VED delivered to the powder [34]. Plume and spatter are also
considered characteristics of meltpool stability. Plume is generated when the meltpool
surface temperature reaches a melting point. The metal partially evaporates and might
alter the laser beam profile and affect the quality of the manufactured part [35]. It is
also reported that as plume condenses, it might form nanoparticles ejected out of the
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meltpool [36]. Spatter is known to have a negative impact on the performance of metallic
parts manufactured using L-PBF processes. Wang et al. [37] identified three types of spatter:
metallic jet, droplet, and powder spatter. The high laser power causes the metallic jet
spatter; it increases the meltpool instability, causing more liquid to be stricken out and leak
out in the form of a spatter. Droplet spatter is attributed to the convection transport of the
liquid or vaporized metal out of the meltpool [33], while the powder spatter is caused by
nonmelted metal powder blown away due to the metallic vapor.

Figure 2. Schematic illustration for the four levels of L-PBF process signatures used for in situ monitoring: (a) meltpool,
(b) laser tracks, (c) scanned layer, and (d) powder bed.

Laser tracks are a combination of simultaneous meltpool coming together to form one
scan vector of the part being printed. The laser track’s size, temperature, and continuity
highly affect the quality of the printed parts, as shown in Figure 2b [38]. The layerwise
signature considers the printed part at a larger level of detail and can be divided into
two partitions. The first partition is the scanned geometry, designating layers after the
laser scans the geometry, as shown in Figure 2; this slice can be compared to the original
geometry to check for errors. Besides this, the temperature can be monitored, as well
as the surface quality. The second partition is related to the powder bed, after a fresh
layer of powder is spread, as illustrated in Figure 2d. The errors related to the recoater
include hopping, where the recoater has many chipped ends, and streaking, when parts of
the debris are dragged by the recoater. In addition, the presence of debris on the surface
might indicate the presence of a defect. The superelevation of melted parts may appear or
incomplete powder spreading may occur.

2.3. Defects

The defects generated in the parts manufactured by L-PBF can be classified into three
categories [39]: defects resulting from machine parameters, defects resulting from setup,
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and defects due to damage in the equipment or miscalibration. Another classification of
defects includes the dimensional and surface quality defects and internal defects such as
porosity and cracks. In this section, the different types of defects are discussed.

2.3.1. Dimensional Accuracy and Surface Quality

The factors affecting dimensional accuracy and surface quality are related to either
the process parameters setting or the part’s geometry. For example, the improper choice
of slice thickness when preparing the design for printing will contribute to height errors
and volume errors [40]. The staircase effect refers to the steplike feature present when
the part’s surface is approximated layer by layer for an angled surface [41]. The choice of
laser process parameters [42] and scanning strategy [43] can contribute to any shrinkage,
affecting dimensional accuracy. Curling is another defect, resulting from warping, and
happens when a curl forms in the downward-facing area of a part that was supposed to be
flat [44]. Curling is attributed to the uneven shrinkage between the top and bottom of the
part being printed. Another defect that affects dimensional accuracy is the superelevated
edge formation, as illustrated in Figure 3 [45]. These errors are related to high energy
density or the presence of critical features [46]. The recoater can impact parts with curled
surfaces and elevated edges, leading to its wear and chipping, which in turn will affect
the powder spreading, causing powder hopping, as discussed in Section 2.2. Using in
situ sensors to monitor the scanned geometry might help identify dimensional defects
resulting from improper layer thickness choice or errors slicing the stereolithography (STL)
files, while monitoring the powder bed might help identify defects related to curling,
superelevation, and recoater-related errors.

Figure 3. Dimensional accuracy and surface defects in metal L-PBF parts: (a) distortion of a part caused by detachment
from build plate/support [45], (b) staircase effect in up-facing and dross formation in down-facing surfaces [47].

One example of process parameter-related issues is the formation of balling droplets
on the surface of printed parts. The balling phenomena are related to the formation
of spheroidal drops due to the insufficient wetting of the previous layer and surface
tension [29,48]. The formation of these balling phenomena indicates inadequate selection of
process parameters or oxide film formation on the previously melted layer [49]. Remelting
the surface or the laser tracks with balling formed on them might help improve the surface
quality and dimensional accuracy required. Another phenomenon witnessed in laser tracks
is called humping formation, which is related to bulge formation on laser tracks. Humping
formation is affected by the surface tension and Rayleigh instability, and Marangoni shear
force [50]. If the geometry contains parts that are not supported, these parts are referred
to as overhanging features. In this case, the meltpool is surrounded by powder instead
of the previously melted layer; it is easier for heat to diffuse to the loose powder, thus
causing overheating and dross formation, as illustrated in Figure 3b [47], which affects the
geometric dimensioning and tolerancing (GD&T) [51]. Sometimes the proper choice of
part’s orientation can mitigate errors related to overhanging features [52]. However, it is
not always feasible to apply it on complicated parts [53]. Cooling during overhang takes
longer due to the unconsolidated powder beneath; thus, monitoring meltpool temperature
and eventually controlling it can help reduce errors related to overhanging features in
L-PBF parts [54].
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2.3.2. Porosity

The porosity formation mechanism and its undesirable effects have been investigated
frequently in the literature [55–57]. The presence of porosity affects the mechanical in-
tegrity, especially the fatigue life of L-PBF parts [58]. Figure 4 illustrates the effect of process
parameters choice on the type of porosity formed in an aluminum alloy manufactured
by L-PBF [59]. Generally, porosity can be classified according to its geometry, spherical
(gas-induced) and non-spherical (process-induced). Gas entrapped in powder particles
during the gas atomization process contributes to gas-induced pores [60]. These spherical
porosities can also be attributed to the vaporization of low melting point elements dur-
ing the L-PBF process [61]. Process-induced porosity formation mechanisms are mainly
attributed to a lack of fusion and keyholing [62,63]. The lack of fusion porosity is related
to the insufficient overlap of successive meltpools [64,65]. Therefore, powder remains
un-melted, causing a reduction in the overall density of the part. In contrast, the keyholing
phenomena are caused due to the significantly higher laser beam power that causes the
metal evaporation and leads to the formation of plasma [66]. This causes the laser beam
to penetrate the melted part deeply and forms a vapor cavity within the part [67]. The
porosity formation can be monitored by in situ temperature measurements and a proper
understanding of how thermal history affects the formation mechanism.

Figure 4. Typical types of porosity formed at different process parameters [59].

2.3.3. Thermally Induced Cracks

The L-PBF process is governed by extremely fast cooling rates (around 108 K/s). Thus,
a large temperature gradient occurs around the meltpool [68]. As a result, the meltpool
size and the heat-affected zone are significantly smaller than the base plate and previously
melted layers [69]. This leads to the creation of residual stresses, which affect the micro-
and macrocracks formation, as illustrated in Figure 5 [70]. The crack formation depends on
the L-PBF process parameters and the powder materials; in other words, different types of
cracks may occur in different materials. For example, four different crack mechanisms were
identified, similar to welding of Ni-based alloys [71]. DebRoy et al. [11] identified three
types of cracks that can be observed in metal AM parts: solidification cracking, liquation
cracking, and delamination. The solidification crack is observed along the grain boundaries
and is usually attributed to shrinkage and thermal contraction. Liquation cracking is
related to the presence of liquid films [56]. It is more common in alloys exhibiting high-
temperature differences between the liquids and solidus, large meltpool size, or large
thermal contractions. Delimitation occurs when the residual stresses at the layer interface
exceed the yield strength of the alloy [72,73]. It may occur between the part and the build
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plate and may occur between two successive layers. Preheating the build plate might
reduce the probability of crack and delimitation formation. However, sometimes the crack
formation is attributed to the solidification sequence, not only L-PBF process parameters.
Acoustic emission sensors can be beneficial in the online detection of cracks formation
during the L-PBF of metals [74].

Figure 5. Optical micrographs showing some cracks formation in a B4C/Ti64 composite [70]. (d) at
low energy density and (e) at higher energy density.

3. In Situ Sensors Used in the L-PBF Processes

As discussed in the previous section, many factors contribute to the defect generation
in parts manufactured using the L-PBF process. Although, optimizing the process param-
eter is a promising approach to reduce the possibility of defect generation, it is costly to
optimize these parameters experimentally, and computationally expensive to use numerical
methods to predict defect formation. Therefore, one trending approach is to integrate in
situ sensors to monitor the occurrence of these defects online. The most popular sensing
strategies for defect detection in the L-PBF process include capturing photonic, electrical,
sonic, and thermal signals. Commercial machines have integrated in situ sensors; however,
most of them focus on data collection rather than data analysis [3]. This section gives an
overview of the most common signal monitoring sensors used in the L-PBF process. These
signals can be categorized into visual signals, temperature signals, spectrum signals, and
acoustic signals.

3.1. Acoustic Sensors

Acoustic emission (AE) is a non-destructive evaluation method that has been em-
ployed for defect detection of manufactured parts for decades [75]. It has recently been
applied for online monitoring of the welding process due to its ability to characterize and
detect weld defects in real time [76]. Acoustic emission is “the generation of an elastic wave
by the rapid change in the stress state of some regions in the material” [77]. This change
can be related to microcracks formation, pores, evaporation dynamics, and temperature
gradients [78]. These sensors can be fixed within the build plate to collect structure-borne
acoustic emissions or along the build chamber walls to collect air-borne acoustic emissions,
as shown in Figure 6 [79]. The working principle of the AE sensor used can be based
on piezoelectric transducer (PZTs) or optical fiber sensors [80]. Generally, piezoceramic
transducers are used to detect structure-borne acoustic emissions, while regular membrane
microphones are used to detect airborne acoustic emissions. There is higher damping in
the air than solid. Therefore, a broader frequency spectrum can be measured in solids [79].
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Figure 6. Schematic illustration of acoustic emission sensor location: (a) structure-borne acoustic emissions [79], (b) airborne
acoustic emissions [81].

3.2. Vision Sensors

The choice of imaging sensors to be integrated with the L-PBF process depends on
the monitored process signature. For example, high-speed cameras can be employed to
monitor the meltpool size and spatter formation during the L-PBF printing process [82]. To
ensure proper data acquisition is collected along the path where the laser melts the powder,
the camera can be connected to a dichroic mirror, a galvanometer scanner, and an F-theta
lens, as illustrated in Figure 7a. In this case, the camera is considered on-axis, as it follows
the laser path and only a small region is captured (meltpool region). In another example
of monitoring the meltpool and spatter signature, the high-speed camera was installed
off-axis, as illustrated in Figure 7b [83], which is relatively an easier setup. However, more
image processing would be required to rectify the captured image and select the region of
interest. To monitor scanned layer and powder bed signatures, digital single-lens reflex
(DSLR) cameras are usually integrated with the L-PBF process. The DSLR is known to
achieve the highest possible image quality [84]. It is common to use external light modules
with DSLR cameras and acquire images before and after laser melting to increase the
amount of data and, consequently, information obtained from the process [85].

Figure 7. Schematic illustration of different vision sensor locations for in situ monitoring of the
L-PBF process. (a) Represents a coaxial setup where the camera can follow meltpool locations [86].
(b) Off-axis location of the camera, where the camera is positioned on the side window of the
chamber [87].

3.3. Temperature Sensors

The fast cooling rate and temperature fields in the meltpool are critical to the quality
of parts manufactured using the L-PBF process [88]. Temperature changes might cause
metal phase variations that can influence the mechanical properties and induce defects
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in the fabricated parts. Monitoring the L-PBF process temperature while manufacturing
the part can help understand the parts’ thermal history [67]. The meltpool temperature
profile influences the microstructure of the L-PBF parts and affects the defect formation in
the parts [54]. Temperature sensors can be categorized into contact and noncontact devices.
Contact devices such as thermocouples can be used to provide an estimate of the overall
build platform temperature. However, special drilling holes must be machined in the build
plate to install the thermocouple sensors, as shown in Figure 8 [89]. Thermocouples have a
slow response time and might not be suitable for monitoring the small scale of meltpool.
Noncontact thermal sensors are more common to use during L-PBF processes monitoring,
especially if the main goal is to control the performance.

Figure 8. Different combinations of temperature sensors: a thermocouple drilled in the baseplate,
an off-axis thermal camera to detect overall powder bed temperature and heat distribution, and a
coaxial thermal camera to detect meltpool temperature [90].

Noncontact temperature measurement depends on electromagnetic radiation, as they
are directly related to the fundamental nature of the process [53]. The key issue is to find the
appropriate sensor that can detect the radiation from the processing zone without detecting
back radiation from the laser beam itself. The L-PBF process irradiates a broad frequency
of spectrum (UV to IR), and photodiodes can be employed to capture the radiation emitted
during the melting process [91]. However, photodiodes are single-point sensors and
can only provide little information about the spatial distribution of temperature [92].
Optical emission spectroscopy has been implemented in laser welding and directed energy
deposition (DED) processes to monitor the process by correlating the collected with the
defect formation [93]. If the spectrometer is installed coaxial to the laser beam, it can collect
information from any point on the build plate [94]. Spectrometers were used to evaluate
the temperature during the L-PBF process; however, compared to pyrometers, it was found
to be slower in response and reproduced a large amount of data that might be hard to
interpret [95].

A pyrometer measures the temperature of an object or surface from the thermal
radiation emitted. It is similar to photodetectors because they absorb energy and measure
the wave intensity at any wavelength. Although pyrometers are limited in their spatial
resolution, installing them coaxially would also resolve the issue of monitoring the meltpool
temperature over the total distance of the powder bed. Thermal cameras are different from
visible light cameras as they observe infrared radiation over visible light. The thermal
or infrared cameras capture the infrared energy from the meltpool and create an image
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related to temperature. The resolution of thermal cameras is usually lower than that of
visible light cameras as the thermal detector sensors are larger in size. However, the setup
and position of an infrared camera would be similar to that of the visible light cameras.

4. ML Techniques

Machine learning (ML) models are based on computer science studies where the
machine is trained to perform tasks similar to computational learning and pattern recog-
nition [96]. These artificial intelligence (AI) techniques allow the decision-making or
predictions of output based on prior data (input) without the need for explicit program-
ming [27]. Due to its versatility, ML is being applied in various fields such as manufacturing,
computers and security, nuclear engineering, social media, and health [97]. Special con-
sideration must be given to the data acquisition used in ML applications, whether related
to AM applications or not. Even for the same application, different ML models can be
applied depending on the input data. The following sections review the required data
preprocessing for AM-related applications. Then, the most common learning approaches
applied in the L-PBF process are discussed, and the objectives and applications of using
them in the L-PBF process are highlighted. Finally, the most common assessment methods
used to evaluate the performance of the models are presented.

4.1. Data Preprocessing

The success of ML techniques depends mainly on the quality of the data fed to the
algorithm; if the data contains irrelevant information, it may result in inaccurate results.
Thus, data preprocessing is essential in the ML process, especially for AM applications
where a large dataset is created. Data preprocessing can help solve problems of data
redundancy, missing data, and noisy data [98]. Applying a digital filter may be necessary
for AE signals to separate high- and low-frequency signals related to background noise [99].
For welding, cladding, and AM applications, transforming into fast Fourier transform are
common preprocessing methods, as illustrated in Figure 9. Lately, the use of spectrogram is
also becoming a common approach [78]. Some preprocessing for pyrometers included the
use of discrete Fourier transform as well [100]. Preprocessing for image sensors includes
background removal, filtering, and cropping [101]. For example, if meltpool is being
monitored, the meltpool area will be measured, and the spatter area will be isolated for
further investigation. Solid knowledge and experience in the process are necessary to
identify digital representations and features in data acquired through images [102]. For
example, when the part superelevated, the edge of the part appears after the fresh powder
has been recoated. An experienced operator can detect this error and differentiate between
it and other common errors such as debris or recoater hopping. Another common approach
is to use principal component analysis (PCA) as a data preprocessing tool. However, if
not used carefully, important information might be lost and affect the accuracy of the
results [19].

Figure 9. Preprocessing of AE signals: (a) a typical AE signal, (b) wavelet denoising of the signal, (c) FFT of the signal.



Appl. Sci. 2021, 11, 11910 12 of 41

4.2. Learning Approach

The learning approach of ML models can be categorized into four categories: su-
pervised learning, unsupervised learning, semi-supervised learning, and reinforcement
learning [103]. The objective of applying such methods in defect detection is to either
predict the occurrence/size of defects or classify signals coming from defective parts.

4.2.1. Supervised Learning

The supervised learning approach is a “task-driven approach”; it is carried out when
certain goals are identified to be achieved from a specific input [104]. The algorithm is
provided by two sets, a training set and a test set; the goal is “to learn from a set of labeled
data in the training set so that it can identify unlabeled data from a test set with the
highest possible accuracy” [27]. First, a cost function is calculated to determine the error
between the predicted output and the actual output from the training set. Then, to validate
the algorithm, an unseen data “test data” is used to evaluate the model’s accuracy. The
labels can be numerical or ordinal, taking the form of a predicted parameter in the case
of a regression-based ML task or a class/grouping if the ML model is used as a classifier.
This input–output pairing, inherent in supervised learning, allows an ML algorithm to be
trained to analyze and correlate the input data related to its corresponding output, thus,
enabling the ML model to establish a set of metrics to predict the output value of a new
input data sample. However, this same reliance on a defined output makes supervised
learning more susceptible to human error, as mislabeled data samples can be misinterpreted
when training a model.

As most ML applications discussed in AM focus on predicting a target parameter
or class, supervised learning remains predominant in the application of ML in AM. Data
labeling is usually associated with using post-evaluation methods such as microcomputed
tomography (microCT) in case of defects. In some cases, mechanical characterization
tests are used to determine and label faulty parts and acceptable parts. Most of the time,
the parts printed at certain process parameters or with specific defect levels are labeled
manually by the operator to train the ML model.

Most of the supervised ML models used in analyzed sensor data collected from the
L-PBF process can be categorized as regression or classification problems. Regression
models are usually used in AM applications for process parameters optimization. In
addition, regression models can sometimes be used for defect detection. For example,
linear regression was used to investigate the LPBF process quality by monitoring spatter
formation [86]. The authors used high-speed images, image segmentation, and feature
extraction to estimate different statistical descriptions of the spatter formation during the
LPBF process. The developed regression model was able to predict under-melting and
over-melting conditions successfully. Linear regression models were also used to predict
the probability of subsurface porosity formation [67]. Infrared images were acquired to
detect the unnormalized surface temperature of parts being printed at different process
conditions. Accurate predictions of the subsurface porosity from the thermal history of the
parts being printed were obtained.

Classification tasks are used to differentiate between different groups of defects or
quality levels. If infrared cameras or vision sensors are used, a convolution neural network
can be used to separate different classes. For instance, Baumgartl et al. [105] proposed
using a convolution neural network (CNN) to classify infrared images captured from
delamination, spatters, and high-quality parts. The input, in this case, represents images
acquired from the infrared camera for the parts being melted. The parts were printed
at known process parameters that will induce specific conditions; the data labeling was
performed manually in this case. Each input is regarded as a three-dimensional array;
multiple small-filter kernels are applied to the image array. The convolutional layers
combine several layers such as activation, batch normalization, and pooling layers to
extract useful features from raw data and classify them into specific target classes. As
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illustrated in Figure 10, the output is to associate each layer of the parts printed to three
different classes: accepted, metal splatters, or delamination.

Figure 10. Example of a typical convolutional neural network architecture [105]. The input, in this
case, is the infrared images acquired (the color map represents the temperature of the layer). The
CNN consists of multiple blocks of convolutional layers followed by pooling layers and one or more
fully connected layers at the end for classification.

4.2.2. Unsupervised Learning

Contrary to supervised learning, unsupervised ML algorithms do not need an input–
output pair to train a model successfully [98]. The most common task performed with
unsupervised learning is classification through clustering analysis, where the input data
is separated into groups based on their similarity. Unsupervised learning techniques are
becoming popular, especially in the context of Big Data [23]. These methods are helpful
when expert knowledge is not available or not required; it is also helpful with identifying
outliers in manufacturing data [106]. The most common unsupervised learning tasks
are clustering, feature learning, dimensionality reduction, and anomaly detection. Two
common examples from the literature usually applied for L-PBF are K-means clustering
and Gaussian mixture models (GMM) [107].

Clustering algorithms are among the most common unsupervised learning algorithms
and are typically used for anomaly detection in AM applications. This method is usually
helpful when used with a large amount of data and has the advantage of not requiring
human interaction, and is, therefore, very convenient for defect detection. A clustering
approach was applied to acoustic emission data collected during the L-PBF process. The
ML model input was a series of AE signals collected during printing laser tracks at different
melting conditions, namely under-melting, over-melting, keyholes, and balling conditions.
The objective of the model was to classify the AE signals at each melting condition. Visu-
alizing the data was made easier by applying a t-SNE clustering approach, as illustrated
in Figure 11 [108]. The authors were able to group different melting conditions in specific
regions on the 3D map, which can then be used for anomaly detection. A clustering ap-
proach using a hierarchical K-means and Gaussian mixture model was also used to classify
AE signals related to pores and cracks [74].

Figure 11. Feature reduction approach applied using t-SNE to visualize acoustic emission signals
collected during different melting conditions of an L-PBF process [108].
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4.2.3. Semi-supervised Learning

Semi-supervised learning combines supervised and unsupervised learning techniques,
usually carried out to improve performance or mitigate risks. One example of a potential
application of semi-supervised learning is when only a small subset of the training data can
be labeled [109], especially useful in applications where obtaining labeled data is expensive
or not feasible for the entire dataset. A semi-supervised approach was proposed by Okaro
et al. [110] to classify L-PBF quality builds depending on the output of photodiodes. The
photodiode, in this case, detects the thermal radiations from the meltpool, which represents
the input of the ML model. Ultimate tensile strength was used to classify and label parts as
faulty or acceptable. Instead of labeling all experiments, only part of the experiments was
labeled to test the feasibility of the semi-supervised ML approach. The main objective was
to classify faulty and high-quality parts, which was performed by applying a Gaussian
mixture model. Monte Carlo simulations were used to analyze the ML model performance
when changing the number of labeled data. Figure 12 illustrates the histogram of the
proposed ML success rate as a function of a number of the labeled data points. It can be
noted that when the number of data labeling reduces, the success rates are lower; however,
the encouraging aspect is that the proposed ML model performance does not drop abruptly
when reducing number of labeled points. This approach outperformed a supervised one
because it reduced the computational capacity and resulted in high classification accuracy.

Figure 12. Histogram of algorithm success rates for the semi-supervised ML results proposed by
Okaro et al. [110], obtained over 1000 runs of Monte Carlo simulation as a function of the number of
labeled data points.

4.2.4. Reinforcement Learning

Reinforcement learning can be defined as “the learning of a mapping from situation to
actions to maximize a scalar reward of reinforcement signal” [111]. The fundamental nature
of this approach is that it can learn through interaction and by observing the consequence
of the model actions. Rewards or penalties are given to alter its behavior and improve
the model accuracy [112]. This approach is sometimes referred to as the “environment-
driven approach”. It is a powerful tool that can help increase the automation and optimize
the performance of sophisticated systems, but is not recommended for straightforward
problems [113]. Wasmer et al. [114] were able to classify AE signals obtained during
printing three quality level parts using the L-PBF process using a reinforcement learning
ML method. The accuracy obtained was around 80%; however, higher accuracy rates are
expected using a more advanced hardware setup. For example, the use of structure-borne,
rather than airborne, AE sensors is thought to enhance prediction/classification accuracy.
However, it is harder to install and set in the structure-borne sensors in the L-PBF machines.
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Knaak et al. [115] proposed using reinforcement learning to predict the surface roughness
of the L-PBF process. A higher dynamic range optical image setup was installed on the
machine in a combination of convolutional neural networks. The main benefit of their
proposed framework is that it can be integrated with a control system to optimize surface
online, as illustrated in Figure 13 ultimately.

Figure 13. Reinforced learning model-based framework for layerwise monitoring and optimization
of L-PBF processes proposed by Knaak et al. [115].

4.3. Classification Performance Assessment

Assessing if the ML model is working as intended or not is often performed by
dividing the data into training, validating, and testing data. For example, a common issue
when training supervised learning models, overfitting, occurs when a model is developed
to fit the training dataset too closely and cannot make accurate predictions for new data.
Two of the most common methods for avoiding overfitting in ML are the hold-out and
k-fold cross-validation methods [12]. These split the data available into training and testing
subsets to validate the model’s prediction accuracy with data otherwise unknown to the
model.

The hold-out method involves partitioning the dataset into a testing and training set.
As the name suggests, the training set is used to train the ML model, where the testing set
is used to validate its performance. The ratio of training versus testing data is usually 7:3.
One limitation of this method is that the number of data samples available for testing is
reduced, and the potential for an imbalance in data representation is also increased. The
k-fold cross-validation method is similar to the hold-out method, where the dataset is
partitioned into several subsets. With each iteration, one subset is used for testing, with the
others used for training the model. This process is repeated until each subset has been left
out once for testing and is visualized in Figure 14. The k-fold method’s main advantage
over the hold-out method is that the model can use all the available data for both training
and testing.

The most common metrics by which the performance of any ML classifier is often
assessed are precision, recall, and F1 score (or accuracy) [116]. Precision is defined as the
ratio of true instances within a predicted class to the total number of instances predicted.

Precision =
True Instances

Predicted Instances
(2)
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In contrast, recall is the ratio of correct predictions of a specific class to the total number
of instances in that class.

Recall =
True Instances
Total Instances

(3)

The F1 score represents the model’s overall performance and is defined as the har-
monic mean of the precision and recall, where a score of 1 implies perfect performance.

F1 = 2
Precision·Recall

Precision + Recall
(4)

The alternative to precision calculating is accuracy, defined as the ratio of correct
predictions overall predictions. However, it should be noted that this may not be a viable
metric when the number of samples from each class is unbalanced.

Figure 14. Visual representation of k-fold cross-validation.

It is hard to suggest a learning approach that is superior to another when applying
ML algorithms for L-PBF monitoring applications. On the one hand, supervised learning
approaches are well suited when a huge amount of data is collected (which is the case in
online monitoring) and proved efficient in learning accuracy and classifying monitored
defects. On the other hand, unsupervised learning has the clear advantage of not labeling
the data, thus saving the need for ex situ experiments. More research is required to
investigate if semisupervised ML algorithms can be useful for the online monitoring of
L-PBF processes. The semisupervised ML techniques could have the advantages of high
classification accuracy and reducing the need to label all data. It is also important to
understand which learning technique is suitable for which sensor is being used. The
following section reviews the different ML algorithms used with different sensors to
help answer the question of which ML algorithm is more suitable for monitoring L-PBF
processes.

5. Defect Detection Using ML Techniques and Sensors
5.1. Acoustic Emission

Acoustic-based monitoring has been used to monitor welding defects for decades [94];
it has shown proficiency in detecting phase transformation, cracks formation, surface
defects, and plasma formation. In addition, the ML algorithms can efficiently classify and
detect different defects in welded meltpools [117]. Recently, some studies focused on how
to use AE sensors to monitor the conditions of L-PBF processes. However, the potential of
using ML algorithms for fast detection and decision-making and control of the L-PBF is
still a novel field that needs more conclusive research.
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An essential aspect in quantifying and characterizing acoustic emission signatures
is the domain they are analyzed in. Time, frequency, and time–frequency domain are the
three common approaches used in AE signals analysis. Pandiyan et al. [108] compared
the three different domains for different melting conditions of 316L laser tracks using an
L-PBF process. A PAC AM41 sensor was used to detect the airborne signals by attaching
them to the sidewalls of the build chamber. Four conditions were tested, balling, lack of
fusion, no pores, and keyholes, by varying the scan speed and laser power. The authors
compared PCA and t-SNE to the collected dataset and proved that t-SNE is a practical
feature reduction method for clustering and classification purposes. T-SNE provided
better visualization and grouping for the AE signals collected during the different melting
conditions.

Another comparison between the time domain and frequency domain was performed
by Ye et al. [118], using combinations of different ML algorithms to the time and frequency
domain of the collected AE signal during the L-PBF process. The acoustic sensor was a PCB
microphone fixed at 30◦ over the platform attached to the chamber’s walls. Five different
melt states were tested: balling, slightly balling, normal, and slightly overheating; these
were obtained by different laser scan speeds and power combinations. Three different
ML algorithms were applied: deep belief neural (DBN) networks, multilayer perceptron
(MLP), and support vector machines (SVM). The AE input was tested in three different
domains: time domain, frequency domain, and denoised frequency domain. The training
sample was 60% of the data, and 40% of the data was used for testing, and were randomly
separated before the classification process. Although using the time domain yielded lower
classification accuracy for defects, it is recommended to use it if fast decision-making and
online control of the LPBF process is going to be applied.

A fiber Bragg grating AE sensor to detect the airborne signals by attaching the sensor
to the inside wall of the build chamber 20 cm away from the build plate was utilized by
Wasmer et al. [119]. A standard wavelet packet transform (WPT) was used to extract the
frequency bands of the raw AE signals, and signals were analyzed in the time–frequency
domain in the form of spectrograms, as illustrated in Figure 15a represents the AE signal
collected in the time domain, while Figure 15b represents the spectrogram of the AE signal
in the time–frequency domain. A CNN was used to classify the AE signals collected from
parts at different density levels. This method was able to classify the different quality levels
between 79–84% accuracy. The same research group tested the use of SCNN on the same AE
signals; the accuracy was slightly improved to 83–89% when using a fixed running window
to analyze the time–frequency domain [120]. The long and short running window approach
was again tested with SCNN and resulted in higher classification accuracy (78–91%) than
other classifiers (CNN, Xception, ResNet). The same AE signals were classified using an
RL approach to minimize the time needed for training and data labeling. The accuracy of
classification was, however, limited to 74–82% [114].

Figure 15. (a) An example of a fragment of an AE signal and the typical (b) spectrogram corresponding to the relative
energies of the narrow frequency bands, localized in the time–frequency domain [120].
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Eschner et al. [76] tested structure-borne AE signals; a piezoceramic sensor was fixed
under the build plate to monitor the L-PBF process. In total, 54 cubes were used for
the experiment, and different density levels were obtained by changing the laser power,
scan speed, and hatch speed. Three different part complexities were used to check if the
AE signals will be affected by parts geometry, as illustrated in Figure 16. Short Fourier
transform was applied to the raw AE data, and a spectrogram was obtained for each
layer and specimen. The background noise was subtracted from all the spectrograms.
Three different classes based on the number of specimens were identified. A multilayer
perceptron (MLP), a typical ANN, was used to classify the AE signals. The input layer
consisted of 12 million input neurons, two hidden layers with 64 and 32 neurons each,
and a bottleneck strategy. The third and final layer consisted of three output neurons for
the three different density classes. Sigmoid activation function was used for individual
neurons and SoftMax for the output layer. Each training was set up for 100 epochs with
early stopping based on the validation loss after each epoch. The classification accuracy
of the proposed method resulted in classification accuracy between 76–86%; much lower
prediction accuracy was achieved for complicated shapes.

Ghayoomi et al. [121] fixed a WSα AE sensor under the build plate to detect the
structure-borne signals to monitor the L-PBF process of 316L. Three density levels were
defined according to the internal defects: low-, medium-, and high-quality levels. The AE
signals were collected, and an FFT was performed to transform them into the frequency
domain. First, a K-means clustering was used to label the FFT signals, then a DBN with
five layers was used to train 85% of the labeled data, and 15% were left for testing. The
classification accuracy was between 70–91%. In a later publication [74], the author tested
the AE monitoring of H13 tool steel for three different intentional conditions minimum
defects, cracks only, and porosities and cracks. These conditions were obtained by changing
only the laser power. Three different ML techniques were used to classify the data and
detect the defects. First, a hierarchical K-means clustering was employed for labeling the
data, followed by a supervised deep learning neural network (DBN) to match acoustic
signal with defect type. Second, a principal component analysis (PCA) was used to reduce
the dimensionality of the dataset. A Gaussian mixture model (GMM) was employed to
enable fast defect detection suitable for online monitoring. Third, a variational autoencoder
(VAE) approach was used to obtain a general signal feature that could be an input for
the classifier. The developed VAE classifier successfully detected trends in 316L samples
without the need for training and can serve as a general ML model to detect L-PBF defects
for different materials

Table 1 summarizes the key findings in the literature to date on applying AE sensors for
L-PBF process monitoring. One of the main factors considered when using AE sensors for
L-PBF monitoring is the AE sensor-like type and position in the build chamber. In addition,
factors related to the print itself, such as materials, coupon shapes, and parameters, were
chosen for testing. All these combined with the ML algorithm define the time and accuracy
of the decision-making. It is important to note that most articles changed laser scan speed,
and only a few changed the laser power. The accuracy of the ML model, defined as the
ratio between accurate predictions and all predictions, is reported. It can be observed that
the accuracy ratio varies with the change of ML model and the experiment tested in each
case. It is worth noting that high classification accuracy is associated with either frequency
domain or time–frequency domain.
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Table 1. Different ML algorithms used to analyze acoustic emission sensor output for the in situ monitoring of the L-PBF process.

Type of AE
Sensor

Sensor
Location Material Part Shape Process

Parameter Domain ML Method (Approach) Model Accuracy
(%) Objective Ref.

PAC AM4I Sidewalls of the
build chamber 316L tracks Scan speed

Time
Frequency

Time–Frequency

PCA
t-SNE

(unsupervised)
NA

Clustering the AE signals from
different laser melting conditions
balling lack of fusion, no pores,

and keyholes.

[108]

PCB
microphone

Sidewalls of the
build chamber 316L tracks Scan speed

Time
Frequency

Frequency denoised

DBN
MLP
SVM

(supervised)

70–95
46–82
67–98

Comparing between different ML
algorithms in different AE signals

domains.
[118]

Fiber Bragg
grating

Sidewalls of the
build chamber 316L cuboid

10 × 10 × 20 Scan speed Time–Frequency SCNN
(supervised) 83–89

laser scanning velocity has an
impact on the self-extraction of the

distinct features in the SCNN.
[120]

Fiber Bragg
grating

Sidewalls of the
build chamber 316L cuboid

10 × 10 × 20 Scan speed Time–Frequency

SCNN
CNN

Xception
ResNet

(supervised)

78–91
53–63
54–68
60–75

SCNN has better classification and
faster time than other ML

algorithms used.
[122]

Fiber Bragg
grating

Sidewalls of the
build chamber 316L cuboid

10 × 10 × 20 Scan speed Time–Frequency CNN
(supervised) 79–84 Ability to classify different quality

levels. [119]

Fiber Bragg
grating

Sidewalls of the
build chamber 316L 1 cube

10 × 10 × 20 Scan speed Time–Frequency CNN
(RL-based) 74–82

taking advantage of the
outstanding RL self-learning

capabilities in future systems may
reduce the costs for preparing the

training datasets.

[114]

Piezoceramic
sensor In build plate 316L 54 cubes

(5 × 5 x 5)
Laser power Scan

speed Time–Frequency ANN
(supervised)

76–86
55–88

Classifying different quality levels
and different parts complexity. [79]

WSα In build plate 316L
Cylinders

10 mm diameter
10 mm height

Laser power Frequency denoised

DBN
(supervised)

K-means,
(unsupervised)

70–91 Classifying different density levels. [121]

WSα In build plate H13
Cylinders

10 mm diameter
10 mm height

Laser power Frequency denoised

DBN(Supervised)
PCA/GMM

(unsupervised)
Hierarchical K-Means

(unsupervised)
VAE (supervised)

93–70 Classifying different density levels.
Model generalization. [74]

PCA: principal component analysis, t-SNE: t-distributed stochastic neighbor embedding; DBN: deep believe neural network; MLP: multilayer perceptron; SVM: support vector machines; SCNN: spectral
convolution neural network; CNN: convolution neural network; RL: reinforced learning; GMM: Gaussian mixture model; VAE: variational autoencoders.



Appl. Sci. 2021, 11, 11910 20 of 41

Figure 16. Different levels of complexity tested by Eschner et al. [76].

5.2. Vision Sensor

In situ monitoring of the L-PBF layerwise is usually achieved using a digital single-
lens reflex (DSLR) camera. An unsupervised approach is suggested by Scime et al. [123]
for anomaly detection in the powder layer of the L-PBF process. In their study, the authors
used images of powder beds as input in the ML model; the objective was to classify the
different anomalies that may result in powder spreading. The six anomalies studied,
recoater hopper, streaking, debris, superelevation, part failure, and incomplete spreading,
are illustrated in Figure 17. The ML approach used is bag-of-key points (or words); the
algorithm creates filter banks from the acquired images and clusters similar ones together.
Different material types were analyzed, including Ti6Al4V (four powder types), AlSi10Mg,
Inconel 718 (two powder types), stainless steel 316L, stainless steel 17–4, and a bronze
alloy. The accuracy of the developed model was 95% for anomaly detection and 100% for
anomaly-free detection. However, the algorithm has a relatively low accuracy of detecting
recoater streaking (56%), attributed to a low number of training data, a small area, and
the frequent colocation of this anomaly. The algorithm was applied on a Hamerschlag
Hall model, using tensile bars and impeller blades to enhance parts orientation and detect
potential overhang failure. Due to its relatively low computation burden, this approach
might be practical in connecting it to a feedback control system.

Figure 17. Six different powder bed anomaly classes chosen by Scime et al. [123]. (a) Recoater
hopping, (b) recoater streaking, (c) debris, (d), superelevation, (e) part failure, and (f) incomplete
spreading.

A supervised approach is more common for layerwise monitoring; Imani et al. [124]
compared six different ML methods. The input of the model was layerwise images taken
at different light schemes. The objective of the model was to classify parts printed at
different quality levels. Ti6Al4V cylinder specimens were printed having different internal
defects by manipulating the process parameters. Several ML algorithms were used to
link the extracted features to the process parameters. It was found that using SVM with
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a combination of spectral graphs, theoretic features, and multi and lacunarity features
results in the best classification accuracy of around 90%. Gobert et al. [85] demonstrated
the effectiveness of using an ensemble classification scheme to detect the discontinuities in
stainless-steel parts printed using the L-PBF process, as illustrated in Figure 18. The input
images were again layerwise images taken at different light schemes; the objective of the
ML algorithm is to classify if the layer contains anomaly or is defect-free. A microCT was
used to label the data and identify the exact positions of defects within each layer. The
accuracy of the classification increased to 85%, compared to 65% using individual flash
modules.

Figure 18. Input layerwise images used for ML model proposed by Gobert et al. [85] (1–3) post-powder recoating flash
modules and (4–8) post-laser melting flash modules.

Snow et al. [125] used layerwise images as an input, and the objective of applying
the ML algorithm was to classify parts as defective (contains flaw) or defect-free. The
images were captured before and after laser exposure. The authors demonstrated that
images taken post-laser melting were more valuable than those captured after powder
recoating for defect detection. The authors also validated that CNN could detect flaws more
accurately than NN due to its generalization ability of the dataset. The CNN architecture
is shown in Figure 19. An optical microscope was used to identify the ground truth,
with the images captured from the powder layer resembling the images captured using a
microscope. Aminzadeh et al. [126] used 35 different combinations of process parameters
to print Inconel 625 cubes. Three surface quality classes were identified according to the
smoothness and visible porosities. The model input was layerwise images captured during
the printing of the parts. A Bayesian classifier was developed and trained to distinguish
between the different surface quality levels. The accuracy of the classier was around 90%.

Imani et al. [127] presented a novel methodology identifying the region of interest
(ROI) in each layerwise image using deep learning convolutional neural network (DCNN).
The model’s input was layerwise images, and the objective was to predict process defects in
L-PBF printed parts. In that case, the CAD slice for each layer represented the ground truth.
Each layerwise ROI is partitioned into different subregions of interest to solve the problem
of varying cross-sectional geometries. Afterward, spatial characterization is performed
to provide critical information on the distribution of pixels in each ROI and ensure that
the input to the DCNN is equal. The DCNN was able to classify defects with an accuracy
of 92.50%. This approach emphasizes the importance of deep learning. In addition, the
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ground truth obtained from CAD files makes it easy to apply and prevents postprocessing
data collection. A layerwise monitoring approach to detect build failure using a DCNN
was also suggested by Gaikwad et al. [128]. X-ray computed tomography was used to
obtain ground truth. The results indicate that the developed DCNN algorithm can predict
process defects with 85–96% accuracy and, therefore, replace expensive postprocessing
measurements. Similarly, Caggiano et al. [129] captured images layer by layer during the
L-PBF process to detect defects that might result from different volumetric energy density
input to Inconel 718 powder. Automatic feature learning and fusion were achieved, and a
DCNN model recognizes the defects by the accuracy of 99% compared to visual words and
the histogram of oriented gradients (HoG) approach.

Table 2 summarizes some of the research that integrated DSLR cameras for in situ
monitoring of the L-PBF process and ML applications. Most of the research applied super-
vised ML models, and recently, much research has started focusing on DCNN algorithms.
The input for these models is layerwise images acquired during the printing process, and
in some cases, these images are captured at different light schemes. The objectives are
mostly to classify defective and nondefective parts. Sometimes, the images are captured
before and after laser melting, i.e., before and after the fresh powder is spread. The above
analysis has shown that images taken after laser melting contain important information.
Furthermore, the supervised approach using DCNN is more employed when monitor-
ing the scanned layer and powder bed signatures; it is expected to result in the highest
classification accuracy in terms of layerwise monitoring.

Table 2. Machine learning application of layerwise in situ monitoring of L-PBF processes using DSLR cameras.

Camera Location Specifications Material Part Geometry ML Algorithm Accuracy
% Objective Ref.

Off-axis
above build chamber

1.3 megapixel
290 µm/pixel

Ti6Al4V
AlSi10Mg

Inconel 718
316L
17-4

Bronze alloy

Hamerschlag
model case study

BoW
(unsupervised) 50–91

Classify six types of powder
bed anomalies:

recoater hopping, recoater
streaking, debris,

superelevations, part failure,
and incomplete spreading.

[123]

Off-axis
inside build chamber 16–65 µm/pixel Ti6AL4V

Cylinders
25 mm length

10 mm diameter

SVM
Tree
LDA

K-NN
Ensemble

FF-NN
(supervised)

89
79
82
78
85
84

Quantify the count of pores as
process parameters, change

and monitor the process
parameters that might cause

more porosity.

[124]

Off-axis
Inside build chamber 36.3-megapixel GP-1 Stepped cylinder SVM

(supervised) 85 Detect part discontinuities by
using in situ images. [85]

Off-axis
Inside chamber

8.8 megapixel
4096 × 2160 pixel Inconel 625 Cube samples

with 80 mm side

BC
(supervised)

PCA
89

Classify different meltpool
conditions influenced by the

formation of pores and cracks
in printed parts.

[126]

Off-axis
Inside build chamber 36.3-megapixel Ti6AL4V Cylindrical

coupons

NN
CNN

(supervised)
86

Defect detection from
layerwise images and

comparing CNN to NN.
[125]

Off-axis
Inside build chamber

36.3 megapixel
7360 × 4912 pixels Ti6Al4V Drag link joint DCNN

(supervised) 92
Detect flaws in geometry
compared to CAD from

layerwise imaging.
[127]

Off-axis
Inside build chamber

36.3 megapixel
7360 × 4912 pixels Ti6Al4V Thin-walled

feature
DCNN

(supervised) 85–98 Predict process defects in thin
walls. [128]

Off-axis
Outside build

chamber
24.2 megapixel Inconel 718

Disc
20 mm height

40 mm diameter

DCNN
(supervised) 99

Classify parts printed at
different VED levels

standard, low, high, and very
low.

[129]

BoW: bag of words; SVM: support vector machines; LDA: linear discriminant analysis; KNN: k-nearest neighbors; FFNN: feedforward
neural network; BC: Bayesian classifier; PCA: principal component analysis; NN: neural network; CNN: convolution neural network;
DCNN: deep convolution neural networks.



Appl. Sci. 2021, 11, 11910 23 of 41

Figure 19. CNN network suggested by Snow et al. [125].

The morphological changes in meltpool geometry were monitored by applying a
supervised ML algorithm described by Scime et al. [101]. Four meltpool categories were
defined: desirable, balling, under-melting, and keyholing porosity for Inconel 718 parts.
The supervised ML algorithm used in this work was bag of words (BoW), often applied
to computer vision problems. The training data and input of the ML model consists of
frames of data captured by the high-speed camera during the experiment; the ground
truth labels are the only human interaction in the process. The objective of the model
was to classify meltpool related to keyholing porosity and balling instability. Another
supervised approach, a linear regression model, was suggested by Repossini et al. [86] to
understand the effect of process parameters on the spatter formation at different energy
density levels by applying a logistic regression model. Three different conditions were
tested: under-melting, regular, and over-melting. The logistic regression (LR) model
was chosen because it can consider the ordinal nature of the dependent variable. Three
LR models were compared; the first considered only laser heat zone, the second model
considered laser heat zone and spatter descriptors, and the third model only considered the
spatter descriptors. It was noted that models that included spatter descriptor information
have better goodness of fit and fewer misclassification errors.

Meltpool and spatter monitoring are usually monitored by high-speed cameras and
high resolution; when the camera is mounted coaxially, it is easier to track all the melpools
during a single build plate. The only constraint would be the high amount of data and the
storage capacity. Feature reduction using principal component analysis (PCA) is often used
with images collected in situ during the L-PBF due to the large amount of data collected.
For example, Zhang et al. [130] compared two classifiers, CNN and PCA–SVM. The main
objective was to use the meltpool, plume, and spatter images to classify three different
conditions in melt tracks: balling, continuous, and over-melting. The original image, as
well as the extracted regions of interest, are shown in Figure 20. Various features were
extracted to help with the classification models, for example, meltpool histogram features,
plume intensity, plume orientation, mean spatter area, mean spatter velocity, and other
features. CNN resulted in better classification accuracy of 92% compared to PCA–SVM
methods.

Convolution neural networks (CNN) were investigated by Yuan et al. [131] to predict
the continuity of L-PBF tracks. The input of the ML model was meltpool images acquired
at different positions while printing, as illustrated in Figure 21. The melt tracks thickness
was changed by changing the process parameters of the L-PBF process. Ex situ height maps
analysis is used to obtain ground truth. For each track, the main objective is to measure the
mean and standard deviation of track width and classify the continuity of the track. The
proposed algorithm was able to classify track continuity with relatively high accuracy of
93%.
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Figure 20. The region of interest (ROI) of the meltpool, plume, and spatters extracted from the
original image taken by Zhang et al. [130].

Figure 21. Input images of meltpool at different frames for the ML model proposed by Yuan et al.,
(a–d) represent meltpool images captured at different laser power values [131].

Fathizadan et al. [132] proposed using convolutional autoencoders (CAE) neural
networks to process the meltpool images for anomaly detection, as shown in Figure 22 The
proposed framework contains three main components. First, the CAE is used to process
the meltpool images. Next, agglomerative clustering is performed to annotate the data,
and then the control charting scheme is used to monitor the process stability and anomaly
detection. Finally, Inconel 625 parts of 10 × 10 × 5 mm are built. The CAE results were
compared to a neighboring-effect modeling method (NBEM), and an improvement in
accuracy and precision and F1 score were noticed. The authors emphasize the capability
of the CAE approach to obtain a set of intelligent features that can provide an in-depth
description of meltpool data.
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Figure 22. Framework of proposed deep representation learning for anomaly detection methodology proposed by
Fathizadan et al. [132].

High-speed cameras are required to capture enough details to detect the meltpool
plume and spatter and correlate it with process parameters. Ye et al. [83] proposed applying
a DBN ML algorithm to detect the quality of parts using the plume and spatter signature of
304L stainless-steel parts. The model input was a series of meltpool images acquired during
the printing process. Five melting states were tested: over-melted, middle over-melted, nor-
mal melted, middle under-melted, and under-melted. These conditions were obtained by
changing the volumetric energy density fed to the powder bed. The authors demonstrated
that the feature extraction step could be skipped, and minimal image processing can result
in high classification accuracy (83.40%) when using DBN ML algorithms. However, they
showed that complex image processing and time-consuming feature extraction did not
improve classification accuracy when CNN models were used.

A DBN was employed to predict the laser power value based on analyzing the
meltpool images as an input to the model, as suggested by Kwon et al. [82]. The model
objective was to classify and detect the defect formation during the printing of L-PBF. The
monitoring of the meltpool was performed by reflecting the laser beam using a dichroic
mirror and a galvanometer scanner. Seven specimens of 316L were produced at different
laser power. The density of the parts was related to the sum of pixels intensity of the
captured image. The authors compared two models; the first one, the ten hidden layers,
and 360 nodes at all layers were used. In the second model, the number of layers and
hidden nodes were varied (17,600 images for training + 2200 images for validation +
2200 images for test, resulting in a total of 22,000 images). The DBN with varying layers
and nodes had a significantly higher accuracy rate. The authors suggest that a better
classification can be obtained in higher laser power in general because the effect of blur
images is not high. It was noted that the developed ML model works better as a classifier
than a regression model. However, more input results and higher camera resolution are
needed to enhance the classification results.
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Table 3 presents the ML algorithms used to integrate high-speed cameras with the
L-PBF process for meltpool monitoring. It was observed that most experiments focused
on analyzing laser tracks as the process signature. Installing the camera on-axis is a more
complicated setup. However, it allows monitoring the meltpool as it moves from one
position to the other. Although installing the camera off-axis is easier, image processing
such as correction and identifying the region of interest is required. Therefore, it is expected
that using an on-axis camera with a supervised learning approach such as CNN might
result in the highest classification accuracy when monitoring the meltpool of the L-PBF
process.

Table 3. Machine learning application of in situ monitoring of L-PBF processes meltpool using high-speed cameras.

Camera Location Specifications Material Part Geometry ML Algorithm Accuracy
% Objective Ref

Off-axis
Outside

chamber/above

6.35 mm × 6.35 mm
6.2 µm/pixel

6400 fps
Inconel

Laser tracks
(supported and
unsupported)

BoW
(unsupervised) NA Detect keyholing porosity and

balling instability. [101]

Off-axis
outside chamber

250 µm/pixel
1000 fps Maraging Steel Parallelepiped

5 × 5 × 12
LR

(supervised) NA

Investigate the appropriateness
of including spatter

information to characterize the
process quality.

[86]

Off-axis
outside chamber

12 × 5 mm
2000 fps 316L Melt tracks

PCA–SVM
CNN

(supervised)

90
92

Identify different quality levels
of parts printed at different

process parameters.
[130]

Coaxial
Outside

chamber/above

14 µm/pixel
256 × 256 mm

1 kHz frame rate
12–50 frames

316L 5 mm laser
tracks

CNN
(supervised) 93

Measure the mean and
standard deviation of track

width and classify the
continuity of the track.

[131]

Coaxial
Outside

chamber/above

128 × 120 mm
2.5 kHz Inconel 625 Cube specimen

810 × 10 × 5

NBEM
DL–CAE

(supervised)

89
95

Learn a low-dimensional but
deep representation from

meltpool data for anomaly
detection.

[132]

Off-axis
Outside

chamber/side

1 Megapixel
1024 × 1024 pixels

5000 fps
304 L Laser tracks

DBN
CNN
MLP

(supervised)

83
82
70

Recognition of melt state and
optimize process parameters to

decrease part quality.
[83]

Coaxial
Outside

chamber/above

1.3 M
512 × 512 mm

2.5 kHz
316L Cube specimen

8.5 × 8.5 × 4

DBN
PCA

(supervised)
NA

Classify and predict the
accuracy depending on image

intensity.
[82]

BoW: bag of words; LR: linear regression; PCA: principal component analysis; SVM: support vector machines; CNN: convolution neural
network; NBEM: naïve Bayes; DL-CAE: deep learning; DBN: deep believe neural networks, MLP: multilayer perceptron.

5.3. Temperature Sensors

The most common temperature sensors used for L-PBF process monitoring reported
in the literature are photodiodes, pyrometers, and infrared cameras. The use of three
photodiodes and ML algorithms were employed by Jayasinghe et al. [133] to investigate the
feasibility of predicting the density of parts manufactured using the L-PBF process. The ML
model used the input from photodiodes which detected radiations from the meltpool while
printing. The authors used singular value decomposition (SVD) to extract the essential
features from the large dataset collected by the photodiode. An unsupervised approach
(K-means and Gaussian mixture model) and a supervised approach (Gaussian process)
were compared to predict the build density of the manufactured parts. An accuracy as
high as 93% was achieved using K-means and GMM. The density could be predicted with
a relatively low root mean square (RMS) error of 3.65% using the Gaussian process, as
illustrated by Figure 23. The high accuracy of their developed model was attributed to the
high sample rate of the photodiodes. Moreover, as these sensors are more cost-efficient
than cameras, this approach offers a feasible methodology integrated with commercial
L-PBF processes.
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Figure 23. Different clusters represented in different shapes achieved by Jayasinghe et al. [133].

Features extraction on pyrometer data was investigated by Zouhri et al. [134]. A
pyrometer was used to link the optical signal collected during the L-PBF process with the
manufactured part’s density. The pyrometer was installed coaxial to the laser, and the
authors compared it to ML models to classify parts printed at different density levels. First,
the authors extracted the features from the collected data, and SVM and MLP classifiers
were then used. The second approach, a deep learning model with a 1D-CNN, was used to
eliminate the need for feature extraction. The results have shown that the feature extraction
before classification improves accuracy, around 90% compared to 80%. The authors also
highlighted that the statistical feature extraction approach is a fast response method and
will not affect the classification time.

On the other hand, Mahatao et al. [100] found that cleaning the pyrometer data did
not impact their accuracy results. Parts with intentional defects were printed, and two
pyrometers were installed off-axis to collect temperature data of each scan vector per layer
per part. A classification accuracy between 92–94% was achieved using K-nearest neigh-
boring model. In addition, some approaches, such as the approximate nearest neighbor
and conservative redundancy removals, were applied to speed up the computation time.

One limitation of using single-wavelength pyrometers lies in the variation in the
emissivity (ability to emit infrared radiation) [135]. The term emissivity is used to describe
the radiation efficiency of a target compared to a blackbody at the same wavelength, angle,
and temperature. A more reliable method is two-wavelength pyrometers [136], which
results in less noise and higher accuracy. Therefore, Mahmoudi et al. [137] proposed using
a two-wavelength pyrometer in an off-axis setup for layerwise anomaly detection during
the L-PBF process. Then, a screening step was used to reduce the amount of data and focus
on the region of interest where anomalies are expected. The novelty of this approach is
that a Gaussian process model is used to account for the spatial dependence of the region
of interests. Then, four classifiers were used to classify the anomalies in each layer: logistic
regression, K-NN, support vector machines, and random forests. The logistic regression
model resulted in the highest accuracy, around 96%.

Mitchell et al. [138] investigated the relationship between the online thermal signature
and intentional cavities in a body manufactured by the L-PBF process. The main objective
of using ML models was to predict defect occurrence in the printed parts. An unsupervised
ML model (k-d tree) was used to predict outliers in the meltpool conditions identified
by the pyrometer. The pyrometer used in this study can generate images. Metrics of the
meltpool size, shape, and orientation were estimated from the pyrometer images. Then,
information from the heat-affected zone was used to create the thermal history per layer,
and vertical volume slices were created. Finally, spatially registration was used to correlate
the pyrometer and microCT data, as shown by Figure 24. The pyrometer resolution was
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less than the microCT because of the relatively low sampling rate and the fast nature of
the L-PBF. Moreover, the meltpool information obtained from pyrometers was used to
classify their behavior as an anomaly or normal. A higher detection rate of pores was
found in outlier meltpool images, demonstrating the approach’s effectiveness. Although
this technique offers a good solution for in situ monitoring, a concern about the response
time for control is raised.

Figure 24. (a) represents 3D reconstruction of cavity volumes comparing designed cavities (b) by cavities measured (c)
microCT and (d) pyrometry method, suggested by Mitchell et al. [138].

An infrared camera was employed by Elwarfallie et al. [139] to investigate the use of
CNN to predict defects in the powder bed layers of the L-PBF process. The images were
taken after sintering four different geometric features at different sizes and represented
defects. Their research aimed to investigate the accuracy of the CNN to detect different
geometric at different sizes. Their accuracy was limited to 61% due to the insufficient
number of layers used. In addition, they suggest the use of a higher-resolution camera to
enhance the accuracy. Baumgartl et al. [105] also used an off-axis infrared camera image
as a source for the deep learning-based neural network. The main aim of their work
was to detect defects such as delamination and spatter. The authors used deep CNN to
architecture for the ML model; the accuracy of detecting delamination and splatter was
around 96%. However, detecting cracks, balling, pores, and unfused powder might be
harder to detect using the same ML model.

Table 4 summarizes most articles that used ML models with temperature sensors for
in situ monitoring of the L-PBF processes. The signature being monitored here is either
the meltpool temperature or the temperature of the scanned layer. Comparable accuracies
can be obtained by using pyrometers and infrared cameras; however, it must be kept in
mind that the use of photodiode is less expensive. Moreover, it was observed that the
objective of using temperature sensors is mostly to detect pore formation and correlate it to
the thermal history of parts being printed. It was noted that, when dealing with temporal
signals such as pyrometers and photodiodes, linear regression models have a relatively
high classification accuracy. More research is needed to investigate if thermographic images
can be classified with high accuracy using DCNN, similar to layerwise, monitoring or not.
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Table 4. Machine learning application of temperature sensors for in situ monitoring of L-PBF processes.

Sensor Type Sensor Location Specifications Material Signature Part ML
Algorithm

Accuracy
% Objective Ref.

3 Photodiodes Coaxial

Wavelength 700 to 1050 nm
- sensitive to plasma emissions

Wavelength 1080 to 1700 nm
- sensitive to thermal radiation

suitable to measure laser beam intensity

N/A Meltpool
temperature Cubes

SVD
K-means

GMM
GPR

(semi-
supervised)

93% Density
classification [133]

Pyrometer Coaxial N/A 316L Meltpool
temperature Cubes

SVM
MLP

1D CNN
(supervised)

90%
91%
81%

Density prediction [134]

2 Pyrometers Off-axis Heat emission light in the range of 1500 to 1700 nm
100 Hz. 316L Scanned layer

temperature Cubes K-NN
(supervised) 92–94% Pore detection [100]

Two wavelength
Pyrometer Off-axis

Field of view: 1300 × 1000,
frame rate 100 Hz

field of view: 600 × 50,
frame rate 2.8 kHz
30 × 27 mm 2 area,

spatial resolution of 24 µm per pixel.
used frame rate of 250 Hz

17–4 precipitation
hardened SS

Meltpool
temperature

5.5 × 8 × 9 prism
with intentional

cavity

LR
SVM
KNN

RF
(supervised)

96% Cavity detection [137]

Two wavelength
Pyrometer Off-axis

FOV 65 × 80 pixels
Resolution of 21 µm/pixel

90 µs exposure
Sampling rate 6–7 kHz

316L Meltpool
temperature

L shape
With intentional

defects

k-d tree
(supervised) NA Pore detection [138]

Infrared camera
Off-axis

Above the build
chamber

Optical resolution 640 × 480 sensor elements
spectral range from 4.8 to 5.2 µm.

50 images per second
spatial resolution 1289 × 768 pixel

H13 Scanned layer
temperature Cubes CNN

(supervised) 97%
Delamination

and spatter
detection

[105]

Infrared camera N/A

856 × 658 spatial resolutions,
12-bit analog to digital converter (ADC),

30 Hz frame rate,
wavelengths 750–950 µm.

N/A Scanned layer
temperature

Part with geometric
grooves

CNN
(supervised) 60% Detect geometry [139]

Infrared Camera Off-axis
192 × 100 pixel

10,000 Hz
30 µm pixel size

Ti6Al4V Meltpool
temperature Laser tracks

LR
RFC
GBC
GPC

(supervised)

88%
87%
89%
84%

Predict the
probability of

porosity
formation.

[67]
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6. In-Process Control

The natural extension of research work on process monitoring is developing systems
capable of predicting impending events and taking corrective actions to prevent the onset of
defects. The application of ML in real-time control for AM is just coming into existence and
beginning to display signs of future potential. Some of the challenges where such systems
are not highly utilized are a high number of process parameters and their relationship
with the part quality. The use of ML for monitoring has matured in the past few years
as it mainly depends on training the model offline. More effort is needed to cope with
the fast nature of the process. Furthermore, solid solutions for data management and
storage are needed to develop ML-based control [140]. Factors affecting the development
of such systems include the need for sensor fusion techniques to achieve improved process
understanding and control [141]

Several studies have been performed using classical control approaches to compensate
for defects in metal additive manufacturing. Well-defined examples can be found in
the works of Kruth et al. [53,142,143], Berumen et al. [144], and Kleszczynski et al. [46].
Examples of more recent research work in this area using mainly energy density as a process
parameter include Clijsters et al.[145], Wang et al. [146], Renken et al. [147], and Yeung
et al. [148]. In addition, comprehensive review papers by Tapia and Elwany [149] and
Boddu et al. [150] were also published. Generally, these efforts were based on mechanistic
(or analytical) process models based on first principles. This typically leads to a fixed
number of process parameters with physical or empirical interpretation. In addition,
physics-based models are often computationally expensive.

In contrast, data-driven models require little physical knowledge and a more extensive
dataset. The number of parameters in these “black-box” models depends on the available
data. The so-called “grey-box” or hybrid semiparametric modeling is realized by balancing
the advantages and disadvantages of knowledge and data-driven models. There are two
approaches used to realize hybrid model structures: serial or parallel [151]. In the serial
approach, the data-driven model is used as an input to the mechanistic model. In the
parallel approach, the output of the data-driven model is superimposed onto that of the
mechanistic model. The residuals between process observations and mechanistic model
predictions are then used to improve the model’s prediction accuracy. Examples of hybrid
modeling can be found in the chemical industry [152].

In this section, we focus on machine learning approaches to control the additive
manufacturing process. These approaches are typically mainly based on data-driven
models. Machine learning models can be applied to the AM process’s analysis, diagnosis,
and control because they can define critical causal relationships between process variables
and construct classification procedures to detect unwanted process states. Classification of
the process states can be used to construct optimal control trajectories in real-time process
control.

The application of ML in the development of in-process control systems has improved
control performance in terms of accuracy, particularly for systems that are difficult to de-
scribe mathematically [153]. ML techniques have been used to develop online closed-loop
controllers for various AM processes. For example, Yao et al. [154] used the Markov deci-
sion process and layer-per-layer imaging data to formulate an AM optimal control system.
Optimal control theory is a branch of mathematical optimization that deals with finding
a control for a dynamical system over a period of time such that an objective function is
optimized. In this case, the optimal control was to optimize the process parameters in a
layer-by-layer manner. They considered the stochastic dynamics of the defects for each
layer and used the Markov decision process to control the L-PBF process sequentially. The
authors created an optimal quality control policy chart to illustrate when corrective action
should be taken, as illustrated by Figure 25.
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Figure 25. An illustration of the optimal control policy [154].

Jin et al. [155] developed a real-time monitoring and control system for fused de-
position modeling (FDM) technology. The system proposed adjusts printing conditions
based on a trained machine learning algorithm. Machine learning is implemented using a
convolution neural network (CNN) model. Real-time images are continuously fed into the
model and classified to obtain the current printing condition. The system generates new
commands to adjust the filaments flow rate if a defect is detected.

Mukherjee and DebRoy [141] proposed a digital twin of the printing machine; a
digital twin is a “virtual replica of the hardware that has been successfully constructed
and utilized”. A digital twin AM process consists of mechanistic, sensing and control,
statistical, Big Data, and machine learning [156]. The main aim was to reduce the trial
and error required for part qualification and obtain the desired product attributes. They
specified the required components of a digital twin to include mechanistic, control, and
statistical models, and machine learning. Reiff et al. [21] developed a control architecture
that includes a model-based feedforward control for the L-PBF process, as illustrated in
Figure 26 The controller adjusts the laser power, scan speed, and scan strategy based on
the current bed temperature calculated by a 2D thermal model. A pyrometer is used to
monitor the meltpool temperature, which is used as a feedback signal. Machine learning,
specifically radial basis function networks (RBF), was used to tune the process parameters
and determine the optimum combination of laser power, scan speed, and powder bed
temperature to achieve a homogeneous meltpool.

Liu et al. [157] developed an image-based diagnosis and closed-loop feedback control
system for the FDM process. The system is based on a real-time image acquisition device, a
two-stage online classification framework to identify the types and severity of the defects,
and a PID controller for mitigating the defects. Recently, Masinelli et al. [158] suggested
using reinforcement learning (RL) to control the metal additive manufacturing process.
The authors used acoustic emission (AE) signals to trace the onset or propagation of
defects. Table 5 summarizes the recent efforts related to the application of machine learning
techniques in real-time process control of the AM process. It can be noted that this field
is still unexplored, and more research is needed to enhance the capability of ML-based
control in L-PBF processes.
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Figure 26. Developed architecture for control systems by Reiff et al. [21].

Table 5. Overview of ML-based process control of AM processes.

Machine Learning Technique Process Control Strategy Data Reference

Sequential decision making
through the Markov decision

process framework
L-PBF Optimal control Imaging Yao et al. [154]

CNN FDM Adjustment of filaments
flow rate Imaging Jin et al. [155]

Radial basis function networks
(RBF) L-PBF Feedforward control Temperature using

pyrometer Reiff et al. [21]

Support vector machine (SVM) FDM PID control Imaging Liu et al. [157]

Reinforcement learning (RL) L-PBF
Corrective actions to
prevent the onset of

defects
Acoustic emissions Marinelli et al. [158]

7. Summary and Perspective

The latest research integrating ML techniques for in situ monitoring and control of the
L-PBF process has been reviewed in this work. First, a description of the L-PBF process
signature and the detectable defects was discussed, highlighting the difference between the
level of details in each process signature. Afterward, the most common sensors currently
used for in situ monitoring were discussed and compared in terms of applications and
specifications. Then a detailed categorization of the different ML techniques used for L-PBF
defects detection was presented. Finally, this review article classified the ML algorithms
in the literature according to sensor type and monitored process signature. Moreover, the
application of ML-based control was compared, and more research and investigation in this
field is required to overcome the limitations of computationally expensive physics-based
models.

It was observed that if an acoustic sensor is being used to monitor the L-PBF process,
analyzing the collected AE signals in the frequency domain resulted in higher classification
accuracy. It was also observed that the highest accuracy could be obtained when deep
learning neural networks are applied. When DSLR cameras are being used to monitor the
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scanned layer and powder bed layers, it was observed that the supervised approach using
DCNN resulted in relatively higher classification accuracy of defects. CNN was the most
suitable ML algorithm used to monitor meltpool signatures of the L-PBF. However, it was
noted that mounting the camera coaxially resulted in higher defects classification rates.
Linear regression models resulted in high classification accuracy when used to classify
defects detected by pyrometers and photodiodes.

A major challenge with the ML algorithm examples described in this review article
is that they are only applicable to the specific machine they were developed on, the one
material it was tested on, or the specific process parameters they were applied to test.
Therefore, generalizing these ML models is a current research gap, and more investigation
is needed in this area. Moreover, the data, although large in volume, collected from one
sensor is sometimes not sufficient. For example, DSLR cameras are only able to detect a
large field of view by monitoring layerwise, while high-speed cameras have a narrow field
of view and can only detect a small portion of the build plate. Likewise, infrared cameras
can detect surface defects, while AE sensors can detect volume defects. Undoubtedly,
employing several sensors on the L-PBFs and attempting to fuse the data from these sensors
can help enhance detection and classification accuracy. However, new ML algorithms will
be needed to cope with the collected data’s volume, variety, and velocity.

Below are some suggested research directions to improve the use of ML techniques
for in situ monitoring and control of the L-PBF processes.

7.1. Data Volume, Velocity, and Variety

Although ML methods have been well developed for decades, ML methods for online
monitoring are a relatively new topic that needs more investigation. Due to the fast nature
of the L-PBF process, the volume, velocity, and variety of collected data are large enough to
fit the aspects of “Big Data” [22]. The articles reviewed in this study reveal that supervised
ML methods are the most common approach used for in situ monitoring and control of the
L-PBF. Therefore, it is expected that labeling and training this amount of data is both tedious
and labor-intensive [159]. One alternative to reduce the time needed for data training is to
use different ML approaches, such as unsupervised and active learning techniques, which
are expected to be used more often. This would reduce the lengthy training time and offer
an opportunity for faster response time [160].

Another approach reported in the literature to reduce the training time is to use
knowledge-based artificial neural networks (KB-ANN) [161]. The authors used a modular
ANN composed of zones where system-related knowledge is already available in this
approach. The weight of neurons can be precomputed without the need for training.
Classical artificial neural networks (ANN) were trained using experimental data in areas
where knowledge is insufficient. The authors applied this approach to a fused deposition
modeling (FDM) process; it is expected that this approach might also be suitable for the L-
PBF process and is worth investigating. Another concern is the huge resource consumption
needed to create enough data for model training. A suggested approach is integrating
physics-based models to ML models [162]. The physics-based model was used to generate
large thermal history data used for training the ML model. The model suggested by Ren
et al. [162] was validated experimentally and yielded good results; however, it was created
for a single layer. The ability to expand this model to multilayer and expand the library of
materials may be computationally expensive but still necessary.

7.2. Generalization Issues

Most published data report an acceptable accuracy rate for classifying defects and
regression analysis using different sensors and different ML algorithms. However, these
results were obtained from different geometries and different materials using different
machines. Therefore, generalized ML algorithms need to be developed to demonstrate
the feasibility of knowledge transfer across different platforms using different machines.
Minimal research has discussed the generalization of the developed ML models to monitor
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L-PBF by changing the material type. For example, Ghayoomi et al. [74] used a VAE
approach to generalize the developed machine learning model to classify defects in two
different materials, H13 tool steels and 316L stainless steels. Eschner et al. [76] attempted
to test the same ML model on different part geometries; the model accuracy was not high
when generalized. It was found that training a separate model for complicated geometry
was necessary. An approach to generalize an ML model was suggested by Liu et al. [163].
Previously published hardness data was used to train an ML model to predict the part’s
porosity. More generalized ML models can help reduce the training time and enhance ML
algorithms’ transferability of ML algorithms, not only across different materials but across
different L-PBF platforms. Generalization is usually assessed by testing the ML model with
new samples that were not used in training.

7.3. Sensor Fusion and Development

Sensor fusion implies using more than one sensor output to achieve an improved
process understanding and thus control. The fusion of various data such as meltpool size,
temperature, and acoustic emission can be used as an information source for internal and
surface defects. It might also serve as an efficient approach to control the L-PBF process and
account for corrective actions. Very limited research discusses the applicability of sensor
fusion to monitor the L-PBF processes. For example, Montazeri et al. [164] proposed using
a photodetector, high-speed visible camera, and short-wave infrared thermal camera for
online defect detection of the L-PBF process. It was noted that low-fidelity sensors such as
photodetectors might be more cost-effective than thermal cameras. The authors also noted
that an array of photodetectors might enhance defect detection accuracy. Clearly, there is a
need for more studies on different ML algorithms that can fuse different data collected and
benefit from these additions instead of analyzing the output of each sensor individually.

Moreover, to use the ML model in online control of the L-PBF, a relatively fast response
is needed to ensure a timely control signal is given to take corrective action [102]. Therefore,
it was also suggested to develop computation-enabled intelligent sensors capable of being
application-targeted [165]. These sensors will benefit from “Big Data” analytics and the
Internet of Things (“IoT”) to help place L-PBF in its expected position in Industry 4.0.

7.4. AM Framework Development

Data-driven models have been used in several stages of the L-PBF process lifecycle.
That is because the process involves a vast amount of manufacturing data, including design
data, materials data, process data, online monitoring data, and postprocessing data. Using
a data-driven framework to handle the data transfer during the lifecycle of the metallic
part would enable the smart transformation of metal AM processes [166]. Data-driven
models to test manufacturability and test design for AM rules have been suggested by Ko
et al. [167], while data-driven models to predict surface roughness of printed parts were
suggested by Cao et al. [168]. Majeed et al. [166] proposed a data-driven framework to
handle real-time and non-real-time data for the product lifecycle of AM. The proposed
framework consists of four phases: data acquisition, storage, processing integration, and
management of this data. Then, data mining and decision-making takes place. Finally,
application services take place based on the decisions that were made in the previous phase.
To date, most of the research focuses on developing and proposing framework structure
in a single stage of AM lifecycle; very limited research discusses the realization of such
conceptual ideas [140]. To date, there is no data-driven framework capable of handling
the data collected during the lifecycle of the L-PBF process. Therefore, it is suggested that
more studies integrate real-time data with non-real-time data and construct a data-driven
framework for L-PBF processes. Future research in these areas might help with the smart
transformation of the L-PBF processes to take its role as one of the pillars of Industry 4.0.
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