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Abstract: With the fast development of urban rail transportation, shield construction has been widely
used in tunnel construction in China. It is very important to detect the random distribution of
boulders, which may cause geological problems. Cross-hole electrical resistivity tomography (ERT)
has the advantage of precise detection, but it has not been systematically studied in solitary rock de-
tection. Therefore, we set up several numerical models and proposed weighted inversion, to improve
the capacity for detecting boulders. Subsequently, the method was applied to the Xiamen Metro
Line 1, where it was highly likely to encounter boulders. All the test boreholes revealed the presence
of boulders, and their location and size were consistent with the geophysics results. This study
demonstrated the suitability of weighted inversion based on a multi-configuration combination of
cross-hole ERT for the detection of boulders. This case study provides new engineering perspectives
on how to detect boulders.

Keywords: cross-hole ERT; boulder detection; multi-configuration combination; weighting factor

1. Introduction

In recent years, subways have been extensively constructed because of the limitations
and increasing pressure from the demand on land resources and the growing urban
population. Meanwhile, shield tunneling has been more and more widely used in metro
tunnel construction, and the excavation depth of shield tunnels is becoming deeper than
before. Deep boulders have become one of the problems threatening subway tunnel
construction. However, the spacing between drilling holes in metro engineering is usually
40–50 m [1]. Such a distance leads to a low probability of discovering boulders. As a result,
the detection of boulders is tremendously challenging.

In the last few decades, geophysical prospecting techniques [2–4] and inversion
methods [5] have made great progress, and some have been used in engineering, proving
their validity [6–15]. At the same time, some geophysical exploration methods have been
applied to identify boulders, including ground-penetrating radar [12] and microtremor
surveying [1]. However, the resolution of surface prospecting methods is limited, and the
low signal-to-noise ratio creates the possibility of increased artifacts [1,16]. As it stands, the
underground surroundings of subway tunnel construction projects are usually complicated,
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and the occurrence and condition of boulders within the strata are unpredictable. Therefore,
methods for improving the accuracy of boulder detection need to be developed.

Cheng et al. [17] applied cross-hole seismic tomography analysis to detect boulders,
and Li et al. [2] analyzed the effect of cross-hole ERT in the detection of boulders using
model testing. By comparing with surface prospecting methods, cross-hole methods were
found to be effective for improving the resolution at depth. The capability of cross-hole
ERT exceeds the performance limits of surface electrical surveying, because it extends
the detection range [18]. Liu et al. [19] used an optimized refraction tomography method
to accurately determine a tunnel’s geology. Nie et al. [20,21] used the ERT method to
detect underground abnormal bodies in physical models and practical engineering. In
previous studies, cross-hole ERT was used for many aspects. For instance, cross-hole ERT
was applied to hydrogeological and fluid/gas plume migration studies, allowing better
monitoring of the variations of those processes and the characterization of subsurface
structures [22]. These studies have shown the prospects of success with this technique in
our study area. Hence, it is natural to choose cross-hole ERT as one of the geophysical
methods for detecting boulders. Previous studies on cross-hole ERT found that every
configuration has its own advantages and disadvantages [18,23]. Therefore, we proposed
multi-configuration combinations of cross-hole ERT.

The study herein focused on the application of the cross-hole ERT method in de-
tecting boulders. First, we put forward an weighted inversion model, based on a multi-
configuration combination of cross-hole ERT. We set up several numerical examples, to
verify the correctness of the method. Then, the method was applied to practical projects. A
multi-configuration combination of cross-hole ERT was used to collect data, followed by
data processing that used the weighted inversion to obtain four profiles. Finally, the study
evaluated the effectiveness of this method, by analyzing the results of field tests.

2. Methods and Simulation of Boulder Detection Using Cross-Hole ERT
2.1. Different Configurations and Sensitivity Analysis

This study used three configurations, including a dipole–dipole array, bipole–bipole
array, and pole–tripole array, which were defined as follows (Figure 1): the current and
potential poles in different boreholes for the dipole–dipole array (Figure 1a); one current
pole and one potential pole in the same borehole for the bipole–bipole array (Figure 1b);
and a first current electrode in one borehole and three other electrodes in the other borehole
for the pole–tripole array (Figure 1c).
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Figure 1. Cross-hole ERT configurations; A and B represent the current electrodes and, M and N
represent the potential electrodes: (a) dipole–dipole array (AB = n, n = 3, 5; MN = m, m = 2, 3, 4, 5, 6);
(b) bipole–bipole array (AM = n, n = 2, 3, 4, 5, 6; BN = m, m = 2, 3, 4, 5, 6); and (c) pole–tripole array
(BM = n, n = 2, 3, 4, 5, 6; BN = m, m = 2, 3, 4, 5, 6).
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The sensitivity of the used arrays is shown, as follows: From Figure 2, we can see that
these three configurations have the highest sensitivity at the electrode point. The sensitivity
distribution shows that three configurations have a good horizontal resolution and poor
vertical resolution.
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Figure 2. Sensitivity distribution of cross-hole ERT configurations: A and B represent the current
electrodes, and M and N represent the potential electrodes: (a) dipole-dipole array; (b) bipole-bipole
array; and (c) pole-tripole array.

2.2. Multi-Configuration Combination, Based on Weighting Factor

According to the analysis of Leontarakis and Apostolopoulos [23], the signal of the
bipole–bipole array is stronger and sensitive, even for a relatively small target. However,
when the environment becomes more complex, the resolution of the array can be reduced.
While, the resolution of the pole–tripole array is excellent, even in a complex environ-
ment, but the results of some studies featured many artifacts. Furthermore, Zhou and
Greenhalgh [18] found that a disadvantage of the dipole–dipole array is that the potential
difference measured by this array is smaller and more easily masked by noise, which in
turn decreases the resolution.

Considering the cumulative factors of these three measurement techniques, the elec-
trical resistivity measurement chosen was a multi-configuration combination, consisting
of the three cross-hole configurations as described above, including a dipole–dipole array,
bipole–bipole array, and pole–tripole array. The electrode spacing of the dipole–dipole array
varied within the interval, which was guaranteed to collect more overall data. Moreover,
the spacing of the electrodes of the bipole–bipole array was 2 m, while for the pole–tripole
array it was 1–3 m. The test applied this multi-configuration combination, featuring the
superposition of all three cross-hole configurations, to perform the numerical calculations.

At the same time, in order to equalize the participation of the data of each configu-
ration, a particular weighting factor was introduced to improve distinguishability [24].
The magnitude of the weighting factor was based on the Jacobian matrices, JA, JB and
JC, of the three configurations. Following previous research, in this study, the sum of the
ratios between JA

j and JB
j gives the magnitude of the weighting factor, which is defined as

Equation (1):

JA
j =

∑NA
i=1

∣∣∣JA
ij

∣∣∣
NA
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j

JC
j
(j = 1, 2 . . . M) (2)

JB = JB0 ∗ c, JC = JC0 ∗ c (3)
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where A is the bipole–bipole array, B is the pole–tripole array, and C is the dipole–dipole
array. By comparison of the numerical simulation tests, the results of selecting the bipole–
bipole array as A were more accurate. Thus, b is the weighting factor of the pole–tripole
array, and c is the weighting factor of the dipole–dipole array. Meanwhile, the weighting
factor for the bipole–bipole array is 1. In this process, JA

j are the average values of the

absolute value of JA
ij , which is every element in one column of the bipole–bipole array;

while JB
ij are the average values of the absolute value of JB

ij , which is every element in one
column of the dipole–dipole array or pole–tripole array. Finally, the Jacobian matrices were
multiplied by the weighting factor, to balance the contribution of each of the arrays, as in
Equation (2).

2.3. Numerical Examples

This algorithm was applied to a synthetic resistivity model, which was designed to
obtain knowledge about the value of the weighting factor for the detection of boulders.
The model included two boreholes, 8 m apart and 30 m in depth, located in a 100 Ω·m
homogeneous half-space. One cable with 60 electrodes was installed in each borehole,
and the electrode spacing was 0.5 m. Considering that boulders are characterized by high
resistivity, the model was set up for targets of 1000 Ω·m within the half-space.

Following this, the inversion results showing whether the weighting factor should be
added or not were contrasted to show whether the distinguishability had been improved.
According to actual engineering situations, the side length of abnormal bodies buried
below 10 m is usually no more than 1 m, while the side length of abnormal bodies buried
above 15 m is usually about 2 m. Based on this, we design three numerical simulation
examples. In each figure that follows, the geoelectrical models were obtained by the multi-
configuration combination and weighted inversion of a multi-configuration combination.

We placed four targets in the first example. Two square targets with a side length
of 1 m were placed at 5 m, and the other two square targets with a side length of 2 m
were placed at 16 m and 19 m. The results, which include the four targets, is presented
in Figure 3. Comparing Figure 3b,c, the deepest target can be identified by increasing the
weight factor, and the boundary of the deep boulders is clear. Furthermore, we can see that
the resistivity inversion of the shallow anomalous body was about 280 Ω·m and that of the
deep anomalous body was more than 500 Ω·m. Figure 4 presents the geoelectrical models
with three targets with a side length of 1 m set at 3 m, 6 m, and 9 m, and three targets with a
side length of 2 m are set at 15 m, 18 m, and 21 m. Comparing the result with no weighting
factor (Figure 4b) and the result when using the weighting factor (Figure 4c) showed that
the resolution was improved. When no weighting factor was added, the target bodies
near-surface could not be clearly distinguished from the background and the result could
not identify the boundaries of the three deep targets. Contrastingly, the model using the
weighted inversion (Figure 4c) showed the approximate position of each of the six targets
and identified the boundary of the three deep targets’ bodies. In addition, we found that
the resistivity of the deeper anomaly was higher than that of the shallow anomaly in the
simulation result.

Similarly, the resistivity model, including six targets, with two scattered bodies near
the surface and the other four deeper agminated bodies, is shown in Figure 5a. Two targets
with a side length of 1 m were set at 3 m and 6 m, and four targets with a side length of
2 m were set at 15 m, 17 m, and 22 m. Only a deep body and a bar object can be seen in the
result with no weighting factor (Figure 5b). Moreover, considering the volume effect of
the electrical exploration and sensitivity distribution, the cross-hole ERT has good vertical
resolution and weak horizontal resolution, and the resolution of the multiple targets at the
same horizontal position is limited (Figure 5c).
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From the comparison of the above three groups, it is apparent that the weighted
inversion geoelectrical model was significantly better than the model produced by the
inversion of the multi-configuration combination with no weighting factor. In addition,
the inversion results show that the resistivity of the deep target was always higher than
that of the shallow target. In other words, deep anomalies had a better resolution than
shallow anomalies.

3. Field Case
3.1. Geological Background

Xiamen Metro Line 1, which forms a cross-sea passage between Xiamen Island and
Jimei District, is located in Xiamen, Fujian Province, China. The research selected a section
between the locations of Station Tianshui and Station Xiamen north (Figure 6). There were
many limiting factors between the two stations, such as many houses above the tunnel and
a narrow and disordered road. The longitudinal section of the interval is a v-shaped slope.
The depth range of the tunnel is 10.8 to 21 m. The geology of this section mainly passes
through residual sandy cohesive soil, completely weathered granite, and granular strongly
weathered granite. The overlying strata of this section are clay, clay quality fill, completely
weathered granite, and granular strongly weathered granite, while the underlying strata
are granite and diabase. The section mainly passes through the eluvium, and the boulders
are relatively developed (Figure 7a). From the geological survey data, the studied zone
mainly traverses eluvial strata, which is well distributed with boulders of a relatively
small size and volume. It can be seen from the coring results (Figure 7b) that boulders
appeared frequently and their positions were random, which indicates that the detection
of boulders in this strata interval is of high difficulty and challenging. It is of practical
engineering value to use geophysical methods to detect the existence of boulders under
limited conditions.
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3.2. Layout of the Cross-Hole ERT Survey Lines

Considering that the boulders at the edge of the shield machine have a great impact
on the cutterhead, the study was designed to detect the contour of the tunnel. Moreover,
due to the limitation of the surface environment and the close distance between the left and
right lines of the tunnel, only the space between the tunnels was surveyed in the detection
process. Therefore, apparent resistivity measurements were made using the four survey
lines arranged on the surface, using five existing boreholes, as shown in Figure 8. The
lengths of the survey lines were 11.55, 9.5, 9.8, and 10.5 m, respectively, measuring from
northeast to southwest. We used nonpolarized electrodes, and the electrode spacing on
the cable was 1 m. To ensure the electrical contact between soil and electrodes, we poured
water into the borehole to couple them. In practice, it was necessary to verify whether the
results of the geophysical prospecting were precise. The results of the weighted inversion
of the multi-configuration combination were compared with the actual field measuring
results using the test boreholes. The locations of four test boreholes (YZK1–YZK4; Figure 8)
were delineated using the results of geophysical prospecting.
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3.3. Results and Discussion

In this section, four profiles and four coring results of test boreholes are described,
to indicate the position of boulders in the studied area. Each profile was obtained by
weighted inversion of the multi-configuration combination, as shown in Figure 9. In this
process, the smoothness-constrained least-squares inversion method was applied to invert
resistivity data and the number of iterations of inversion was six. The coring result of the
test boreholes is shown in Figure 9, in comparison with the weighted inversion results of
the field data.

The four profiles showed high resistivity values in areas corresponding to the boulders.
Figure 9a shows three high-resistivity bodies between ZK4 and ZK5 at different positions.

In YZK1 (Figure 9a), cross-hole ERT revealed three boulders, located at a depth of
5–10 m, depth of 18–22 m, and depth of 27–30 m. Correspondingly, the borehole revealed
an abnormal body located at 23–27 m.

The profile for the site between ZK4 and ZK1 is shown in Figure 9b. Cross-hole ERT
also revealed three boulders, which were located at a depth of 5–10 m, depth of 18–22 m,
and depth of 27–30 m. Correspondingly, the borehole revealed an abnormal body located
at 25–28 m.

The profiles in Figure 9c were acquired between ZK3 and ZK1, showing three high
resistivity bodies. The test borehole revealed two boulders at 21–23 m and 27–31 m. It is
noted that the results obtained by geophysical prospecting found one more high resistivity
body than the coring results of YZK3.

Figure 9d shows very similar features to Figure 9c, for the site between ZK2 and ZK1.
Three high resistivity bodies occurred at 12–15, 17–21, and 23–27 m. The results of the test
borehole presented in Figure 9d included two boulders. One was at 20–23 m and another
was at 23–27 m. Compared with three the bodies in the profile between ZK2 and ZK1
(Figure 9d), there existed one different body, at 12–15 m.

From the perspective of numerical simulation, the new cross-hole ERT method has
good vertical resolution and weak horizontal resolution, but it may be difficult to dis-
tinguish boulders of the same horizontal position and size, independently. Moreover,
from the numerical simulation and engineering measurement, when setting a reasonable
borehole-depth/borehole-spacing ratio (>1.5) and borehole spacing and electrode spacing,
boulders with a size of 0.5 m~2 m can be distinguished.

Based on the analysis herein, the results of the geophysical prospecting showed a high
degree of similarity with the results of the test boreholes. Moreover, the ERT results show
more boulder anomalies. The cross-hole ERT results showed more high resistivity bodies,
and they were some distance from the test boreholes. These could have been boulders
that were outside the test boreholes. Results using the weighted inverted geoelectrical
model were reasonable and agreed with the results validated by the boreholes. This study
demonstrates that the use of weighted inversion of a multi-configuration combination in
the investigation of boulder detection is effective. Therefore, we recommend the use of
weighted inversion of a multi-configuration combination as a higher resolution approach
to detection. However, in the application of this method, a few disadvantages were found.
For instance, the boundaries of bodies were unclear. Therefore, further basic research is
required, to solve problems such as the multi-scale inversion [25] and L1 (blocky) inversion.
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Figure 9. Comparison between the weighted inversion results of field data and the results of the test
boreholes: (a) cross-hole electrical resistivity profile of the site between ZK4 to ZK5 and the results of
ZK1; (b) cross-hole electrical resistivity profile of the site between ZK4 to ZK1 and the results of ZK2;
(c) cross-hole electrical resistivity profile of the site between ZK3 to ZK1 and the results of ZK3; and
(d) cross-hole electrical resistivity profile of the site between ZK2 to ZK1 and the results of ZK4.

4. Conclusions

The ability to detect and characterize shallow boulders below the surface can enable
optimization of the construction plan of tunnels in advance, to reduce and avoid hazards.
We put forward a multi-configuration combination of cross-hole ERT based on weighting,
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to improve the detection capability. Then, the method was applied to an engineering case,
and the effectiveness of the method was proven using test boreholes.

Moreover, in order to ensure the safety of construction workers and of the shield
machine while operating in a tunnel, we offer several suggestions based on this study. First,
it is advised that when conducting boulder detection using the cross-hole ERT method, the
quality of casing drilling should be strictly controlled. Second, it is essential to ensure that
the depth and spacing of boreholes meet the requirements. The reason for this is that the
spacing of the holes should not exceed approximately 0.75 times the hole array length, to
guarantee achieving a rational image resolution [21,26]. Finally, boulders that have been
detected should be disposed of in a timely manner.
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