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Abstract: Due to the complexity and particularity of the joined wing layout, traditional design
methods for the global stiffness of a high-aspect wing are not applicable for a joined wing. Herein, a
beam-frame model and a three-dimensional wing-box model are built to solve the global stiffness
aeroelastic optimization design problem for a joined wing. The goal is to minimize the weight,
and the constraints are the overall aeroelastic requirements. Based on a genetic algorithm, two
methods for the beam-frame model and one method for the three-dimensional model are used for
comparative analysis. The results show that the optimization method for a diagonal beam section
and the optimization method for an exponential/linear combination function fit are adequate for
optimizing and designating the joined wing global stiffness. The distributions obtained using the two
methods have good consistency and are similar to the distribution of the three-dimensional model.
The stiffness distribution data and the beam section parameters can be converted from each other,
which is convenient for redesigning the structure parameters using the stiffness distribution data,
and is valuable for engineering applications.

Keywords: joined wing; aeroelastic optimization; engineering beam theory; global stiffness design

1. Introduction

Aircraft design includes complex aeroelastic problems; therefore, it is necessary to
use structural optimization techniques for a compromising primary design scheme, in
order to solve issues related to the coupling between different disciplines, e.g., structural,
aerodynamics, control, etc., and meeting aeroelastic performance requirements. A design
under aeroelastic constraints is called an aeroelastic optimization. In the overall design of
aeroelastic problems, the primary issue for determining the influence of structural defor-
mation on the aerodynamic characteristics is designing a reasonable stiffness distribution
for the wing structure [1], and this is also an essential basis for subsequent designs [2]. To
obtain more accurate results that satisfy the aeroelastic performance requirements, it is
necessary to design a wing stiffness distribution using design optimization technology,
which can preferably guide the selection of the structural scheme and the arrangement of
the macrostructure stiffness and mass distribution [3].

Joined-wing airplanes have been widely explored and studied in many different
disciplines since Wolkovitch introduced the concept in 1976 [4]. A joined-wing airplane
can be defined as an airplane that incorporates tandem wings arranged to form diamond
shapes in both the plan and front views, and the fuselage can be seen as the connecting
diagonal of the diamond frame. The advantages of a joined wing include light weight,
high stiffness, low induced drag, good transonic area distribution, high-trimmed CLmax
(maximum trimmed lift coefficient), reduced wetted area and parasite drag, direct lift
control, side force control capability, excellent stability and controllability [5]. However, the
connection between the front wing and the rear wing leads to dissimilarity in the structural
and aerodynamic characteristics compared with a traditional layout, and the interconnected
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wings form a complex overconstrained system, which increases the difficulty of analysis
and increases the design space of different disciplines [6,7]. This leads to integrated design
changes becoming the key problem, as the authors in [8] noted that basic aeroelastic
investigations must be introduced early in the design process of a joined-wing aircraft, and
a stiffness distribution design is also necessary.

Aeroelasticity research has been accompanied by the development of the joined wing.
Robert A. Canfield and his team performed a series of studies on the aeroelasticity of a
joined wing during the first decade of the 21st century. Different structural models of
joined wings were studied, including high-fidelity finite elements method (FEM)-based
weight models [8], embedded antenna models [9,10], nonlinear structure models [11,12],
sensor craft models [13,14], scale models [15–18], a beam model [19], and a wind tunnel
model [20]. Nearly half of the research dealt with linear structural integrated design and
optimization, whereas the other half dealt with the nonlinearity of the joined-wing models.
Demasi et al. also performed great research on the aeroelasticity of joined wings. Their
research focused mainly on the nonlinear problems of joined wings. The evaluation of
aeroelastic characteristics of the joined wing was undertaken in the early design stages
in [21]; both reduced-order models [22,23] and full-order models [24] were used to analyze
the nonlinearity of joined wings; and post-critical phenomena were researched in [25,26].
However, the aeroelastic optimization of the models has hardly been taken into account.
Preliminary analyses on joined wings showed that aerodynamic loads at the tip of the
wing were sensitive to the modeling with reference to efforts [27,28]; moreover, aeroelastic
analyses showed large differences in the predicted flutter speeds. Thus, it was speculated
that by attributing the forces in the tip regions largely to the bending moment, the overall
aeroelastic response was significantly affected by the redistribution. Flutter involving
vehicle motion can be an active constraint [29].

As mentioned above, the aeroelastic analysis of a joined wing is necessary, and as
stated earlier, optimization in the preliminary stage of aircraft design is also indispensable;
therefore, the aeroelastic optimization of a joined wing is important. A large number
of aeroelastic optimizations of joined wings have been explored in precursory studies.
The rib thicknesses of a scaled joined wing was studied as a variables, and the scaled
natural frequencies and scaled flutter speed of the full-scale vehicle were reproduced after
optimization in [14]. An equivalent unsymmetrical beam section was used for structural
optimization and was proven to adequately approximate the stiffness and deflection be-
havior of a real wing in [30]. Aerostructural optimization was carried out in [31,32]. A
panel method and an equivalent beam finite-element model were used for aerostructural
optimization with the aerodynamic design variables as the parameters of the geometric con-
figuration, and the thicknesses of the spar wall were added as structural design variables.
The application of bacterial foraging optimization to a joined wing was shown in [33] and
a hybrid variant was applied to match the aeroelastic responses of a wind tunnel model
with a full-scale aircraft.

Compared with traditional airplanes, structural optimization and weight estimations
for the preliminary design of a joined-wing aircraft lack mature methods. In engineering,
traditional wing-box design procedures and empirical formulas for traditional wing stiff-
ness distributions have been frequently used for the preliminary design of a joined wing.
However, this approach has three problems. Firstly, as it is a complex overconstrained
system, similar external geometric parameters in the layout lead to completely different
thicknesses of the internal structures and thus weights. Secondly, to minimize the weight
by fixing the topology of the wing box, the material needs to be redistributed differently
from what is usually seen in common layouts. As a result, the secondary bending moment
tilts the neutral axis, and thus material is more efficiently utilized when distributed far
apart to the two opposite corners. Thirdly, because of the interaction of the front wing
and the rear wing, the distribution of the bending moment of the joined wing is different
from traditional wings; thus, the distribution of the stiffness is different. For these reasons,
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optimization approaches in regard to stiffness based on traditional wings are not applicable
to joined wings.

In the conceptual and preliminary design stages, there are many uncertain parameters.
Stiffness design requires a large amount of relevant data, such as airfoil, load, structural
layout, etc., and this information is often obtained through parallel or subsequent design
processes. This lack of information will lead to a decrease in the accuracy of the stiffness
design, which will require repeated modifications of the structural stiffness distribution
in the subsequent design, resulting in a waste of manpower and time. Furthermore,
parametric analysis of the joined wing is even more difficult due to its complex layout
compared with the traditional airplane. This leads to the low design efficiency of the
detailed finite-element models and nonlinear structure models. Therefore, it is necessary to
introduce a simple stiffness model that can describe joined-wing structural characteristics
directly and efficiently, so as to provide guidance for the subsequent structural scheme
screening, macro-structural layout, and mass distribution.

It can be seen from the above that there are few direct studies on the stiffness distri-
bution of joined-wing structures; however, it is necessary to conduct an in-depth study in
the preliminary design stage, while considering the aeroelastic problem. In order to solve
this problem, this paper introduces three different aeroelastic optimization methods in the
preliminary stage to design the stiffness of the joined wing.

2. Materials and Methods
2.1. Beam Cross-Section Simplification

As shown in Figure 1, the out-of-plane components of a joined wing aircraft tend to
bend the wings about a tilted bending axis. To resist this, the wing’s structural material
must form a deep spar about this axis. This implies that the material must be concentrated
near the upper leading edge and the lower trailing edge. As shown in Figure 2, to simulate
the real material distribution of the beam section of a joined wing, three section shapes are
simplified to facilitate calculation without losing rationality. Through a series of theoretical
derivations, the best scheme for a joined wing is selected from the three section shapes.
As shown in Figure 2a, section parameters X1–X4 are used for the design parameters
in each section of the beams. The parameter X1 represents the main diagonal flange
size; X2 represents the secondary diagonal flange size; X3 represents the web thickness;
X4 represents the skin thickness; and X5 and X6 represent the width and height of the wing
box, respectively, and they are fixed in each beam section. The symbol α represents the
tilted angle, as shown in Figures 1 and 2.
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Figure 2. Simplified beam sections with a tilted bending axis. (a) Centrosymmetry beam section; (b) axial symmetry beam 
section; (c) same diagonal beam section. 
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As shown in Figure 2a, the equations used to evaluate the principal inertia moments
Iz1 and Iy1, the torsional stiffness coefficient It1, and the inertial product Iyz1 of the cross
section are as follows:

Iz1 =
1
2

AtX2
6 +

X3(−X3 − 2X3
6 + 3X6X2
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6
(1)

Iy1 =
1
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AtX2
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)
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2

X4X6 + X3X5
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X5X6

2
(A(X2)− A(X1)) (4)
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A(X1) = X2

1 , A(X2) = X2
2 , A(X3) = X3Lw, A(X4) = X4Ls

At =
4
∑

i=1
A(Xi), Ls = X5 − X, Lw = X6 − X, X = X1+X2

2
(5)

In general, the flange size is larger than the size of the web thickness and skin thickness,
and as mentioned earlier, to simulate the material distribution, the main diagonal flange
size is larger than the secondary diagonal flange size shown in Figure 2a, so the relations of
the cross section parameters are as in Equation (6):

max(X3, X4) < X2 < X1 (6)

The section area can be calculated as:

S = 2At (7)

According to the rotation axis formula of the moment of inertia in Equation (8), the
moment of inertia of a beam section relative to the bending axis u1 in Figure 2a can be
derived as Equation (9):

Iu =
Iz + Iy

2
+

Iz − Iy

2
cos 2α− Iyz sin 2α (8)

Iu1= (1 − α2
)

Iz1 + α2 Iy1 − 2αIyz1 (9)

For the case of Figure 2b:

Iz2 = Iz1 Iy2 = Iy1 Iyz2 = 0 (10)
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then
Iu2 − Iu1 = 2αIyz1 < 0 (11)

For the case of Figure 2c, the four flange areas are equal. Defining the flanges X (where
X=X1=X2) as variables and keeping parameters X3–X6 and At unchanged, according to
Equations (3)–(5):

Iz3 =
1
2

AtX2
6 +

X3(−X3 − 2X3
6 + 3X6X2)

6
(12)

Iy3 =
1
2

AtX2
5 +

X4(−X3 − 2X3
5 + 3X5X2)

6
(13)

Iyz3 = 0 (14)

Iu3 = (1 − α2
)

Iz3 + α2 Iy3 − 2αIyz3 (15)

By a series of derivations, as shown in Appendix A Equations (A15)–(A19), the
result is:

∆Iu = Iu1 − Iu3 = X6(αX5(X2
1 − X2

2)) + X3(X2 − X2) (16)

By a series of derivations, as shown in Appendix A Equations (A20)–(A25), when the
Equation (17) condition is met, the result ∆Iu > 0 holds.

N >
(1− k2

2
4 )(k + 1)

(k− 1)k2
2α

(17)

where:
N =

X5
X3

, k =
X1
X2

> 1, k2 =
X3+X4

2X
(18)

That is, if the above formula is satisfied, the moment of inertia relative to the bending
axis of the case in Figure 2a is greater than that in Figure 2c when the section areas are the
same. For thin-walled wing boxes, the above formula is generally satisfied, which means
that when the areas of the sections are the same, i.e., when the weights of the beams are
the same, the section in Figure 2a has a larger resistance to the tilted bending axis. In other
words, a joined wing using the simplified beam section in Figure 2a requires less weight
when the stiffness is the same; therefore, the section layout in Figure 2a is the best scheme
in theory, so it is used for optimization.

2.2. Variable Model Division

Three methods are applied to solve the problem of the aeroelastic optimization of
a joined wing, including two methods for a beam-frame model and one for a three-
dimensional model, which are used for comparative analysis. The division of the variables
of the models are described in detail below.

As shown in Figure 3, the joined wing is divided into three partitions, i.e., the front
wing, the outer wing, and the rear wing. The main beam of each partition is then subdivided
into several sections. More specifically, as shown in Figure 4 in different colors, there are
three design sections between the fuselage and the kink point both in the front wing and
the rear wing and six design sections between the kink point and the joint. The outer wing
is divided into four design sections. For each section of the beam of the beam-frame model,
two methods are used to address its stiffness, namely, method A and method B (The two
methods will be discussed in detail in Section 2.3).
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Method C is a traditional method to solve aeroelastic optimization problems with
detailed scales of structure, and it is applied to the three-dimensional model, as shown in
Figure 5. The wing box is divided into several sections in the same way as the beam-frame
model, as shown in Figure 6. The difference is that the design variables of this method are
the real structural sizes of the wing box, e.g., the thicknesses of skins, webs, and flanges.
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2.3. Aeroelastic Optimization of the Global Stiffness

An aeroelastic optimization study is concerned with a standard optimization problem,
which minimizes an objective function subject to constraints that limit the values of the
design variables in nd dimensional space. The problem can be written as [34]:

gj(v) ≤ 0 (j = 1, 2, · · · , nc) (19)

(vi)lower ≤ vi ≤ (vi)upper ( i = 1, 2, · · · , nd) (20)
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where gj(v) is a correlation function of the constraint index; v is a vector set of the design
variables; vi is a single design variable; (vi)lower is the lower bound of the design variables;
(vi)upper is the upper bound of the design variables; nc is the number of constraints; and nd
is the number of design variables. In aeroelastic design problems, the objective function
F(v) is generally mass, that is, to find the set of design variables that meet the conditions
vi to minimize the total mass of the structure. The constraint conditions are generally
static aeroelastic and dynamic aeroelastic constraint indexes, such as flutter speed, aileron
efficiency, structural deformation and stress, which are constrained by Equation (19). The
upper and lower limits of each design variable are constrained by Equation (20).

An optimization algorithm based on the basic genetic algorithm is introduced for
aeroelastic optimization problems [2].

2.3.1. Method A

As shown in Figure 2a, section parameters X1–X4 are used for the design parameters
in each section of the beams. Let the main diagonal flange size be X1, the secondary
diagonal flange size be X2 (X1>X2), the web thickness be X3, and the skin thickness be X4.
The width and height of the wing box are X5 and X6, respectively. The section parameters
X3 and X4 of each section of the beam and the overall ratios K1 and K2 are the design
variables as follows:

K1 = X1/X2
K2 = 2X2/(X3 + X4)

(21)

There are 40 total design variables. Section parameters X5 and X6 are invariant in each
section but vary with the spanwise direction of the beams. Generally, the overall ratios are
larger than 1. In particular, when we make the design variable K1 equal to 1, the situation
then changes into a beam section, as shown in Figure 2c.

2.3.2. Method B

Referring to the stiffness distribution law of the traditional high-aspect-ratio wing, the
stiffness distributions along the spanwise direction of the front wing, outer wing, and rear
wing are optimized according to an exponential function as follows [2]:

GJ(y), EI(y) = aeby + c (22)

A set of three design variables (i.e., a, b, and c) can be defined for each kind of
stiffness. Thirty-six design variables are required because the vertical bending, horizontal
bending, torsional stiffness, and stiffness caused by section asymmetry of each partition
need to be designed.

Due to the difference between a joined-wing shape and a traditional high-aspect-
ratio wing, a traditional exponential stiffness distribution is not appropriate for a joined
wing. As noted in previous papers, the moment of a joined wing along the spanwise
direction decreases first and then increases in the middle part. To have a lighter weight, the
distribution should have the same trend. Therefore, a new function needs to be found to
simulate the distribution of a joined wing. As shown in Figure 6, an exponential/linear
mixed function can change with its parameters and simulate the trend of the stiffness of a
joined wing well, so it is used to modify the distribution as follows:

GJ(y), EI(y) = AeBy + C + Dy (23)

A set of four design variables (i.e., A, B, C, and D) can be defined for each kind of
stiffness, similarly to method B. Equation (23) is used to address the optimization problem
because including a linear term Dy can simulate the transition of the stiffness curve of
a joined wing well. Forty design variables are required because the vertical bending,
horizontal bending, torsional stiffness, and stiffness caused by the section asymmetry of
each partition need to be designed.
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2.3.3. Method C

A three-dimensional model, as shown in Figure 7, is employed. The model is divided
into the same three parts as the previous beam-frame model, i.e., the front wing, outer
wing, and rear wing. The thickness values of the flanges, webs, and skins in each partition
are used individually for the aeroelastic optimization using a genetic algorithm. The details
of this method are presented in [2].
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2.4. Aeroelastic Responses

The methods that deal with the aeroelastic responses involved in this paper are
described as follows.

2.4.1. Equilibrium Equation for Static Aeroelastic Response Analysis

In general, the static aeroelastic equation is established under the displacement vector
f − set, expressed as [35]:

[K f f − qQ f f ]u f + M f f
..
u f = qQ f xux + P f (24)

where K f f represents the structural stiffness matrix; q indicates the dynamic pressure;
u f represents the displacement vector; M f f represents the structural mass matrix; M f f

..
u f

represents the inertia force caused by the rigid body motions; P f represents the external
load vector; qQ f f u f represents the aerodynamic increment caused by structural elastic
deformation; and qQ f xux represents the aerodynamic force caused by rudder deflection
and rigid body motion of the aircraft. Superscript “..” is the quadratic derivative of time.

2.4.2. Flutter Function

There are generally three common flutter analysis methods, the V − g method and
p− k method and the matrix eigenanalysis method [36], which are all computationally
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efficient and suitable for flutter analysis in optimization problems. The p− k method is
used in this paper. The equation is established under the modal set h [37]:[(

V
b

)2
p2Mhh+

V
b

pBhh + Khh −
1
2

ρV2
(

QR
hh +

p
k

QI
hh

)]
uh = 0 (25)

where V is the incoming flow velocity; b is the reference half chord length; p is the eigen-
value; k is the reduced frequency; Mhh is the modal mass matrix; Bhh is the damping matrix;
Khh is the modal stiffness matrix; Qhh is the aerodynamic force matrix; and the superscripts
R and I indicate the real and imaginary parts, respectively.

3. Model Description
3.1. Beam-Frame Structure Model

A half-model of a high-aspect-ratio joined wing is used as the research object, and
detailed design parameters of the wing are given in Table 1. The structural model of
the joined wing in the preliminary design stage is shown in Figure 3. It is composed of
270 nodes and 367 elements, including 93 mass point elements and 274 rod elements, which
is established using Patran. The wing stiffness is simulated by an elastic axis from the wing
root to the wing tip, and the mass characteristics are simulated by the lumped mass. An
equivalent material was used by referring to the average values for aluminum alloys for
the main beams of the wings. Its density ρalu = 2700 kg/m3, Young’s modulus E = 72 Gpa,
and Poisson’s ratio µ = 0.33. All structures except the beams, e.g., the fuselage, ribs, and
the fin and joint plate, are rigid.

Table 1. Aeroelastic constraint conditions.

Constraints dt,z dt,x dj,z dj,x φt φj Vf

Upper limit 7.5% × lt 1.5% × lt 7.5% × lj 1.5% × lj 2◦ 2◦ -
Lower limit - - - - −2◦ −2◦ 90 (m/s)

where dt,z is the vertical deformation of the wing tip, dt,x is the horizontal deformation of the wing tip, dj,z is the
vertical deformation of the joint, dj,x is the horizontal deformation of the joint, φt is the twist angle of the wing
tip, φj is the twist angle of the joint, Vf is the constraint flutter speed, lt is the half wing span, and lj is the length
between the wing root and the joint.

3.2. Three-Dimensional Structure Model

The wing is divided into panels, spars, ribs, and beams based on structural arrange-
ment and dimension data. The three-dimensional structure model is shown in Figure 7. In
accordance with the load-bearing characteristics of the various components, the entire wing
is simulated by rod-shell elements. The upper/lower panels, wing ribs, and webs of the
front/rear beams are simulated by shell elements. The spars and flanges of the front/rear
beams are simulated by rod elements. The body, joint, and vertical tail are simulated by
rigid beams. Although a large number of elements means that the results are more accurate,
a moderate number of elements is more suitable for parameterization and optimization in
the conceptual and preliminary stages, considering time-consumption. The entire wing
model is composed of 8247 finite elements, which is sufficiently accurate and efficient in
the current design stage.

3.3. Aerodynamic Model

The geometric shape parameters are shown in Figure 8, and the values of the pa-
rameters are shown in Table 2. A flat aerodynamic mesh considering curvature and the
double-lattice method was applied to the aerodynamic model, as shown in Figure 9. The
total area of the half-model is 72.76 m2, among which the front wing is 46.51 m2, whereas
the rear wing is 26.25 m2.
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Table 2. Values of the shape parameters of the joined-wing layout.

Shape
Parameter Value (m) Shape

Parameter Value (m) Shape
Parameter Value (◦)

l 22.86 br 2.54 χ f 22.0
lk 4.63 brk 1.49 χr 35.0
lj 15.67 brj 1.49 ϕ f 4.0
b f 3.51 bt 0.75 ϕr 0.0
b f k 2.11 h 1.19
b f j 2.11

l is the half span of the joined wing; lk is the length between the wing root and the kink; lj is the length between
the wing root and the joint; b f ,b f k, b f j are the chord lengths of the wing root, kink, and joint of the front wing,
respectively; br , brk , brj are the chord lengths of the wing root, kink, and joint of the rear wing, respectively; bt is
the chord length of the wing tip; h is the height of the joint plate; χ f is the leading back swept of the front wing
and outer wing; χr is the edging forward swept of the rear wing; ϕ f is the dihedral of the front wing and outer
wing; ϕr is the dihedral of the rear wing.
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4. Results and Discussion
4.1. Aeroelastic Responses of the Optimized Models

The constraint conditions of all the methods are the same, including the static aeroe-
lastic responses and flutter constraint. The specific constraint values are shown in Table 1.

The displacement and torsion angle of the wingtip and the joint are the most concern-
ing static aeroelastic responses, and a comparison of those values is given in Table 3. The
flight condition is defined at Ma = 0.2, a 1.5 g overload and 25,000 m cruise altitude, where
the acoustic velocity Va = 298.4 m/s, the air density ρair = 0.04 kg/m3. The cruise speed
Vcr = 59.7 m/s, and the dynamic pressure q = 71.28 Pa. The aeroelastic deformation of the
beam-frame model optimized using method A is shown in Figure 10. The deformation
of the other beam-frame model optimized using method B is similar to what is shown in
Figure 10, so it is not included to avoid repetition. The aeroelastic deformation of the 3-D
model optimized using method C is shown in Figure 11. Figure 12 depicts one of the V − g
and V − f diagrams obtained based on the p− k method. The other flutter result diagrams
are not included to avoid repetition. All the flutter speeds of the optimized models are
larger than the constraint speed. The flutter constraint Vf is larger than 90.0 m/s, which
seems very low; however, as the designed cruise speed Vcr is only 59.7 m/s, and Vf is
larger than 1.5 times Vcr, the constraint speed is reasonable.

Table 3. Aeroelastic responses of the optimized models.

Responses Method A Method B Method C Original

dt,z/lt 7.49% 7.50% 7.50% 13.2%
dt,x/lt 1.30% 1.15% 0.30% 2.23%
dj,z/lj 5.64% 5.63% 6.48% 10.1%
dj,x/lj 1.09% 1.01% 0.41% 2.05%
φt/◦ 0.99 0.50 0.08 1.74
φj/◦ −0.05 −0.26 −0.64 −1.43
VF >90 (m/s) >90 (m/s) >90 (m/s) >90 (m/s)

“Method A”, “Method B”, and “Method C” represent the aeroelastic responses of the models optimized using
different optimization methods, respectively; “Original” represents the aeroelastic responses of the original model;
VF is the actual flutter speed.
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The specific data of the aeroelastic constraints are listed in Table 3. From the table,
we can see that compared with the original model, the constraints are satisfied well after
optimization by all the methods, with only the vertical deformation of the wingtip reaching
the constraint boundary value, and the other constraints having significant margins, so the
optimization result is reasonable. It should be noted that the horizontal deformation of the
wingtip is not negligible.

4.2. Results of the Optimized Parameters

The width and height of the beam sections, i.e., X5 and X6 respectively, are fixed and
presented in Figure 13. The span station is nondimensional. The front wing and the outer
wing are continuous in the span direction and the span station is from the wing root to the
wing tip, whereas the span station of the rear wing is from the wing root to the joint. The
descriptions of the nondimensional span station in later figures are the same.
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According to Equations (A3)–(A7), the parameters of the beam sections, i.e., X1–X6,
are positively correlated with the torsional stiffness coefficient It1 and inertias Iz1 and Iy1.
Because the scales of the fixed parameters, i.e., X5 and X6, are far greater than the design
parameters, i.e., X1–X4, the inertias are primarily determined by the fixed parameters,
so when the fixed parameters change, the inertias have the same trend; thus, we mainly
consider the middle parts between the kink and the joint point where the fixed parameters
are invariant with the span direction.

All the optimizations were completed in 20 generations, and there were 600 individuals
in each generation. In theory, as mentioned in Section 2.1, the diagonal beam section is the
best-simplified beam section for the stiffness optimization of a joined wing. As shown in
Figure 2a, the parameters of each beam section are designed and optimized using a genetic
algorithm in method A. The beam section parameters are solved in a reverse fashion using
Equations (1)–(9) in method B. On one side, the areas of the beam sections are calculated,
then the volume and mass of the beam are considered the objective, and on the other
side, those beam section parameters can be used as a reference for a real scale of the beam
sections, which is convenient for redesign work in the primary stage of joined wing design.
The parameters of method C are the scales of the skins, flanges, and webs, which are in
accordance with method A.

Figures 14 and 15 show the beam section parameters of the front wing and the rear
wing, respectively. Based on these results, we can see that all four parameters of the three
methods have the same tendency, i.e., in the inner part before the kink of both the front
wing and rear wing, these parameters gradually increase with the span direction; then, in
the middle part between the kink and the joint point of both the front wing and rear wing,
these parameters first decrease and then increase up to the joint point; finally, in the outer
part, they gradually decrease with the span direction.
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Figure 14. Optimized beam section parameters of the front wing and the outer wing. (a) Optimized parameter 1X ; (b) 
optimized parameter 2X ; (c) optimized parameter 3X ; (d) optimized parameter 4X . 

Figure 14. Optimized beam section parameters of the front wing and the outer wing. (a) Optimized parameter X1;
(b) optimized parameter X2; (c) optimized parameter X3; (d) optimized parameter X4.

Figure 16 shows two objective results; one is from the optimization using a traditional
exponential function, whereas the other is from the optimization using a modified expo-
nential/linear mixed function. We can see that the modified function results in a much
lower value for the objective result, which means that when obtaining the same stiffness
level, less weight is needed using the new function for optimization.
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Figure 15. Optimized beam section parameters of the rear wing. (a) Optimized parameter 1X ; (b) optimized parameter 

2X ; (c) optimized parameter 3X ; (d) optimized parameter 4X . 

Figure 16 shows two objective results; one is from the optimization using a traditional 
exponential function, whereas the other is from the optimization using a modified expo-
nential/linear mixed function. We can see that the modified function results in a much 
lower value for the objective result, which means that when obtaining the same stiffness 
level, less weight is needed using the new function for optimization. 

Figure 15. Optimized beam section parameters of the rear wing. (a) Optimized parameter X1; (b) optimized parameter X2;
(c) optimized parameter X3; (d) optimized parameter X4.

Appl. Sci. 2021, 11, 11800 18 of 25 
 

Exponential Exponential/linear
0

10

20

30

40

50

60

70

80

O
bj

ec
tiv

e（
kg

)

METHOD
 

Figure 16. Objective optimization using traditional exponential and exponential/linear functions. 

4.3. Results of the Optimized Stiffness Distribution 
To test the accuracy of Methods A and B, the optimized stiffness distribution, includ-

ing the vertical bending stiffness, the horizontal bending stiffness, and the torsional stiff-
ness of both the front wing and the rear wing were calculated and the results are shown 
in Figures 17 and 18. 

0.0 0.2 0.4 0.6 0.8 1.0
-2.0x105

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

V
e
r
t
i
c
a
l
 
B
e
n
di
n
g
 
S
t
i
f
f
n
e
s
s
 
(
N
*
m2
)

Nondimensional Span Station

 Method A
 Method B
 Method C

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

H
or
iz
on
t
al
 B
en
di
ng
 
St
if
fn
es
s 
(N
*
m2
)

Nondimensional Span Station

 Method A
 Method B
 Method C

 

0.0 0.2 0.4 0.6 0.8 1.0
-2.0x105

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

To
rs

io
na

l 
St

i
ff

ne
s
s 

(N
*m

2 )

Nondimensional Span Station

 Method A
 Method B
 Method C

 
(a) (b) (c) 

Figure 17. Various kinds of stiffness distribution of the front wing optimized by different methods. (a) Vertical bending 
stiffness; (b) horizontal bending stiffness; (c) torsional stiffness. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

1.4x106

1.6x106

1.8x106

Ve
rt
ic
a
l 
Be
nd
in
g 
S
ti
ff
ne
ss
 (
N
*m

2 )

Nondimensional Span Station

 Method A
 Method B
 Method C

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

5.0x105

1.0x106

1.5x106

2.0x106

2.5x106

3.0x106

3.5x106

4.0x106

H
or
iz
on

ta
l 
Be

nd
in
g 

St
if
fn

es
s 
(N

*m
2
)

Nondimensional Span Station

 Method A
 Method B
 Method C

 
0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

1.2x106

T
o
r
si

o
n
al

 
S
t
if

f
n
e
ss

 
(
N*

m
2 )

Nondimensional Span Station

 Method A
 Method B
 Method C

 
(a) (b) (c) 

Figure 16. Objective optimization using traditional exponential and exponential/linear functions.
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4.3. Results of the Optimized Stiffness Distribution

To test the accuracy of Methods A and B, the optimized stiffness distribution, including
the vertical bending stiffness, the horizontal bending stiffness, and the torsional stiffness
of both the front wing and the rear wing were calculated and the results are shown in
Figures 17 and 18.
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Figure 17. Various kinds of stiffness distribution of the front wing optimized by different methods. (a) Vertical bending
stiffness; (b) horizontal bending stiffness; (c) torsional stiffness.
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Figure 18. Various kinds of stiffness distribution of the rear wing optimized by different methods. (a) Vertical bending
stiffness; (b) horizontal bending stiffness; (c) torsional stiffness.

We can see from the figures that the stiffness distributions obtained using the two
methods have good consistency and are similar to the distribution of the three-dimensional
model except for the first span station point. The reason for this error is that the first point
is near the root of the wing, where the ratio of the wingspan to the width of the wing
box is relatively small; therefore, the theoretical calculation of an engineering beam is not
accurate. Furthermore, the rigid section assumption is adopted for the three-dimensional
model, and the wings of the three-dimensional model are connected to the fuselage through
rigid multipoint constraint elements. This results in a stiffness increase at the wing root.
However, the results have little influence on the overall stiffness distribution and can
be ignored in the preliminary design; thus, the methods are valuable for engineering
applications. In practical applications, it should be noted that the design parameters of
method A and method C are cross-section parameters of the wing, which are relatively
intuitive and easy to adjust, whereas the design parameters of method B are parameters of
mathematical expressions of stiffness, which do not directly relate to the structure, so this
requires conversion between the stiffness and the actual structure.
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5. Conclusions

In this study, two beam-frame model methods and one three-dimensional model
method are proposed for the global stiffness design and optimization of joined wings.
A beam-frame model of a joined wing, as an example for use during the preliminary
design stage, is established. A three-dimensional detailed model is built as a reference and
introduced for comparison. Two methods for the beam-frame model, an optimization of the
diagonal beam section, and an optimization method of the exponential/linear combination
function fit, defined as method A and method B, respectively, are used. The method for the
three-dimensional model is a traditional optimization method based on a genetic algorithm,
and is defined as method C. The static aeroelastic responses are calculated and compared
under the same flight conditions at 0.2 Ma and 25 km above sea level. The main conclusions
are as follows:

1. The stiffness distributions of the beam-frame model obtained from method A and
method B have good consistency and are similar to the distribution of the three-
dimensional model of method C;

2. The stiffness distribution data and the beam section parameters obtained using
method B can be converted into parameter sizes of the beam section and conform
with the trend of the other methods;

3. Method B (the optimization method of the exponential/linear combination function
fit) obtains a greater weight reduction than the traditional method (the optimization
method of the exponential function fit) under the same stiffness conditions;

4. Compared with method C and other detailed-model-based methods, methods A
and B show high computational efficiency and are easy to implement with variable
parametrical analysis of the joined wing.

In our future work, we aim to perform joint connection analysis, including the influ-
ence of fixed connections, hinged connections, and others, especially the gap of the joint
between the front wing and rear wing. The gap nonlinearity of the joined wing will express
many interesting problems and will have great research value.
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Appendix A

As shown in Figure 2a.

Iz1 = 2( 1
12 X3

(
X6 − X1+X2

2

)
3+A(X1)(

X6
2

)2
+A(X2)(

X6
2

)2
+A(X4)(

X6
2

)2
)

= 1
2 AtX2

6 +
1
6 A(X3

)
(L2

w − 3X2
6) = 1

2 AtX2
6 +

X3(−X3−2X3
6+3X6X2

)
6

(A1)

Iy1 = 2( 1
12 X4

(
X5 − X1+X2

2

)
3+A(X1)(

X5
2

)2
+A(X2)(

X5
2

)2
+A(X3)(

X5
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)2
)

= 1
2 AtX2

5 +
1
6 A(X4

)
(L2

s − 3X2
5) =

1
2 AtX2

5 +
X4(−X3−2X3

5+3X5X2
)

6
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It1 = 4Ω2∮ ds
δ

= 4(X5X6)
2

2( 1
X1

X1+
1

X3
Lw+

1
X2

X2+
1

X4
Ls)

= 4(X5X6)
2

4+2( X6
X3

+
X5
X4

)−(X1+X2)(
1

X3
+ 1

X4
)

≈ 2(X5X6)
2

X6
X3

+
X5
X4

= 2X3X4(X5X6)
2

X4X6+X3X5

(A3)

The first item is directly taken for calculation in the program calculation about It1

Iyz1 = 2(A(X1)·(−
X5X6

4
) + A(X2)·(

X5X6

4
)) =

X5X6

2
(A(X2)− A(X1)) (A4)

where:
A(X1) = X2

1 , A(X2) = X2
2 , A(X3) = X3Lw, A(X4) = X4Ls

At =
4
∑

i=1
A(X1), Ls = X5 − X, Lw = X6 − X, X = X1+X2

2
(A5)

In general, the flange size is larger than the size of the web thickness and skin thickness,
and as mentioned earlier, to simulate the material distribution, the main diagonal flange
size is larger than the secondary diagonal flange size in Figure 2a, so the relations of the
cross section parameters are as in Equation (A6):

max(X3, X4) < X2 < X1 (A6)

According to the rotation axis formula of the moment of inertia:

Iu =
Iz + Iy

2
+

Iz − Iy

2
cos 2α− Iyz sin 2α (A7)

After Taylor expansion of the sine and cosine expression and discarding of the high-
order small quantities, the moment of inertia of the beam section relative to the bending
axis is:

Iu1 ≈ Iz1+Iy1
2 + (1− 2α2)

Iz1−Iy1
2 − 2αIyz1

=
(
1− α2)Iz1 + α2 Iy1 − 2αIyz1

(A8)

For the case of Figure 2b:

Iz2 = Iz1 Iy2 = Iy2 Iyz2 = 0 (A9)

then
Iu2 − Iu1 = 2αIyz1 < 0 (A10)

For the case of Figure 2c, the four flange areas are equal (X = X1 = X2), keeping
parameters X3–X6 and At unchanged, according to Equations (A1)–(A8):

Iy3 =
1
2

AtX2
5 +

X4(−X3 − 2X3
5 + 3X5X2)

6
(A11)

Iz3 =
1
2

AtX2
6 +

X3(−X3 − 2X3
6 + 3X6X2)

6
(A12)

Iyz3 = 0 (A13)

Iu3 = (1 − α2
)

Iz3 + α2 Iy3 − 2αIyz3 (A14)

∆Iu = Iu1 − Iu3 = (1− α2)(Iz1 − Iz3) + α2(Iy1 − Iy3)− 2αIyz1 (A15)

According to Equations (A1) and (A12):

Iz1 − Iz3 = X3(−X3
+3X6X2

)
6 − X3(−X3+3X6X2)

6

= X3X6(X2−X2)
2 + X3(−X3

+X3)
6

(A16)
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According to Equations (A2) and (A11):

Iy1 − Iy3 = X4(−X3
+3X5X2

)
6 − X4(−X3+3X5X2)

6

= X4X5(X2−X2)
2 + X4(−X3

+X3)
6

(A17)

Substituting Equations (A4), (A16) and (A17) into Equation (A15), we obtain:

∆Iu = (1− α2)(X3X6(X2−X2)
2 + X3(−X3

+X3)
6 )+

α2(X4X5(X2−X2)
2 + X4(−X3

+X3)
6 )− 2α X5X6

2 (A(X2)− A(X1))

= X3X6(X2−X2)
2 + αX5X6(A(X1)− A(X2))− X3(X3−X3)

6 +

α2( (X4X5−X3X6)(X2−X2)
2 + (X3−X4)(X3−X3)

6 )

(A18)

Because the scales of the fixed parameters, e.g., X5 and X6, are far greater than the
design parameters, e.g., X1–X4, etc., and the tilted angle α is small, the last two terms of
Equation (A18) are relatively small compared with the first two terms and can be rounded
off; thus:

∆Iu = Iu1 − Iu3 = αX5X6(A(X1)− A(X2)) +
X3X6

2 (X2 − X2)

= X6(αX5(X2
1 − X2

2)) + X3(X2 − X2)
(A19)

let X1 = kX2, k > 1
then X = (k+1)

2 X2

∆Iu = X6[αX5(k2 − 1)X2
2 + X3(

(k+1)
4

2
X2

2 − X2)]

(A20)

Because X3–X6 and At are equal, according to Equation (A5):

X2
1 + X2

2 −
X1+X2

2 (X3 + X4) = 2X2 − X(X3 + X4)

⇒ (k2 + 1)X2
2 −

k+1
2 X2(X3 + X4) = 2X2 − X(X3 + X4)

⇒ X2 =
k+1

2 (X3+X4)+

√
( k+1

2 (X3+X4))
2
+4(k2+1)(2X2−X(X3+X4))

2(k2+1)

(A21)

let X3 + X4 = 2k2X, 0 < k2 < 1

⇒ X2 = (k+1)k2+
√

((k+1)k2)
2+8(k2+1)(1−k2))

2(k2+1) X
(A22)

0 < k2 < 1, because the flange width is greater than the thickness of skin and the web. Let

kN =
(k + 1)k2 +

√
((k + 1)k2)

2 + 8(k2 + 1)(1− k2))

2(k2 + 1)
(A23)

then
X2 = kN X (A24)

and

kN >
(k + 1)k2 +

√
((k + 1)k2)

2

2(k2 + 1)
=

(k + 1)k2

k2 + 1
>

(k + 1)k2

(k + 1)2 =
k2

(k + 1)
(A25)
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To compare the magnitude of the moment of inertia between them, according to
Equation (A20), it can be seen that

∆Iu = X6[αX5(k2 − 1)k2
N + X3(

(k+1)
4

2
k2

N − 1)]X2

> X6X2
{

αX5(k2 − 1)( k
k+1 )

2 + X3[
(k+1)

4
2
( k

k+1 )
2 − 1]

}
= X6X2(αX5(k− 1) k2

k+1 + X3(
k2

4 − 1))

(A26)

In order to make ∆Iu > 0, and considering X6X2 > 0, then

αX5(k− 1)
k2

2
k + 1

+ X3(
k2

2
4
− 1) > 0 (A27)

Let
X5 = NX3 (A28)

Bringing Equation (A28) into Equation (A27), then

(α
(k− 1)k2

2
k + 1

N +
k2

2
4
− 1)X3 > 0 (A29)

According to Equation (A25), we obtain

N >
(1− k2

2
4 )(k + 1)

(k− 1)k2
2α

(k > 1, 0 < k2 ≤ 1) (A30)

Appendix B

In Appendix B, the approximate formula for inertias in Figure 2a will be derived.
Substituting Equation (A5) into (A1) and expanding it gives

Iz1 = 1
2 AtX2

6 +
X3(−X3−2X3

6+3X6X2
)

6
= 1

2 (X2
1 + X2

2 + X3(X6 − X1+X2
2 ) + X4(X5 − X1+X2

2 ))X2
6+

X3(−X3−2X3
6+3X6X2

)
6

= 1
6 (X3X6 + 3X4X5 + 3((X2

1 + X2
2)−

X3+X4
2 (X1 + X2)))X2

6+
1
6 X3(−X3

+ 3X6X2
)

(A31)

According to Equations (A6) and (A20), let

X1 = kX2, k > 1
X2 = k3

X3+X4
2 , k3 > 1

(A32)

The beams are thin-walled structures, which means

X =
X1 + X2

2
<< (X5, X6) (A33)

Considering Equation (A33), the last term of Equation (A32) can be omitted; then,
substituting Equation (A32) into (A31) gives

Iz1 ≈
1
6
(X3X6 + 3X4X5 + 3kAX2

2)X2
6 (A34)

where

kA =
k3(k2 + 1)− k− 1

k3
(A35)
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Considering k > 1, k3 > 1, then

kA = k3(k2+1)−k−1
k3

> k3(k+1)−k−1
k3

= (k3−1)(k+1)
k3

> 0
(A36)

Substituting Equation (A5) into (A2), by means of a derivation similar to (A31)–(A34),
we obtain

Iy1 ≈
1
6
(X4X5 + 3X3X6 + 3kAX2

2)X2
5 (A37)
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