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Abstract: In this paper, a new method is proposed based on the auxiliary system approach to
investigate generalized synchronization between two identical neurons with unidirectional coupling.
Different from other studies, the synchronization error system between the response and auxiliary
systems is converted into a set of Volterra integral equations according to the Laplace transform
method and convolution theorem. By using the successive approximation method in the theory of
integral equations, an analytical criterion for the detection of generalized synchronization between
two identical neurons is obtained. It is found that there is a time difference between two signals of
neurons when the generalized synchronization between them is achieved. Furthermore, the value
of the time difference has no relation to the generalized synchronization condition but depends on
the coupling function between two neurons. The study in this paper shows that one can construct
a coupling function between two identical neurons using the current signal of the drive system to
predict its future signal or make its past signal reappear.

Keywords: generalized synchronization; FHN neuron; HR neuron; Volterra integral equation;
Laplace transform

1. Introduction

Over the past few decades, chaos synchronization has received a lot of interest and
attention because it plays an important role in understanding the feature of coupled
chaotic oscillators [1]. Generally speaking, when one chaotic system (drive system) sends
a signal to the other system (response system), their chaotic trajectories may remain in
step with each other under some conditions. Many types of synchronization have been
revealed in dynamical systems, such as complete synchronization (CS), lag synchronization
(LS), anticipated synchronization (AS), generalized synchronization (GS), and so on [2–4].
If the state variables of the drive and response systems become synchronized with a time
difference τ, then τ = 0 means that CS between the drive and response systems is reached;
τ > 0 and τ < 0 indicate that LS and AS are achieved, respectively. GS is considered to be
the chaos synchronization most frequently occurring in natural systems [5–7], which is an
extension of CS, LS, and AS. GS is usually defined in the frame of drive–response systems
with nonidentical dynamics, characterized by the existence of a functional relation between
the state variables of the drive and response systems. Different types of synchronization
(such as CS, LS, AS, etc.) can be viewed as special cases of GS depending on the choice
of functional relations. Thus, GS is more intricate due to the complex functional relation
between the state variables of the drive and response systems.

One of most exciting problems to GS is how to analytically detect the existence of a
functional relation between the signals of the drive and response systems. Kocarev and
Parlitz [6] pointed out that GS only appears when the response system is stable asymptoti-
cally. Then one can investigate GS detection by using the response Lyapunov exponents
method or Lyapunov function approach [8–10]. The Lyapunov function technology is one
of the earliest methods to analytically establish the synchronization condition in coupled
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oscillators. However, how to find an appropriate Lyapunov function is the key to using this
method. In addition, the synchronization condition obtained by using the Lyapunov func-
tion method is usually sufficient and highly conserved. Abarbanel et al. [11] proposed an
indirect way of analytically verifying GS between two chaotic systems with unidirectional
coupling by constructing an identical copy of the response system called the auxiliary
system, which is driven by the same driving signal. The auxiliary system approach proved
that GS between the drive–response system will be achieved if CS between the response
and auxiliary systems occurs with different initial conditions. The master stability function
method [12] was recommended in the auxiliary system approach to obtain the condi-
tions for CS between the response and auxiliary system, whereas the auxiliary system
approach can only be implemented numerically in most cases. It is a very meaningful
topic to develop more convenient and effective approaches to analytically detect GS in a
drive–response system.

In recent years, the dynamical behavior of neurons has received increasing interest
due to its applications in brain science, medical technology, artificial intelligence, and so on.
Synchronization in neural systems in the brain is considered to be a crucial phenomenon
related to cognition and the correlation of behavior [13–16] because nerve cells do not have
intelligence of their own. It is feasible to understand information processing in the brain
by investigating synchronization between neurons [17–22]. The Hodgkin–Huxley (HH)
Equation [23] was usually used to construct neural systems and exhibit the neural dynamic
behavior. A simplified version of the HH equation, such as the FitzHugh–Nagumo (FHN)
model [24] and the Hindmarsh–Rose (HR) model [21,25–27], which can show excitability
and neural bursting of a neuron, is more convenient in the investigation of neural behavior
based on nonlinear dynamical theory. The study of synchronization in FHN and HR
neurons makes plenty of sense in understanding their information transfer process.

In this paper, GS between two identical FHN and HR neurons with unidirectional
coupling is investigated based on the auxiliary system approach. Different from other
studies, the synchronization error between the response and auxiliary systems is found to
satisfy a Volterra integral equation from the Laplace transform method and convolution
theorem. According to the successive approximation method [28] in the Volterra integral
equation theory, an analytical criterion is given for the detection of GS between two
identical FHN and HR neurons. It is found that there is a time difference τ between the
signals of the drive and response systems when the GS condition obtained by the analytical
criterion given in this paper is satisfied. Moreover, the GS condition has no relation to the
value of τ. Numerical simulations for FHN and HR neural systems are carried out to verify
correctness of the analytical results. From Taylor’s expansion of the functional relation
of GS, our results show that it is feasible to predict future signals or make a past signal
reappear of a neuron by using its current signal.

The rest of the paper is organized as follows: In Section 2, the GS between two
identical FHN neurons with unidirectional coupling is studied using the Laplace transform
method. In Section 3, the functional relation of GS between two FHN neurons is discussed,
and numerical simulations are carried out to verify the correctness of the theoretical results.
In Section 4, the GS between two identical HR neurons is investigated to show that the
analytical results for FHN neurons is the same for a chaotic case. The conclusions are
drawn in Section 5.

2. GS between Two FHN Neurons
2.1. GS in Unidirectionally Coupled FHN Neurons

A single FHN neuron is given in the following form

v̇ = v− v3/3− w + Iext,

ẇ = γ(v + a− bw), (1)
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where v and w represent the potential difference and a recovery current variable, respec-
tively. a, b, and γ are positive parameters, and 0 < b < 1, 0 < γ � 1. Iext is the external
current input. Assume that (v0, w0) is the equilibrium point of System (1), that is,

v0 − v3
0/3− w0 + Iext = 0,

v0 + a− bw0 = 0.

For convenience, move equilibrium (v0, w0) to the origin in System (1). Substitut-
ing u1 = v− v0, u2 = w− w0 into System (1), one has

u̇1 = −u3
1/3 + cu2

1 + du1 − u2,

u̇2 = γ(u1 − bu2), (2)

where c = −v0, d = 1− v2
0, v0 is the unique real root to equation − v3

0
3 + (1− 1

b )v0 − a
b +

Iext = 0.
The behavior of two unidirectionally coupled FHN neurons is considered

u̇1 = −u3
1/3 + cu2

1 + du1 − u2,

u̇2 = γ(u1 − bu2),

u̇3 = −u3
3/3 + cu2

3 + du3 − u4 + k(u3 − H(u1)),

u̇4 = γ(u3 − bu4), (3)

in which k is the coupling strength, H(u1) is a continue function of u1. The first and second
neurons in Equation (3) are referred to as a drive and response, respectively. In this paper,
we consider that System (3) possesses the following property

lim
t→∞
||u3 − H(u1)|| = 0. (4)

In fact, it can be said that there exists the property of GS in System (3) with a transfor-
mation H between u1 and u3.

2.2. Necessary Conditions for GS between Two FHN Neurons

Based on the auxiliary system approach [11], the auxiliary system corresponding to
System (3) is given by

u̇5 = −u3
5/3 + cu2

5 + du5 − u6 + k(u5 − H(u1)),

u̇6 = γ(u5 − bu6). (5)

Then Condition (4) will lead to

lim
t→∞
||u3 − u5|| = 0. (6)

By defining

e1 =
u3 − u5

2
, e2 =

u3 + u5

2
, (7)

Systems (3) and (5) become
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u̇1 = −u3
1/3 + cu2

1 + du1 − u2,

u̇2 = γ(u1 − bu2),

u̇4 = γ(e1 + e2 − bu4),

u̇6 = γ(e2 − e1 − bu6),

ė1 = −e3
1/3 + (−e2

2 + 2ce2 + d + k)e1 −
u4 − u6

2
,

ė2 = −e3
2/3 + c(e2

1 + e2
2) + (d + k− e2

1)e2 −
u4 + u6

2
− kH(u1). (8)

Condition (6) is equivalent to

lim
t→∞
||e1|| = 0. (9)

GS in System (3) appears if Condition (9) is satisfied. Consider the Laplace transform
defined as follows:

ûi(s) = L[ui](s) =
∫ +∞

0
ui(t)e−stdt,

ui(t) = L−1[ûi](t) =
1

2πi

∫ σ+i∞

σ−i∞
ûi(s)estds, i = 1, 2, 4, 6,

êj(s) = L[ej](s) =
∫ +∞

0
ej(t)e−stdt,

ej(t) = L−1[êj](t) =
1

2πi

∫ σ+i∞

σ−i∞
êj(s)estds, j = 1, 2.

(10)

By taking the Laplace transform on both sides of equations in Equation (8), one has

(s− d)û1 + û2 = u10 + Ŵ1,

(s + bγ)û2 = u20 + γû1,

(s + bγ)û4 = u40 + γ(ê1 + ê2),

(s + bγ)û6 = u60 + γ(ê2 − ê1),

(s− d− k)ê1 +
1
2
(û4 − û6) = e10 + Ŵ2,

(s− d− k)ê2 +
1
2
(û4 + û6) = e20 + Ŵ3, (11)

where ui0, i = 1, 2, 4, 6, and ej0, j = 1, 2, are given initial values of System (8), and Ŵk,
k = 1, 2, 3 are the Laplace transform of the nonlinear parts in the first, fifth, and last
equations in Equation (8), respectively

Ŵ1 =
∫ +∞

0
[−u3

1/3 + cu2
1]e
−stdt ≡

∫ +∞

0
W1e−stdt,

Ŵ2 =
∫ +∞

0
[−e2

1/3− e2
2 + 2ce2]e1e−stdt ≡

∫ +∞

0
W2e−stdt,

Ŵ3 =
∫ +∞

0
[−e3

2/3− e2
1e2 + c(e2

1 + e2
2)− kH(u1)]e−stdt ≡

∫ +∞

0
W3e−stdt.

Substituting the third and fourth equations into the fifth equation in Equation (11) yields

ê1 =
(s + β3)e10 + β4

s2 + β1s + β2
+

(s + β3)Ŵ2

s2 + β1s + β2
. (12)
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where β1 = bγ− d− k, β2 = [1− (k + d)b]γ, β3 = bγ, β4 = (u60 − u40)/2. To analyze
whether ||e1|| → 0 holds when t→ ∞, taking the inverse Laplace transform on both sides
of Equation (12), produces

e1 = e10Ψ1(t) + β4Ψ2(t) +
∫ t

0
Ψ1(t− ξ)W2dξ,

= e10Ψ1(t) + β4Ψ2(t) +
∫ t

0
Ψ1(t− ξ)[−e1(ξ)

2/3− e2(ξ)
2 + 2ce2(ξ)]e1(ξ)dξ,

(13)

where Ψ1,2(t) represent the inverse Laplace transform defined in Equation (10):

Ψ1(t) = L−1[
s + β3

s2 + β1s + β2
] =

{
e−β1t/2[cosh(φ1t) + 2β3−β1

2φ1
sinh(φ1t)], β1 6= 0

e−β1t/2[1 + 2(2β3 − β1)t], β1 = 0

Ψ2(t) = L−1[
1

s2 + β1s + β2
] =

{
sinh(φ1t)

φ1
e−β1t/2, β1 6= 0

te−β1t/2, β1 = 0

(14)

in which φ1 =
√

β2
1 − 4β2/2.

Obviously, from Equation (13), the necessary condition for ||e1|| → 0 is Ψ1,2 → 0
when t → ∞. Then, −β1/2± Re{φ1} < 0, in which Re{φ1} represents the real part of
φ1, should be satisfied from Equation (14). Actually, this means that the two roots of
equation s2 + β1s + β2 = 0 have negative real parts. From the Routh–Hurwitz criterion,
the following condition is necessary and sufficient to guarantee −β1/2± Re{φ1} < 0

β1 > 0, β2 > 0. (15)

Under Condition (15), Equation (13) becomes

e1 =
∫ t

0
Ψ1(t− ξ)[−e1(ξ)

2/3− e2(ξ)
2 + 2ce2(ξ)]e1(ξ)dξ. (16)

2.3. Sufficient Conditions for GS in System (3)

Equation (16) is a Volterra integral equation that can be solved using the successive
approximation method [28]. For the sake of clarity, the main results given by J.A. Nohel [28]
are introduced briefly first. For the following system of integral equations of the form

y(t) = φ(t) +
∫ t

0
f (t− τ)g(τ, y(τ))dτ, (17)

where f is a n by n matrix, and φ and g are given vectors with n components. Additionally,
the following conditions are satisfied

(1) |y| < ∞;
(2) For 0 ≤ t < t0 (0 < t0 < +∞), φ and g are continuous;
(3) For any 0 < ε < t0, | f | ∈ L[0, ε].

Theorem 1 (Local existence). Equation (17) has at least one continuous solution on 0 ≤ t < t0.
Furthermore, the solution is unique if for any η > 0, there exists a constant ψ(η) > 0 such that

|g(t, y1)− g(t, y2)| ≤ ψ(η)|y1 − y2|, (|y1|, |y2| ≤ η). (18)

Theorem 2. If conditions in Theorem 1 hold, then the successive approximations

Ω0(t) = 0, Ωn+1(t) = φ(t) +
∫ t

0
f (t− τ)g(τ, Ωn(τ))dτ, n = 0, 1, 2, · · · (19)

uniformly converge to the unique continuous solution y(t) = Ω(t) of Equation (17) on [0, t].
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Comparing Equations (16) and (17), one has

y(t) = e1(t), φ(t) = 0, f (t) = Ψ1(t),

g(t, y(t)) = [−e1(t)2/3− e2(t)2 + 2ce2(t)]e1(t).
(20)

g(t, y(t)) in Equation (20) is smooth enough to satisfy Condition (18). Equation (16) has a
unique solution according to Theorem 1, which can be obtained by substituting Equation (20)
into Equation (19). From the successive approximations, e1(t) = 0 is the unique solution to
Equation (16). Therefore, Condition (15) is sufficient for e1(t) = 0.

3. Analysis for GS between Two FHN Neurons and Numerical Simulations

For clarity, denote System (3) by [U̇1, U̇2]
T = [F(U1), F(U2)]

T + k[0, U2 − H(U1)]
T ,

where U1 = [u1, u2]
T and U2 = [u3, u4]

T . The following equation is necessary for the
appearance of GS in System (3) with the functional relation U2 = H(U1):

DH(U1) · F(U1) = F(H(U1)) + k[U2 − H(U1)]. (21)

Clearly, H(U1) = U1(t− τ), τ ≥ 0, should be satisfied for the occurrence of GS in
System (3). Consider a = 0.7, b = 0.8, γ = 0.02, Iext = 0.6, and H(u1) = u1(t − τ) in
System (3). From Equation (15), the condition for occurrence of GS in System (3) can be
given by

k < bγ− d = −0.521 and k <
1− bd

b
= 0.713.

Therefore, the GS condition that H(u1) = u1(t− τ) in System (3) is k < −0.521. It is
worth mentioning that the GS condition has no relation to the value of τ. Synchronization
error u3 − u5 and functional relation between u1 and u3 are depicted in Figure 1 for
different values of k and τ, in which the initial conditions of drive, response, and auxiliary
systems are chosen as u1(t) = 0.1, t ∈ (−τ, 0], u2(0) = 0.1, (u3(0), u4(0)) = (0.1, 0.02),
and (u5(0), u6(0)) = (0.3, 0.02), respectively. Figure 1 shows that the functional relation
H(u1) = u1(t− τ) between two FHN neurons is achieved when k < −0.521 for any value
of τ.

Near τ = 0, H(u1) = u1(t− τ) can be approximately expanded as

H(u1) = u1(t− τ) = u1(t)−
du1

dt
τ +

1
2!

d2u1

dt2 τ2 − 1
3!

d3u1

dt3 τ3 + O(τ3), (22)

where O(τ3) represents the higher order terms of τ greater than 3. From System (3), one has

du1

dt
= −u3

1/3 + cu2
1 + du1 − u2,

d2u1

dt2 = (−u2
1 + 2cu1 + d)

du1

dt
− γ(u1 − bu2),

d3u1

dt3 = (−u2
1 + 2cu1 + d)

d2u1

dt2 + 2(c− u1)(
du1

dt
)2 − γ

du1

dt
+ bγ2(u1 − bu2).

(23)

Consider

H(u1) = u1(t)−
du1

dt
τ +

1
2!

d2u1

dt2 τ2 − 1
3!

d3u1

dt3 τ3 ≡ G(u1, u2, τ), (24)

in System (3). As shown in Figure 2a,b,d,e, the functional relation u3 = u1(t − τ) is
approximately reached between two FHN neurons in System (3) with H(u1) = G(u1, u2, τ)
for a small value of τ when k = −0.7. However, with increase in τ, the functional relation
is destroyed (Figure 2c,f). More higher order terms of τ need to be added in G(u1, u2, τ) to
decrease the error between u1(t− τ) and u3. This means that one can design a coupling
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function between two identical FHN neurons using the current signal of the drive system
to predict its future signal or make its past signal reappear.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Synchronization errors and functional relation between u1 and u3 in System (3) with
H(u1) = u1(t − τ) and (a) k = −0.19, τ = 0, (b) k = −0.7, τ = 0, (c) k = −0.7, τ = 5,
(d) k = −0.7, τ = 10, (e) k = −0.7, τ = 20, and (f) k = −0.7, τ = 30.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Synchronization errors and functional relation between u1 and u3 in System (3) with
H(u1) = G(u1, u2, τ), k = −0.7 and (a) τ = 0.5, (b) τ = 1, (c) τ = 2, (d) τ = −0.5, (e) τ = −1,
and (f) τ = −2.

4. GS between Two HR Neurons

A HR neuron is described by the following equation of motion:

u̇ = v− au3 + bu2 − w + Iext,

v̇ = c− du2 − v,

ẇ = rs0(u− x0)− rw,

(25)

where u is the membrane potential, v is a recovery variable associated with fast current,
and w represents a slowly changing adaptation current. a, b, c, d, s0, r, x0 are parameters,
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and Iext is the external current input. For simplicity, by letting x = u− u0, y = v− v0,
and z = w− w0, where (u0, v0, w0) is the equilibrium of System (25), System (25) becomes

ẋ = −ax3 + ρ1x2 + ρ2x + y− z,

ẏ = −dx2 + ρ3x− y,

ż = r(s0x− z),

(26)

where ρ1 = −3au0 + b, ρ2 = −3au2
0 + 2bu0, ρ3 = −2du0, u0 is the unique real root

to equation au3
0 + (d − b)u2

0 + s0u0 − (s0x0 + c + Iext) = 0. Consider two HR neurons
described by System (26) have the following coupling form:

ẋ1 = −ax3
1 + ρ1x2

1 + ρ2x1 + y1 − z1,

ẏ1 = −dx2
1 + ρ3x1 − y1,

ż1 = r(s0x1 − z1),

ẋ2 = −ax3
2 + ρ1x2

2 + ρ2x2 + y2 − z2 + α(x2 − J(x1)),

ẏ2 = −dx2
2 + ρ3x2 − y2,

ż2 = r(s0x2 − z2),

(27)

where J(x1) is a continuous function of x1, and α represents the coupling strength. Similarly,
we consider that System (27) has the property

lim
t→∞
||x2 − J(x1)|| = 0. (28)

Clearly, J(x1) can have the form of J(x1) = x1(t− τ), in which τ ≥ 0 is a delay.
From the auxiliary system approach, the auxiliary system corresponding to System (27)

is given by
ẋ3 = −ax3

3 + ρ1x2
3 + ρ2x3 + y3 − z3 + α(x3 − J(x1)),

ẏ3 = −dx2
3 + ρ3x3 − y3,

ż3 = r(s0x3 − z3).

(29)

According to the analysis in the last section, Condition (28) will be satisfied if

lim
t→∞
||x2 − x3|| = 0. (30)

By letting

E1 =
x2 − x3

2
, E2 =

x2 + x3

2
, (31)

the response system and the auxiliary system in Systems (27) and (29) can be rewritten as

Ė1 = −aE3
1 − (3aE2

2 − 2ρ1E2 − α− ρ2)E1 +
y2 − z2 − y3 + z3

2
,

ẏ2 = −d(E1 + E2)
2 + ρ3(E1 + E2)− y2,

ż2 = r[s0(E1 + E2)− z2],

Ė2 = −aE3
2 − (3aE2

1 − α− ρ2)E2 + ρ1(E2
1 + E2

2)− αJ(x1) +
y2 − z2 + y3 − z3

2
,

ẏ3 = −d(E2 − E1)
2 + ρ3(E2 − E1)− y3,

ż3 = r[s0(E2 − E1)− z3].

(32)

Then Condition (30) is equivalent to

lim
t→∞
||E1|| = 0. (33)
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From the Laplace transform method used in the last section, the Laplace transform of
E1 can be given by

Ê1 =
E10s2 + ϕ4s + ϕ5

s3 + ϕ1s2 + ϕ2s + ϕ3
− (r + s)[M1 + (s + 1)M2]

s3 + ϕ1s2 + ϕ2s + ϕ3
, (34)

where
ϕ1 = r− ρ2 − α + 1, ϕ2 = r(1 + s0 − ρ2 − α)− α− ρ2 − ρ3,

ϕ3 = r(s0 − α− ρ2 − ρ3), ϕ4 = (r + 1)E10 +
y20 − z20 − y30 + z30

2
,

ϕ5 = rE10 +
ry20 − z20 − ry30 + z30

2
, M1 = 2d

∫ +∞

0
E1E2e−stdt,

M2 =
∫ +∞

0
[a(E2

1 + 3E2
2)− 2ρ1E2]E1e−stdt.

According to the analysis in the last section based on the theory of Volterra integral
equations (Equations (17)–(19)), the condition that E1 = 0 means the following polynomial
(the denominator in the right-hand side of Equation (34))

s3 + ϕ1s2 + ϕ2s + ϕ3 (35)

has no roots with positive real parts. That is,

ϕ1 > 0, ϕ2 > 0, ϕ3 > 0 and ϕ1 ϕ2 > ϕ3. (36)

Next, numerical simulations are performed to prove that the method to investigate GS
proposed in this paper is valid even if the drive–response system has chaotic attractor. Here,
a = 1.0, b = 3.0, c = 1.0, d = 5.0, s0 = 4.0, r = 0.013, x0 = −1.6, and Iext = 3.0. The two HR
neurons in System (27) with α = 0 exhibit burst-spike chaotic behavior. From Condition (36),
the functional relation x2 = x1(t− τ) appears between two HR neurons when α < −1.129.
To demonstrate the validity of the condition, α = −0.9 and α = −1.3 are taken to perform
the numerical simulations of System (27), respectively. The initial conditions are given by
x1(t) = 0.2, t ∈ (−τ, 0], y1(0) = 0.1, z1(0) = 0.2, x2(0) = 0.1, y2(0) = 0.1, z2(0) = 0.1,
x3(0) = 0.2, y3(0) = 0.2, and z3(0) = 0.1. The numerical results are presented in Figure 3.
From Figure 3a,b, condition α < −1.129 is efficient to guarantee the appearance of GS
between two HR neurons in System (27). As shown in Figure 3b–f, the condition is valid
for any value of τ, which means that the functional relation x2 = x1(t− τ) is achieved
when α = −1.3.

Similarly, consider

J(x1) = x1(t)−
dx1

dt
τ +

1
2!

d2x1

dt2 τ2 − 1
3!

d3x1

dt3 τ3 ≡ Q(x1, y1, z1, τ), (37)

in System (27). From Equation (27), one has

dx1

dt
= −ax3

1 + ρ1x2
1 + ρ2x1 + y1 − z1,

d2x1

dt2 = (−3ax2
1 + 2ρ1x1 + ρ2)

dx1

dt
− dx2

1 + ρ3x1 − y1 − r(s0x1 − z1),

d3x1

dt3 = (−3ax2
1 + 2ρ1x1 + ρ2)

d2x1

dt2 + 2(ρ1 − 3ax1)(
dx1

dt
)2 + (ρ3 − 2dx1 − rs0)

dx1

dt
+ r2(s0x1 − z1) + dx2

1 − ρ3x1 + y1.

(38)
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Synchronization errors and functional relation between x1 and x2 in System (27) with
J(x1) = x1(t − τ) and (a) α = −0.8, τ = 0, (b) α = −1.3, τ = 0, (c) α = −1.3, τ = 5,
(d) α = −1.3, τ = 10, (e) α = −1.3, τ = 20, and (f) α = −1.3, τ = 30.

From Figure 4a,b,d,e, the functional relation x2 = x1(t− τ) is reached between two
HR neurons in System (27) with J(x1) = Q(x1, y1, z1, τ) for a small value of τ when
α = −1.3. When the value of τ increases (decreases) to τ = ±0.5, the functional relation
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x2 = x1(t− τ) cannot be satisfied in System (27) (Figure 4c,f). Compared with the case
of two FHN neurons, more higher order terms of τ need to keep the functional relation
between two HR neurons. It is feasible to construct a coupling function using the current
signal of an HR neuron to predict its future signal or make its past signal reappear.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Synchronization errors and functional relation between x1 and x2 in System (27) with
J(x1) = Q(x1, y1, z1, τ), α = −1.3 and (a) τ = 0.1, (b) τ = 0.2, (c) τ = 0.5, (d) τ = −0.1, (e) τ = −0.2,
and (f) τ = −0.5.

5. Conclusions

In this paper, a new method is proposed to investigate GS between two identical FHN
and HR neurons with unidirectional coupling. Based on the auxiliary system approach,
GS between the drive and response systems occurs if synchronization between the response
and auxiliary systems is achieved. Different from other researchers, the synchronization
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problem is solved in this paper by using the Laplace transform and the convolution theorem,
as well as the iterative method in the theory of Volterra integral equations. An analytical
criterion is ultimately obtained to determine the occurrence of GS in the drive–response
system. Numerical simulations are carried out for the drive–response system consisting
of two FHN neurons and two HR neurons to prove the correctness and efficiency of the
analytical criterion.

The functional relation in GS between two identical neurons is very special, referring to
the situation where there is a time difference between the trajectories of the drive and
response systems. Furthermore, the time difference has nothing to do with the GS condition,
which depends on the coupling function between two neurons. According to Taylor’s
expansion, one can easily construct a coupling function between two neurons by using the
current signal of the drive system to predict its future signal or make its past signal reappear.
Numerical simulations show that the coupling function based on Taylor’s expansion is
valid to not only the FHN neural system exhibiting periodic spike behavior but also the
HR neural system exhibiting burst-spike behavior.

Drive–response synchronization techniques had typical applications in designing
secure communication systems because they are typically similar to the transmitter–receiver
structure. Some methods designing chaos-based secure communication systems require
real-time synchronization between drive and response systems. However, time delay in
signal transmission between the transmitter–receiver structure is inevitable. Our study
provides an approach to predict future signals of a chaotic system based on its current signal,
which may be used to overcome the problem of delay of signal propagating channels.
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