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Abstract: A surface acoustic wave (SAW) device is proposed for sensing current by employing the pat-
terned FeGa thin film as the sensitive interface. The layered media structure of FeGa/SiO2/LiNbO3

was established to reveal the working principle of the sensors, and an SAW chip patterned by
delay-line and operating at 150 MHz was fabricated photolithographically on 128◦ YX LiNbO3 sub-
strate. The FeGa thin film with a larger magnetostrictive coefficient was sputtered onto the acoustic
propagation path of the SAW chip to build the sensing device. The prepared device was connected
into the differential oscillation loop to construct the current sensor. The FeGa thin film produces
magnetostrictive strain and so-called ∆E effect at the magnetic field generated by the applied current,
which modulates the SAW propagation velocity accordingly. The differential frequency signal was
collected to characterize the measurand. Larger sensitivity of 37.9 kHz/A, low hysteresis error of
0.81%, excellent repeatability and stability were achieved in the experiments from the developed
sensing device.

Keywords: surface acoustic wave; current sensor; FeGa thin film; magnetostrictive strain; ∆E effect

1. Introduction

Current sensors are widely used in current monitoring applications in smart grid
line testing, metallurgical and power supplies, rail transit safety warnings and rescue,
and power relay protection in industrial automation [1]. Among the available sensing
technologies, the surface acoustic wave (SAW) current sensor features fast response, sim-
ple structure, low cost, excellent resistance to interference, low power consumption, and
long service life [2–4]. Especially, it can realize wireless and passive measurement means
to improve system security [5–7]. The specialized current sensing prototype employing
the magnetoresistance effect was proposed firstly by Reindl et al. The obtained current
resolution was approximately 5% of full scale (−800 A~800 A) [6]. Another typical SAW
current sensing device is built by depositing magnetostrictive thin film along the acoustic
propagation path of the SAW chip. The magnetostrictive thin film produces magnetostric-
tive strain and so-called ∆E effect at the magnetic field generated by the applied current,
which modulates the SAW propagation velocity accordingly. Then the corresponding shifts
in oscillation frequency are collected to evaluate the applied current information [1,8,9].

Since the pioneering work was conducted by Ganguly et al. in 1975 [10], the SAW
devices for sensing current/magnetic field have attracted more interests because of their
unique advantages, and meaningful results were reported from some prototypes. Using the
FeCo thin film as the sensitive interface, the SAW current sensor prototype was constructed
successfully, a larger sensitivity of 16.6 kHz/A was achieved, and the patterned design was
considered to improve the hysteresis error [1,8,9]. A similar structure was also proposed
by Tong et al.; the current sensitivity of 10.7 kHz/A was achieved by using the FeNi as the
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sensing interface [11]. Kadota et al. developed a SAW sensing chip constructed using a
magnetostrictive Ni electrode on ST-cut 90◦X quartz substrate [12]. Zhou et al. obtained
a maximum SAW velocity shift close to 20% from a multilayered sensing structure of
TbCo2/FeCo for the shear horizontal wave as a ratio close to 1 between magneto-elastic
film thickness and wavelength [13]. Fahim et al. proposed a SAW magnetic sensor using
Polyvinyl Alcohol (PVA) bound magnetostrictive nanopowder thin film, and a sensor
response of up to 678.05 kHz was obtained towards a magnetic field of 120 mT [14]. Dong
et al. demonstrated that laminate composed of longitudinally magnetized magnetostrictive
Terfenol-D and a transversely poled piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal offered
extremely high magnetic field sensitivity of 10−11 T [15]. Schell et al. analyzed the influence
of the deposition process and heat treatment on the performance of devices to improve
the limits of detection [16]. Sun et al. deposited the FeGaB film on the AlN piezoelectric
materials, which enabled a measurement range of up to 300 pT in the presence of a DC-
biased magnetic field [17]. Taking the magnetostriction effect, ∆E effect, and the third-order
material constants into account, Yang et al. investigated the sensing mechanism of SAW
magnetic field sensors [18], and they also explored a grooved sensing surface structure to
improve sensitivity.

Obviously, the performance of an SAW-based current/magnetic sensor is significantly
determined by the magnetostrictive coatings [19]. Terfenol-D features a larger magnetostric-
tive coefficient. Therefore, very high magnetic sensitivity will be expected. However, an
easily oxidized nature prevents its application. Meanwhile, FeGa features lower coercivity,
higher Curie temperature, lower cost, and excellent mechanical properties [20], and maxi-
mum magnetostriction coefficient is up to 400 ppm [21], which is much larger than that of
Fe, Co, Ni and their alloys [22,23]. In addition, the FeGa thin film applied for microsensor
and microsystem integration is conducive to the miniaturization and intelligence of the
sensor, and it significantly improves the performance of the device.

In this contribution, a new design of SAW device for sensing current is proposed by
employing the patterned FeGa thin film as the sensitive interface, as depicted in Figure 1.
A SAW chip with a delay-line pattern was fabricated photolithographically on 128◦ YX
LiNbO3 substrate to operate at 150 MHz. To improve the sensitivity and suppress the
hysteresis error, the patterned design was performed to the FeGa thin film. The proposed
current sensing device was built by sputtering the FeGa thin film to the SAW chip and char-
acterized by connecting it into the differential oscillation loops. Larger current sensitivity,
low hysteresis error, excellent repeatability and stability were achieved experimentally.
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Figure 1. The scheme of patterned FeGa thin film coated SAW sensing device. Figure 1. The scheme of patterned FeGa thin film coated SAW sensing device.

2. Working Principle

Under the magnetic field generated by the applied current, the FeGa film produces
magnetostrictive strain and so-called ∆E effect, which modulates the SAW propagation.
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A layered media structure of FeGa/SiO2/LiNbO3 is proposed to demonstrate the
sensing mechanism, as shown in Figure 2.
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(1) In the piezoelectric media

The constitutive wave motion equations in a piezoelectric LiNbO3 can be expressed as ρS
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where Einstein’s summation rule is used. The indices i, j, k, l = 1, 2, 3, and cI, e, ε, ρS stand
for the elastic, piezoelectric, dielectric constants and the mass density of the piezoelectric
substrate, respectively. uI denotes the mechanical displacements, and Φ denotes the
electric potential.

(2) In the SiO2 media,

The SiO2 media is considered as the isotropic and nonpiezoelectric media. Then, the
acoustic wave equation can be written as

cI I
ijkl

∂2uI I
k

∂xl∂xj
= ρa

∂2uI I
i

∂t2 (2)

where uII, cII and ρa are the mechanical displacements, stiffness constants and density of
the SiO2 film, respectively.

(3) In the FeGa media,

The acoustic wave equation in the FeGa media can also be written as

cI I I
ijkl

∂2uI I I
k

∂xl∂xj
= ρb

∂2uI I I
i

∂t2 (3)

where uIII, cIII and ρb are the mechanical displacements, the stiffness constants and density
of the FeGa film, respectively.

(4) Magnetostrictive strain of the FeGa film

Under the magnetic field generated by the applied current, the FeGa film produces
magnetostrictive strain, which leads to changes in thickness h and density ρf of FeGa film.{

h = h0(1− λ
2 )

ρ f = ρ0/[(1 + λ)× (1− λ
2 )× (1− λ

2 )]
(4)

where h0 and ρ0 are the thickness and density of unperturbed FeGa film, respectively, and
λ is the magnetostrictive coefficient of the FeGa film.

(5) ∆E effect on the FeGa film
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The external magnetic field will also modulate the Young’s modulus (E) of the FeGa
film, which is so-called ∆E effect, and the corresponding elastic coefficients in FeGa film
are expressed by the perturbed Young’s modulus E’ as

c11 = E′ (1−u)
(1+u)(1−2u)

c12 = E′ u
(1+u)(1−2u)

c44 = c11−c12
2 = E′ (1−2u)

2(1+u)(1−2u)

(5)

where u is the Poisson’s ratio.
The relationship between the electromagnetic field intensity (H) and current (A) can

be described by the Biot–Savart law [24],

H =
µ0 I
4πl

(6)

where µ0 denotes the permeability in vacuum. l expresses the distance between the sensor
chip and wires, which is set to 1 cm.

According to the Formulas (1)–(3), the solution of each layer media can be obtained.
Then, combined with the mechanics and electrical boundary conditions, the effective sur-
face permittivity method can be used to obtain the speed of SAW. Under the magnetic field
generated by the applied current, according to the Formulas (4)–(5), the FeGa film produces
magnetostrictive strain and so-called ∆E effect, which modulates the SAW propagation.

The measured magnetostriction curve characteristic of FeGa is shown in Figure 3a.
The simulation was done to predict the sensitivity of the proposed sensor. The parameters
of LiNbO3 and SiO2 used in the simulation were consistent with the literature [11]. The
mechanics and electrical boundary conditions were also the same as the literature [11]. The
film thickness was set to 500 nm, and the aspect ratio was set to 1:1. The sensitivity of the
proposed current sensor is calculated as ~20.3 kHz/A, as shown in Figure 3b. Compared
with the sensitivity of ~11 kHz/A mentioned in the literature [11], the sensitivity of the
proposed sensor is increased by ~9 kHz/A. The results reveal that the FeGa film can
effectively improve sensor performance.
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Figure 3. (a) The magnetostriction curve characteristic of FeGa; (b) the predicted sensitivity of the
150 MHz SAW-based current sensor.

3. Technical Realizations
3.1. SAW Devices

LiNbO3 piezoelectric crystal features a larger electromechanical coupling coefficient
(K2), which benefits the reduction in insertion loss of SAW device. Therefore, 128◦ YX-
LiNbO3 piezoelectric crystal with large K2 (5.5%) was chosen as the piezoelectric substrate
of the sensing chip with a delay-line pattern, and FeGa thin film was sputtered to the SAW
propagation path between the two photolithographically defined 300 nm Al transducers
separated by a path length of ~2 mm. Single-phase unidirectional transducers (SPUDTs)
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confining the acoustic energy predominantly in one direction on the piezoelectric substrate
surface were used to form the transducers to reduce the insertion loss [1]. The operation
frequency was designed to 150 MHz, and the corresponding wavelength λ was 25.84 µm.
The electrode widths in SPUDTs were 3.23 µm (λ/8) and 6.46 µm (λ/8). The lengths of the
input transducer and output transducer were designed to be 130λ and 40λ, respectively. In
addition, a comb structure was designed for the transducers to eliminate other unwanted
vibration frequencies to achieve a single oscillation mode [25]. After the Al electrodes
preparation, a 30 nm SiO2 thin film was covered on the transducers by PECVD to protect
the electrodes in FeGa deposition.

3.2. Preparation of FeGa Film

Then, the FeGa thin film was deposited onto the acoustic propagation path of the
developed SAW chip to build the sensing device by employing the lift-off process. The
corresponding details are described in Figure 4. Firstly, the photoresist was deposited on
the prepared SAW device. Then, through a photolithography mask, the photoresist was
removed in the areas, where the FeGa thin film was to be located; then, the FeGa thin
film was sputtered onto the surface of the SAW chip using radio-frequency magnetron
sputtering. The sputtering conditions for the base pressure, sputtering power and target-
substrate distance were 1.5 × 10−5 Pa, 100 W, and 60 mm, respectively. The Ar gas was
used as the sputtering gas, and corresponding pressure was set to 1 Pa. After removed
the remaining photoresist, the FeGa thin film with various patterns (dot, grating, and
membrane) was formed on the SAW chip. Here, the strip width in each FeGa grating was
set to 3λ, and the corresponding grating spacing was set to 4λ. Similarly, the length width
of each FeGa dot was set to be 3λ × 3λ, and dot spacing in each direction was set to 4λ.
The developed SAW sensing devices with various FeGa thin-film patterns were pictured in
Figure 5a–c.
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Then, the deposited FeGa thin film was characterized by using the scanning electron
microscope (SEM) and 2D atomic force microscope (AFM), as shown in Figure 5d,e. It can
be seen that the surface of FeGa film was relatively smooth, and the distribution was dense
and uniform. The corresponding surface average roughness (Ra) was about 1.56 nm, and
the maximum height difference on the surface (P-V) was ~15.69 nm.

Using the network analyzer, we characterized the developed sensing devices as shown
in Figure 5f. Among them, the working frequency of the sensing devices with various FeGa
patterns (dot, grating, and membranous) were measured as 150.4 MHz, 149.7 MHz, and
149.4 MHz, respectively, and their corresponding insertion losses were both less than 10 dB.
The deviation in operation frequency stems from the manufacturing error, and there are
almost no unacceptable effects in sensing performance.
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Figure 5. Optica pictures of developed sensing device coated with (a) FeGa membranous, (b) FeGa
grating, (c) FeGa dots, (d) SEM view, and (e) AFM picture of the FeGa thin film, and (f) measured
frequency characteristic of the fabricated sensing devices.

3.3. Differential Oscillator

In this work, the oscillation loop was employed to generate the SAW chip, and the
differential structure was also used to eliminate the external temperature effect, vibration
noise, and magnetic noise [26–28]. The FeGa thin film coated device as the sensing chip
and the naked one as the reference chip were packaged into the same metal base, and
connected into the differential oscillation loop made of discrete elements as an amplifier,
phase shifter, mixer, and so on (Figure 6a), and the mixed oscillation frequency signal was
collected by using the frequency counter as the sensing signal.
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SAW sensors.

4. Sensor Experiments and Discussions
4.1. Experimental Setup

The experimental setup for characterizing the developed SAW sensor is described in
Figure 6b, which is composed of a Helmholtz coil system with measure range of 0~10 A,
Gaussmeter, SAW sensor, frequency counter, constant current source, and constant voltage
source. By varying the coil current generated by the constant current source, the Helmholtz
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coil can create a varying magnetic field. The differential oscillation loop is supplied with a
voltage of +5 V provided by the constant voltage source. The sensor signal is collected by
the frequency counter at 60 points per minute and is plotted by the PC in real time. During
the test, the SAW device was exposed to the magnetic field, and the differential oscillation
loop was wrapped with aluminum foil so as to reduce the influence of the magnetic field
on the circuit.

4.2. Sensor Performance Evaluation
4.2.1. Sensitivity Evaluation

First, the sensitivity of the prepared sensor was evaluated by measuring the sensing
response towards increasing current values from 0 to 10 A at room temperature (25 ◦C)
using the experimental setup described in Figure 6b. The effect from FeGa film thickness
on sensitivity was demonstrated by measuring the sensitivity of developed sensors with
various FeGa film thicknesses (300 nm, 500 nm, and 700 nm), as shown in Figure 7a.
Obviously, the sensitivity increases with increasing thickness of FeGa film. This can be
explained by the following formula [29]:

∆V
V

= − f h
3

∑
i=1

ci

(
ρ− E(i)

V2

)
(7)

where f, h, ci and E(i) are the operation frequency of SAW device, FeGa film thickness,
coupling parameter relating to the piezoelectric substrate, and Young’s modulus of the
FeGa film, respectively. It can be seen that the acoustic velocity is proportional to the film
thickness when other parameters are fixed. Therefore, increasing the FeGa film thickness
will improve the sensitivity. However, a turning point occurred when thicker FeGa film
over 700 nm was applied. This is because the magnetic domain wall gradually changed
from Neel wall to Bloch wall with the increase in the film thickness, resulting in the
degradation of the film soft magnetic properties. The result indicates that too thick of a
FeGa film will reduce the sensitivity. Hence, 500 nm FeGa film was chosen to construct the
sensing devices in this work.
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500 nm thick film.

Figure 7b shows the linear response of the proposed sensor coated with 500 nm pat-
terned FeGa thin film. The concluded sensitivities of 37.9 kHz/A, 32.2 kHz/A, 23.1 kHz/A
were obtained from the sensing devices coated with dotted, grating, and membranous
FeGa thin films, respectively. The sensitivity of membranous FeGa thin film coated device
approximately agreed with the predicted value. The largest sensitivity was achieved from
the dotted-FeGa thin film coated device, which is the result of enlarged magnetostrictive
properties and reduced coercivity in the dot-film structure [9].
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4.2.2. Repeatability Test

Then, the repeatability of the 500 nm FeGa thin film coated SAW sensing device
was evaluated as shown in Figure 8, which shows response profiles obtained from four
consecutive 5 s on-off exposed to 10 A current at room temperature (25 ◦C). To evaluate
the repeatability, a statistical analysis was performed to the measured results. Using the
sensor response towards applied current of 10 A as a sample set (Figure 8), we evaluated
repeatability by calculating the corresponding standard deviation. Usually, the standard
deviation is defined by

σ =

√√√√ N

∑
i=1

(xi − x)/(N − 1) (8)

where xi, x, and N are the ith measurement, the average of the measurements, and the
number of measurements, respectively. Hence, the standard deviations of 0.99, 0.71, and
1.13 were calculated from the sensing devices coated with dotted, grating, and membranous
FeGa thin film, respectively. It can be seen that excellent reproducible runs were obtained
from the prepared sensing device with various FeGa patterns. Moreover, when the current
was switched from 0 A to 10 A, the frequency response of the three sensors dropped
rapidly to a steady state, which means a very fast response was achieved. Moreover, sensor
responses over 200 kHz towards 10 A were obtained from the sensing devices. The largest
response up to 393 kHz was achieved from the sensing device coated with dotted FeGa
thin film owing to its enlarging magnetostrictive properties [9].
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4.2.3. Hysteresis Measurement

Meanwhile, the hysteresis characteristics of the FeGa thin film coated SAW devices
were evaluated as shown in Figure 9a. In the measurement, the applied current increased
first and then decreased with a step of 1 A, and each applied current lasted for 5 s. Usually,
the hysteresis error is defined by

δH = max(yui − ydi)/(2yFS)× 100% (9)

where the yui and ydi are the response at the same current input when the current increases
and decreases, yFS is the full-scale output of the current sensor. Hence, the hysteresis
errors of 0.81%, 0.92%, 2.57% were calculated from the sensing devices coated with dotted,
grating, and membranous FeGa thin film, respectively. Obviously, the excellent symmetry
in sensor response was observed from the dotted FeGa thin-film device. Dotted pattern
releases the coercivity well and enhances the magnetostrictive strain, therefore lowering the
hysteresis error significantly. This can also be demonstrated by measuring the hysteresis
loops of the FeGa thin film with various patterns, as shown in Figure 9b. It indicates that
lower coercivity of 61.23Oe (Hcd) was observed from the dotted pattern over the grating
(Hcg = 72.85Oe) and the membranous pattern (Hcm = 100.17Oe). Hence, it is reasonable to
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be concluded that the dotted pattern can not only improve the detection sensitivity but
also suppress the hysteresis effect effectively in magnetostrictive thin film.
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Table 1 concludes the sensing performance of the proposed sensors with various FeGa
film patterns. Obviously, the dot-patterned FeGa film coated sensing device features larger
sensitivity and lower hysteresis error. Table 2 offers the sensing performance comparison of
the proposed sensor in this work with the existing sensor prototype with similar structures.
It is obvious that larger sensitivity was achieved from our work, and compared with the
sensors coated with FeCo thin film [30], the sensitivity of the proposed sensors increases by
~77.1%. The main reason is that the FeGa thin film has a larger magnetostriction coefficient
than FeCo thin film [22,23].

Table 1. The sensing performance of the proposed sensors in this work.

SAW Sensing Devices Magnetosrictive Film Sensitivity
(kHz/A) Hysteresis Error

membranous -film FeGa 23.1 2.57%
grate-film FeGa 32.2 0.92%
dot-film FeGa 37.9 0.81%

Table 2. The sensing performance comparison of the proposed sensor in this work with the existing
sensor prototype with similar structures.

Year Material Frequency Sensitivity Reference

2017 FeNi 150 MHz 10.7 kHz/A (5.35 kHz/mT) [11]
2020 FeCo 150 MHz 10.7 kHz/mT [30]
2021 PVA bound Fe 433 MHz 678 kHz/120 mT [14]

FeGa 150 MHz 37.9 kHz/A (18.95 kHz/mT) our work

4.2.4. Fatigue Characteristics

Magnetostrictive strain usually leads to fatigue and aging of magnetic-sensing films.
Thus, the fatigue characteristics of the FeGa thin film were investigated by cycle testing
of the sensitivity of the developed sensing devices. The number of cycles was set to 100.
In each cycle test, the current of 0~10 A was applied to the sensing device coated with
various FeGa thin-film patterns to obtain the detection sensitivity. The cycle interval
was set to 10 min. Table 3 shows the statistical analysis of the relationship between the
sensor sensitivity decrease rate and the number of cycle runs. It can be seen that the
sensitivity of sensors with different patterns decreased slightly with the increasing cycle
runs. However, the performance decline was less than 4% after 100 cycle runs, which is
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acceptable. Obviously, thanks to the good ductility and strong impact resistance of FeGa
thin film itself, excellent long-time stability and weak fatigue were observed (Figure 10a),
which was far better than that of the FeCo thin film [30]. Moreover, The SEM views of the
FeGa thin film after 0, 50, 100 cycle testing runs are depicted in Figure 10b–d. It can be seen
that the unloaded FeGa thin film was perfectly uniform. Although a few cracks appeared
after 100 runs, most areas of the film remained uniform. It means excellent stability was
achieved from the FeGa thin film coated sensing device in long-term runs.

Table 3. The sensitivity decrease rate after long-term runs.

Devices
Sensitivity Decrease Rate after Long-Term Runs

0 50 100

membranous-film 0 2.26% 3.6%
grate-film 0 2.23% 3.2%
dot-film 0 2.93% 3.91%
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5. Conclusions

The SAW current sensors with different patterns of FeGa thin films were discussed.
The layered media model (FeGa/SiO2/LiNbO3) was established to reveal the interaction
between FeGa thin film and the applied external current, and the sensitivity of the sensor
was simulated. The SAW devices with various FeGa thin-film patterns (dot, grating, and
membranous) were designed and fabricated to improve the detection sensitivity and lower
the hysteresis error. The experimental results show that the dotted FeGa thin film coated
sensing devices can achieve large current sensitivity (37.9 kHz/A), low hysteresis error
(0.81%), good repeatability, and weak fatigue, which is the result of enlarged magnetostric-
tive properties and reduced coercivity in the dot-film structure. In addition, compared with
the existing sensor prototypes with similar structures, our proposed sensors perform far
better. Those results indicate that the FeGa thin film with grating and dotted patterns can be
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used to enhance the performance of the SAW currents sensors. Hence, the dotted FeGa thin
film coated SAW current sensors have broad application prospects in the fields of current
detection. The obtained results provide very encouraging results for the development
of wireless passive current sensors. Meanwhile, the structure of FeGa thin film with a
dotted pattern can provide a new idea for the thin-film pattern design of wireless passive
current sensors.
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