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Abstract: Detecting harmful content or hate speech on social media is a significant challenge due to
the high throughput and large volume of content production on these platforms. Identifying hate
speech in a timely manner is crucial in preventing its dissemination. We propose a novel stacked
ensemble approach for detecting hate speech in English tweets. The proposed architecture employs
an ensemble of three classifiers, namely support vector machine (SVM), logistic regression (LR), and
XGBoost classifier (XGB), trained using word2vec and universal encoding features. The meta classifier,
LR, combines the outputs of the three base classifiers and the features employed by the base classifiers
to produce the final output. It is shown that the proposed architecture improves the performance
of the widely used single classifiers as well as the standard stacking and classifier ensemble using
majority voting. We also present results on the use of various combinations of machine learning
classifiers as base classifiers. The experimental results from the proposed architecture indicated an
improvement in the performance on all four datasets compared with the standard stacking, base
classifiers, and majority voting. Furthermore, on three of these datasets, the proposed architecture
outperformed all state-of-the-art systems.

Keywords: hate speech recognition; stacking ensemble; text classification; binary classification;
stacked ensemble

1. Introduction

An undesirable side effect of the increase in social media usage has been the rapid
growth of hate speech on these platforms. Hate speech can be defined as an attack on a
specific person or group based on race, ethnicity, religion, gender, age, disability, or sexual
orientation. Each platform of social media has its definition of hate speech. However,
all agree that hate speech attacks specific target groups based on some discriminating
characteristic. Nevertheless, if automatic hate speech detection is not performed, the
platforms may become hate speech platforms. Even though recent research on automatic
detection of hate speech is well-presented in [1–5], to the best of our knowledge, no such
system has been fully implemented yet. Facebook implemented a model in 2019 called
RoBERTa to detect toxic posts, dependence on user reports for the detection of hate speech
has not been eliminated yet.

Waseem and Hovy [6] studied the detection of hate speech in the form of racism and
sexism on social media. They created their dataset from English Twitter which was the first
public dataset for hate speech. The availability of this dataset allowed other researchers to
use it to evaluate their model and compare the results with other approaches. Their study
addressed hate speech detection as a multiclassification problem. They labeled the tweets
as ‘Sexism’, ‘Racism’ and ‘Neither’. Character N-gram and linguistic features performed
the best as a feature, with their dataset scoring 73.93% F1-score.

Davidson et al. [7] also collected a corpus of tweets, which became the most extensive
publicly available corpus of more than 24 k tweets in 2017. They labeled tweets into
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three categories: ‘Hate’, ‘Offensive’, and ‘Neither’. The authors presented a study on
“Automated Hate Speech Detection and the Problem of Offensive Language” as they
developed a multiclass model. As features, they used N-gram with Term Frequency-
Inverse Document Frequency (TF-IDF), Part of Speech (POS), a sentiment lexicon, and
several characters, words, and syllables in each tweet. In their study, they applied SVM and
LR as classifiers. The most outstanding result they obtained was a 90% F1-score utilizing
the LR as a classifier. The authors of this study observed that incorporating information
about the user (the person who tweeted) can provide interesting features that improve the
classifier’s performance.

Different approaches have been employed to detect hate speech in social media.
These approaches varied from individual models to ensemble models. Authors in [8]
employed several machine learning approaches, namely; SVM, Random Forest (RF), and
Naïve Bayes (NB) on multiple datasets. The sentiment lexicon and N-gram were combined
as features. Using RF, they were able to achieve the best result for binary classification, with
an accuracy of 77.36%. Furthermore, they built a new dataset from Indonesian Twitter. On
the other hand, in [9], Indurthi et al. employed one classifier, namely SVM with universal
sentence encoder (USE) as a feature. The authors evaluated their model on one publicly
available HatEval dataset from SemEval-2019 Task 5 achieving an F1-score of 65.1%.

Stacking is one of the most frequently used algorithms first presented by Wolpert in
1992 [10]. One of the advantages of this approach is that each base classifier’s misclassifica-
tion is minimized [10]. It has been used on multiple real-world datasets, and it achieved
higher results than the stand-alone classifiers [11]. Furthermore, in some competitions,
such as Kaggle [12], this approach has been employed very frequently. The popularity of
the stacking approach among the users of Kaggle is due to the improved performance on
real-world datasets and the fact that high-ranking participants have adopted it.

Badjatiya et al. [13] applied three deep learning methods to develop a hate speech
classifier namely convolutional neural networks (CNNs), FastText, and long short-term
memory (LSTM) networks with word embedding. The authors employed different com-
binations of neural networks, Gradient Boosted Decision Trees (GBDTs), and word em-
bedding utilized by random embeddings or GloVe. As baselines, the authors employed
machine learning algorithms, namely; SVM, LR, GBDT, and RF. For the evaluation of the
classifier’s performance, they used the Waseem and Hovy [6] dataset. Their approach out-
performed the baselines methods and achieved the best result with the ensemble approach
of LSTM + GBDT with Random Embedding achieving a 93% F1-score.

Aria et al. [14] employed an ensemble approach of three classifiers to detect hate
speech on the English HatEval dataset from SemEval-2019 Task 5. They used SVM, RF, and
Bidirectional Long Short-Term Memory (BiLSTM). As features, with the SVM and RF, they
used bi/tri-grams, and word embedding with BiLSTM. The majority voting applied on
the predictions of the three classifiers, which obtained a low score of 39.2% F1-score on the
test set while achieving a 75.2% F1-score on the development set. The authors refer to the
fact that there is a big difference between the training and testing sets, and the dataset did
not shuffle before the split. In [15], Kokatnoor and Krishnan proposed a stacked weighted
ensemble model for the binary classification of hate speech. They ensembled five classifiers,
namely LR, NB, RF, soft voting, and hard voting. The authors observed an improvement in
the results obtained by the proposed approach compared with the stand-alone classifiers,
as they achieved an accuracy of 95.54%.

An ensemble approach was proposed by Gao and Huang [16] to detect hate speech.
The model used LR and neural network models, LSTM. The authors assessed each model
individually as a stand-alone model, then ensembled them and made a comparison. The
ensemble model outperformed both of the stand-alone models by 7% in F1-score on the
Fox News corpus. In [17], MacAvaney et al. proposed another stacked ensemble of
multiple SVMs. The authors used one different feature with each SVM. For the evalu-
ation of their model, they tested their model on four hate speech datasets in terms of
accuracy and F1-score. Their model performed less than the neural ensemble model on
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two out of four datasets. Furthermore, the authors discussed the challenges of automatic
detection for hate speech in social media.

Another study that provided evidence that the ensemble approach can achieve signif-
icant performance over an individual classifier is Zimmerman et al. [18], who proposed
an ensemble method in which ten CNNs with various weight parameters/initializations
are combined. They performed 10-fold cross-validation on their method using the best
settings with 10 epochs and batch size. Two datasets were used for the evaluation of the
proposed method, were split into 85% for training and 15% for testing. The authors used
word embedding as a feature. They achieved a higher performance compared with the
individual classifiers with an average improvement of 1.97% F1-score.

Zhang et al. [19], employed a combination of CNN and gated recurrent unit network
(GRU) trained using the word2vec feature for hate speech detection. They evaluated their
approach on different datasets. The authors achieved higher performance compared with
the state-of-the-art. They conducted a comparison between their results and the baselines
and the state-of-the-art.

All datasets used in this study are retrieved messages from Twitter in the English
language. Twitter is the third most popular social media platform in the world [20]. A
large number of users use this platform to express their hate and anger toward another
person or group; therefore, most of the papers on hate speech collect data from Twitter.

In this work, hate speech recognition is treated as a binary decision task that is
expected to benefit the efforts in the domain. We aim to develop a model for binary text
classification using a novel stacked ensemble to improve the performance. The stand-alone
classifiers have various limitations, such as bias increment and variance. Therefore, this
work is motivated by the fact that using the stacked ensemble can overcome these concerns
and improve the performance of stand-alone classifiers. The main contributions of this
work include:

• Develop a novel stacked ensemble model for binary detection of hate speech on social
media platforms;

• Use of the four publicly available hate speech datasets with varying sizes to allow
comparison of future work;

• Compare the proposed model’s result against the standard stacking, single classifiers,
majority voting, and state-of-the-art results;

• Improve the performance of the standard stacking approach.

This work is organized as follows. The proposed stacked ensemble architecture
is presented in Section 2. The main phases of the proposed architecture, namely the
preprocessing steps for cleaning the data, features employed training of base classifiers,
and training of the meta classifier, which are discussed in this section. In Section 3, we
present the publicly available datasets used in the experiments, and the results obtained
from the stacked ensemble and non-stacked ensemble approaches. Section 4 presents
and provides a discussion on the experimental results of the proposed approach, Base-
Level classifiers using the test set, majority voting, and standard stacking. Furthermore,
we compare our proposed architecture with the state-of-the-art for each dataset. Finally,
Section 5 contains the conclusion and future work.

2. Materials and Methods
2.1. Proposed Approach

In this section, we present the novel proposed approach for detecting hate speech. The
general idea of the stacked ensemble is using predictions of classifiers from the first level as
input of the classifier of the next level. However, in our approach, we added the extracted
features from the development dataset as input to the next level beside the predictions of
the first level.

The general framework of the proposed stacking ensemble consists of two levels of
classifiers: Base-Level classifiers at the first level and a Meta-Level classifier at the second
level. As shown in Figure 1, the workflow of our proposed approach is composed of a
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preprocessing stage, feature extraction stage, a two-level stacked ensemble, and the final
output. At the first step, the raw input data are preprocessed and prepared for feature
extraction. Then, two features, namely word embedding, and USE are extracted at the
feature extraction step. The data from the train set thus prepared is fed into the Base-Level
classifiers (C1, C2, C3, . . . , Cn) at the first level of the stacked ensemble. Subsequently, the
outputs of the Base-Level classifiers (the predictions provided by three Base-Level classifiers
on the development set) together with the extracted features from the development set are
fed into the Meta-Level classifier as inputs. Finally, the final prediction is obtained from the
Meta-Level classifier. In the proposed stacking ensemble SVM, LR, and XGB are employed
as Base-Level classifiers and LR is used as the Meta-Level classifier.

Figure 1. Proposed stacking ensemble architecture with two levels of classifiers.

The proposed architecture encompasses two training phases. The Base-Level classifiers
are trained on the training set using the extracted features in the first training phase. In
the second training phase, the Meta-Level classifier is trained using the development
set and the outputs of the Base-Level classifiers trained in the first phase. The same
preprocessing and feature extraction stages applied to the training data are also applied
to the development data. The pre-trained Base-Level classifiers are used to make their
individual predictions. The Meta-Level classifier is trained with the Base-Level predictions
and the extracted features from the development set. Once the training of the Base-Level
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and Meta-Level classifiers are completed, the architecture is constructed. The preprocessing
and feature extraction processes are repeated for the test set. The Meta-Level classifier
generates the final result, which is the predictions on the test set.

2.1.1. Preprocessing

This step is applied to filter and prepare the dataset for the model. The tweets of the
dataset are preprocessed prior to feature extraction as listed below:

• Hashtag symbols ‘#’ are removed;
• Mentions ‘@’ are removed;
• URLs are removed;
• All characters are changed to lowercase;
• All words are stemmed;
• Non-words or single characters are removed.

2.1.2. Feature Extraction

Due to their effectiveness in text classification, semantic relations between words or
sentences have been used as features by numerous researchers [21]. In more recent studies,
Cer et al. [22] and Kim [23] have demonstrated that embedding features significantly
improves the classification performance in hate speech.

Therefore, we used both ‘word to vector’ and ‘sentence to vector’ embedding features
to ensure that semantic information at both sentence and document levels are represented.

All the Base-Level classifiers used in this study employed concatenation of the follow-
ing features:

• Word embeddings: we employed word2vec to represent each word by a vector of
size 200, with the skip-gram technique, which predicts the context from the given word;

• Sentence embeddings: we employed USE to encode tweets into vectors [22]. The
encoder takes preprocessed text as input and outputs the sentence embeddings as
vectors with 512 dimensions.

Therefore, diversity among the base classifiers is ensured through the use of different
machine learning algorithms.

2.1.3. Base-Level Classifiers

We trained seven of the most frequently used machine learning algorithms, namely
K-Nearest Neighbor (KNN), LR, SVM, NB, RF, Extra trees (E-trees), and XGB, using 3-fold
cross-validation.

KNN is a nonparametric supervised machine learning method known as lazy learning
as it has no training stage. The assumption in KNN is that similar data can be found in
the same neighborhood. By the very nature of its decision rule, the performance of KNN
classification depends crucially on the way that distances or similarities are computed
between different examples [24].

LR is a supervised machine learning algorithm that has been successfully utilized
to solve various classification problems. It is a classification approach with two types:
binary (two classes) and multi classes (more than two classes). A prediction is made by
feeding a set of features to LR; it is referred to as a probabilistic classifier since it predicts
the probability of an output.

SVM is a very frequently used non-probabilistic binary classifier. It is used to classify
linearly separable data into two classes, such as hate and no-hate, in two-dimensional space.
One-vs-all or one-vs-one approaches may be used to adapt SVM to multiclass classification.
The goal of SVM classification is to maximize the margin separating the target classes.

NB is a simple but efficient probabilistic classifier based on the Bayes theorem with
the assumption that all features are independent of each other. An NB classifier uses the
Bayes theorem to compute each data item’s probability of belonging to each class. The data
item is tagged with the class that has the highest probability.
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RF is a large group of decision trees developed by Breiman in 2001, it is an ensemble
model that employs several classification trees [25]. For each data item to be classified, each
tree predicts a class; then, the class with the majority votes wins. The individual trees in the
RF are trained on random subsets of the training data using different features for splitting
the data. These two properties of the training phase ensure that the individual decision
trees are uncorrelated, and thus, the ensemble classifier RF produces a better prediction.

E-tree is a form of ensemble classification algorithm that outputs a classification result
by combining the results of several less correlated decision trees gathered in a forest. E-tree
is a variation of the RF model where the entire training set is used for training, whereas the
RF trains the individual classifiers on subsets of the training data.

XGB is an ensemble method based on Gradient Boosting, where the gradient descent
algorithm is used to minimize loss. An iterative training process where a new tree trained
using the previously incorrectly classified data items added to the ensemble is employed.

2.1.4. Meta-Level Classifier

The meta classifier used in the proposed architecture is LR which has recently been the
most frequently used Meta-Level classifier in the stacking approach, according to Agarwal
and Chowdary [26]. We chose the LR as the Meta-Classifier because it requires fewer
parameters and it is faster to train [27,28].

In the proposed stacked ensemble, the pre-trained Base-Level classifiers are employed
to predict the category of the tweets in the development set. During the training of the meta
classifier LR, the predictions of the Base-Level classifiers are used, along with the extracted
features from the development set. After this training phase, the architecture utilizes
Base-Level classifiers trained on the training set and the Meta-Level classifier trained on
the development set for the predictions on unseen data.

2.1.5. Evaluation Metrics

We present the results of the proposed approach using the F1-score, which is the
harmonic mean of recall and precision, as an evaluation metric for comparison with other
work. The F1-score is a frequently used metric for the classification model effectiveness [28].
Additionally, in all experiments, accuracy was calculated and presented. The formulas of
the metrics presented in this study are listed below.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision = (TP)/(TP + FP) (2)

Recall = (TP)/(TP + FN) (3)

Specificity = (TN)/(TN + FP) (4)

F1-score = 2(Precision × Recall)/(Precision + Recall) (5)

where TP, TN, FN, and FP represent the: True Positive, True Negative, False Negative, and
False Positive, respectively.

3. Experimental Setup and Results

In order to evaluate the performance of the proposed architecture, we tested the
proposed stacked ensemble using different machine learning classifiers as Base-Level clas-
sifiers. Additionally, we compared the performance of the proposed system to that of the
Base-Level classifiers individually and the full ensemble of Base-Level classifiers using ma-
jority voting and the standard stacking approach. In each setting of the stacking ensembles,
the Meta-Level classifier used was LR. The F1-scores of these different combinations of
Base-Level classifiers are presented in the following discussion.

This section introduces details about the used datasets, preprocessing, and feature
extractions applied for the hate speech detection model. All the experiments utilized
Python 3.7.
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3.1. Datasets

Table 1 presents the four publicly available datasets from Twitter used in this work. For
training the stacking model, three sets, namely train, development, and test set, are needed.
The training set is used to train the Base-Level classifiers, and the development set is used to
train the Meta-Level classifier. The HatEval dataset was already available in three sets. The
datasets were first randomly split into training and testing sets. Furthermore, we divided
the training set to obtain 10% for the development set, similar to Abuzayed et al. [29]. This
splitting aims to verify the performance of the approach, as it is tested on unknown data.
We applied different splits on the dataset to perform a comparison with the state-of-the-art
as they used different split percentages on each one.

Table 1. Datasets used in this study.

Dataset Name Link

HatEval http://hatespeech.di.unito.it/hateval.html (accessed on 30 June 2021)

Davidson https://data.world/thomasrdavidson/hate-speech-and-offensive-
language

COVID-HATE http://claws.cc.gatech.edu/covid/#dataset

ZeerakW https://github.com/ZeerakW/hatespeech/blob/master/NAACL_
SRW_2016.csv

3.1.1. HatEval Dataset

The HatEval dataset is considered a challenging dataset since the labeling of the tweets
is not unarguably correct. The tweets in the development and test sets target different
minority groups, and the two sets have different word distributions. The HatEval dataset
distribution of binary classification is presented in Table 2. According to the definition of
hate speech, this dataset contains hateful tweets that attack a group based on gender or
ethnicity (immigrants or women).

Table 2. HatEval dataset distribution of Non-hateful and Hateful tweets.

Non-Hateful Tweet
(0)

Hateful Tweet
(1) Total

Train 5217 (58%) 3783 (42%) 9000
Development 573 (57%) 427 (43%) 1000

Test 1740 (58%) 1260 (42%) 3000
Total 7530 (58%) 5470 (42%) 13,000

3.1.2. Davidson Dataset

Davidson dataset, which contains 24,783 tweets, is the largest dataset for hate speech
collected from Twitter [8]. The tweets in the dataset are labeled as ‘Hate’, ‘Offensive’, and
‘Neither’. We combined the tweets with labels ‘Hateful’ and ‘Offensive’ to be ‘Hateful
Tweet’ and the tweets with ‘Neither’ label to become ‘Non-hateful Tweet’ according to
the label combinations used by Salminen et al. [30]. The ‘Hateful Tweet’ in this dataset
are the tweets that attack a woman, Table 3 presents the distribution of the Hateful and
Non-hateful Tweets across the training, development, and test sets of the Davidson dataset.

Table 3. Davidson dataset distribution of Non-hateful and Hateful tweets.

Non-Hateful Tweet
(0)

Hateful Tweet
(1) Total

Train 3010 (17%) 14,833 (83%) 17,843
Development 327 (17%) 1656 (83%) 1983

Test 826 (17%) 4131 (83%) 4957
Total 4163 (17%) 20,620 (83%) 24,783

http://hatespeech.di.unito.it/hateval.html
https://data.world/thomasrdavidson/hate-speech-and-offensive-language
https://data.world/thomasrdavidson/hate-speech-and-offensive-language
http://claws.cc.gatech.edu/covid/#dataset
https://github.com/ZeerakW/hatespeech/blob/master/NAACL_SRW_2016.csv
https://github.com/ZeerakW/hatespeech/blob/master/NAACL_SRW_2016.csv
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3.1.3. COVID-HATE Dataset

The COVID-HATE dataset contains tweets containing hate speech sparked by the
global spread of the COVID-19 pandemic. The hate speech in this dataset is targeted in
general at the Asian race and in particular at Chinese communities. The COVID-HATE
dataset was manually annotated to separate the 2319 tweets into four classes which are
‘Hate’, ‘Non-Asian Aggression’, ‘Counter Hate’, and ‘Neutral’. We combined the ‘Hate’
and ‘Non-Asian Aggression’ categories into the ‘Hateful Tweet’ category, and ‘Counter
Hate’ and ‘Neutral’ categories into the ‘Non-hateful Tweet’ category. Table 4 shows the
distribution of the Hateful and Non-hateful tweets used to train the ML classifiers presented
in this work.

Table 4. COVID-HATE dataset distribution of Non-hateful and Hateful tweets.

Non-Hateful Tweet
(0)

Hateful Tweet
(1) Total

Train 965 (58%) 704 (42) 1669
Development 106 (57%) 80 (43%) 186

Test 249 (54%) 215 (46%) 464
Total 1320 (57%) 999 (43%) 2319

3.1.4. ZeerakW Dataset

This dataset contains 16,135 tweets labeled as ‘Sexism’, ‘Racism’, and ‘Neither’. In this
study, we combined the tweets labeled as ‘Sexism’ and ‘Racism’ to be labeled as ‘Hateful
Tweet’, which we refer to as 1, and the tweets labeled as ‘Neither’ to be under the ‘Non-
hateful Tweet’ label which is 0 as shown in Table 5. The ‘Hateful Tweet’ here is the tweet
that attacks a person or group based on gender or race.

Table 5. ZeerakW dataset distribution of Non-hateful and Hateful tweets.

Non-Hateful Tweet
(0)

Hateful Tweet
(1) Total

Train 7935 (68%) 3682 (32%) 11,617
Development 877 (68%) 414 (32%) 1291

Test 2221 (69%) 1006 (31%) 3227
Total 11,033 (68%) 5102 (32%) 16,135

It is observed that the datasets Davidson (17% Non-hateful—83% Hateful tweets)
and ZeerakW (68% Non-hateful—32% Hateful tweets) are imbalanced. Therefore, to
obtain balanced data, we oversampled the minority class using SMOTE [31]. Thus, for the
Davidson training set, we oversampled Non-hateful tweets, and for the ZeerakW training
set, we oversampled the Hateful tweets. In [32], the SMOTE method was used to balance
the data, improving the classification performance.

Moreover, as we mentioned previously, we applied different percentages to split the
datasets except for HatEval. In line with the approach used by Nobata et al. [33] and
Gibert et al. [34], we split the other datasets into 80% for the training and 20% for the
testing set. The COVID-HATE dataset is divided into 80% for the training set and 20% for
the testing set. The other two datasets have another splitting. These datasets are ZeerakW
with 85% for the training set and 15% for the testing set, and the Davidson dataset with
75% and 25% for training and testing sets, respectively.

3.2. Results from Proposed Stacking Experiment

After the Base-Level classifiers are trained using training data, we tested their per-
formance on the development data in each dataset. Table 6 presents the F1-score of each
Base-Level classifier used in the proposed stacking architecture on the development set.
These Base-Level classifiers were employed in the stacking architecture with five different
combinations. Table 7 shows the performance of the proposed stacking ensembles on the
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test set. The Meta-Level classifier in each proposed stacking ensemble is trained using the
development set.

Table 6. F1-score of the Base-Level classifiers on the development set. Bold entries show the highest
performance for each classifier on each dataset.

Base-Level Classifier HatEval Davidson COVID-HATE ZeerakW

KNN 0.6061 0.9296 0.6982 0.7480
LR 0.6434 0.9343 0.7761 0.8406

SVM 0.6180 0.9517 0.7632 0.8398
NB 0.6845 0.8669 0.7201 0.7402
RF 0.6443 0.8671 0.7963 0.6081

E-tree 0.5808 0.9358 0.7745 0.7180
XGB 0.6745 0.9500 0.7960 0.8253

Table 7. F1-score of the stacking ensembles using different base classifiers on test sets. Bold entries
show the highest performance for each classifier on each dataset.

Base-Classifiers Combination HatEval Davidson COVID-HATE ZeerakW

SVM, LR, XGB 0.6551 0.9713 0.7301 0.7392
KNN, SVM, NB 0.6405 0.9613 0.6920 0.7049

LR, NB, RF 0.6407 0.9601 0.7136 0.7226
KNN, LR, NB 0.6410 0.9710 0.7261 0.7150

SVM, LR, E-tree 0.6428 0.9710 0.7255 0.7253

In our experiment, we tried all different combinations of the seven individual clas-
sifiers. Among all combinations of these single classifiers, we present the top five com-
binations in terms of the F1-score. Examining the five ensembles using the four test sets,
we found that the ensemble of SVM, LR, and XGB is the best combination among other
ensembles. As Table 7 shows, the best results for all datasets are achieved by the proposed
architecture containing SVM, LR, XGB as Base-Level classifiers.

As Table 6 showed, NB performed worst on the Davidson dataset, while KNN, RF, and
E-tree performed worst on COVID-HATE, ZeerakW, and HatEval datasets, respectively. On
the other hand, NB and RF performed the best on the HatEval and COVID-HATE datasets,
respectively, while SVM achieved the best performance with the Davidson dataset, and LR
was the best on ZeerakW datasets. We observed that the stacking ensemble combination
of (KNN, SVM, NB) performed the worst on three out of four datasets (HatEval, COVID-
HATE, and ZeerakW).

3.3. Results from Single Classifier Experiment

We trained seven single classifiers with the train set of the four datasets, using the
same stages of preprocessing and feature extractions. Table 8 presents the performance of
the single classifiers on test sets in terms of the F1-score.

Table 8. F1-score of the Base-Level classifiers on the test set. Bold entries show the highest perfor-
mance for each classifier on each dataset.

Base-Level Classifier HatEval Davidson COVID-HATE ZeerakW

KNN 0.5885 0.9281 0.6580 0.6037
LR 0.6407 0.9365 0.7146 0.7179

SVM 0.6394 0.9530 0.6843 0.7030
NB 0.6024 0.8745 0.6539 0.5508
RF 0.6016 0.8797 0.6710 0.6274

E-tree 0.6031 0.9397 0.6542 0.6747
XGB 0.6353 0.9498 0.7246 0.7058
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It can be seen that the SVM classifier produced the best performance on two of the
datasets, Davidson and ZeerakW. For the other two datasets HatEval and COVID-HATE,
the single classifiers LR and XGB, respectively, achieved the best F1-score.

We tested the Base-Level classifiers on each dataset’s development and test sets and
presented the results in Tables 6 and 8, respectively. The challenge here is that the most
commonly used words in the test and development sets are different, which may ad-
versely affect the performance of our Meta-Level classifier leading to misclassification.
Fortuna et al. [35] also attributed the low performance of their system to the inconsis-
tency between train and test sets, which was also observed by [14]. It can be observed in
Tables 6 and 8 that, as mentioned before, the data in the test, development, and training
portion of the dataset vary, and that is reflected in the performance of the Base-Level classi-
fiers. Moreover, it can be argued that training the Meta-Level classifier on development
data might be harmful.

3.4. Results from Majority Voting Experiment

In this experiment, we used the same combinations of the Base-Level classifiers in the
proposed stacking approach to compare the results in the two approaches. As shown in
Table 9, the results achieved by this approach are not suitable as the ones achieved by the
proposed stacking approach. The improvements of the proposed stacking approach over
the majority voting are 1.44%, 1.61%, 0.55%, and 1.71% on HatEval, Davidson, COVID-
HATE, and ZeerakW datasets, respectively.

Table 9. F1-score of the majority voting ensembles using different base classifiers on test sets. Bold
entries show the highest performance for each classifier on each dataset.

Base-Classifiers Combination HatEval Davidson COVID-HATE ZeerakW

SVM, LR, XGB 0.6296 0.9521 0.7050 0.7221
KNN, SVM, NB 0.6170 0.9509 0.7188 0.7005

LR, NB, RF 0.6135 0.9309 0.6950 0.6280
KNN, LR, NB 0.6167 0.9547 0.7208 0.6289

SVM, LR, E-tree 0.6307 0.9552 0.7081 0.7210

It can be seen in Table 9 that among the majority voting ensembles (LR, NB, RF)
consistently has the lowest performance for all datasets. RF is an ensemble method
consisting of tree predictions; these predictions are provided by majority voting of each
tree [36]. In the (LR, NB, RF) combination, in most cases, RF agrees with LR or NB or both
in wrong class predictions leading to the misclassification in the majority voting approach.
Moreover, RF performs better with multiclassification tasks.

The majority voting ensemble containing SVM, LR, and E-tree provide the highest
F1-score on both HatEval and Davidson datasets. The best F1-score on the COVID-HATE
dataset is achieved with the (KNN, LR, NB) combination. Finally, for the ZeerakW dataset,
the majority voting ensemble using the (SVM, LR, XGB) combination achieved the highest
F1-score.

3.5. Results from Standard Stacking Experiment

This experiment is similar to the proposed approach except that we use only the
predictions from the Base-Level classifiers as an input to the Meta-Level classifier (in the
novel proposed approach we used the Base-Level predictions and the extracted features
from the development set). F1-scores of the standard stacking are given in Table 10 on each
dataset. The results achieved by this approach are very low on the HatEval dataset with
59.43% as the highest F1-score for the (SVM, LR, E-tree) combination. On the Davidson,
COVID-HATE, and ZeerakW datasets, the best results were obtained by the (SVM, LR,
XGB), (LR, NB, RF), and (KNN, LR, NB) combinations, respectively.
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Table 10. F1-score of the standard stacking on test sets. Bold entries show the highest performance
for each classifier on each dataset.

Base-Classifiers Combination HatEval Davidson COVID-HATE ZeerakW

SVM, LR, XGB 0.5910 0.9517 0.7036 0.6657
KNN, SVM, NB 0.5746 0.9434 0.6623 0.6806

LR, NB, RF 0.5804 0.9412 0.7047 0.6754
KNN, LR, NB 0.5873 0.9437 0.7046 0.6815

SVM, LR, E-tree 0.5943 0.9491 0.6859 0.6472

Table 11 demonstrates the best results from the four experiments in this work on all
test sets. The experimental results on the test sets show that our proposed model achieved
the best performance in terms of the F1-score over the other three approaches. Specifically, it
can be seen in Table 11 that the proposed novel ensemble scheme outperforms the standard
stacking approach for all datasets. These results provide evidence of the effectiveness of
our system.

Table 11. Performance of the four hate speech recognition systems in terms of F1-score on tests sets
of the four datasets. Bold entries show the highest performance for each classifier on each dataset.

Approaches HatEval Davidson COVID-HATE ZeerakW

Proposed Stacking 0.6551 0.9713 0.7301 0.7392
Standard Stacking 0.5943 0.9517 0.7047 0.6815
Single classifiers 0.6307 0.9530 0.7208 0.7179
Majority voting 0.6407 0.9552 0.7246 0.7221

4. Discussion

Table 12 illustrates the summary of the state-of-the-art on used datasets. Further-
more, Table 13 compares the proposed approach with the state-of-the-art for each of the
four datasets. Zhang et al. [19], outperformed the state-of-the-art result on Davidson
scoring a 94% F1-score. Our proposed approach that combined the USE and word2vec
features and two-level stacking ensemble surpassed that result by 3.1%, indicating that
USE contributed to the classification performance. For the same dataset, it can be seen
from Table 9 that unlike the proposed stacking ensembles listed in Table 7, majority voting
improves the performance of the base classifiers in only one combination. The results
of the SemEval-2019 competition for Task 5 HatEval can be found in [37]. Even though
the proposed system outperformed the highest-ranked system, which employed SVM
with sentence embeddings features, the performance improvement is not as pronounced
as the one on the Davidson dataset. For the ZeerakW dataset, the best result for binary
classification was achieved by Zimmerman et al. [18] using ensemble neural networks
with various weight initialization along with word embedding features. To the best of our
knowledge, there are no published results on binary hate speech classification using the
COVID-HATE dataset.

Table 12. Summary of the state-of-the-art approaches on used datasets.

State-of-the-Art Dataset F1-Score Model Features

Indurthi et al. [9] HatEval 65.1% SVM USE
Zhang et al. [19] Davidson 94.0% CNN, GRU (Ensemble) word2vec

Zimmerman et al. [18] ZeerakW 77.8% Neural networks (Ensemble) word2vec

We observed that LR and SVM were the most successful models among all the used
models on the test set in terms of the F1-score. As shown in Table 7 in the proposed
stacking ensemble approach, the two best combinations have the LR and SVM in them
(SVM, LR, XGB and SVM, LR, E-tree). One can argue that these combinations were the
best because they used LR as a Meta-Level classifier; however, LR was also the best in the
other two approaches that did not utilize a Meta-Level classifier. In Table 8, LR achieved
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the best F1-score on two datasets: HatEval and ZeerakW, among Base-Level classifiers.
Furthermore, in the majority voting, LR was in the combinations that achieved the highest
performed F1-score on each dataset, (SVM, LR, XGB), (KNN, LR, NB), and (SVM, LR,
E-tree) as shown in Table 9.

Table 13. F1-score (%) of the state-of-the-art and the proposed stacking ensemble on all datasets.
Bold entries show the highest performance for each dataset.

Dataset State of the Art Proposed Stacking Ensemble

HatEval 65.1 [9] 65.5
Davidson 94.0 [19] 97.1

COVID-HATE - 73.0
ZeerakW 77.8 [18] 73.9

When the results of the standard stacking approach from Table 10 are compared
with the results of the proposed stacking approach, it is seen that the proposed approach
outperformed the standard stacking approach on all datasets in terms of the F1-score.
Table 11 shows that among all approaches, the standard stacking approach had the worst
performances on all datasets. According to these results, our novel stacking method
achieved the highest F1-scores across all datasets in all four experiments. Among all
approaches, standard stacking performed the worst, whereas novel stacking performed
the best. This improvement confirmed the effectiveness of our novel approach.

As shown in Table 13, the proposed approach outperformed the state-of-the-art in
both HatEval and Davidson datasets. Our approach has a lower performance than the
state-of-the-art only on the ZeerakW dataset. This may be attributed to the combination
of the two features word2vec and USE employed here. Indeed, Waseem and Hovy [6]
observed that using character N-grams on this dataset outperformed other features. They
also noted that the other features had an adverse effect on the performance. Goldberg [38]
stated that in comparison with N-gram features, which eliminate the concept of location
in a text (apart from immediate surrounding terms for bi/tri-grams), CNN and word
embeddings can utilize a sequence of tokens by concatenating token embeddings into
a matrix. In fact, Zimmerman et al. [18], achieved a higher F1-score than our approach
by using this combination. In addition, combining these features with the LR (which
performed the best, as explained previously) improves the performance. This observation
is consistent with our findings on the ZeerakW dataset, where the proposed approach’s
result was the only one that was lower than the state-of-the-art.

It should be noted that no specific combination of classifiers or a specific single
classifier can deliver the highest performance for all types of datasets. Each dataset
has different characteristics such as the context of the tweet [14], the targets of the hate
speech, the classes used for categorizing the tweets, the distribution of the classes, and the
overall dataset size. All these unique characteristics of the datasets indicate that specially
tailored systems with architecture and features best suited for a particular dataset may
not generalize well and adapt to the dynamic hate speech domain. Overall, the proposed
approach can improve performance by overcoming the inadequacies of the base classifiers
while considering the dataset’s appropriate features. The results presented here show that
the proposed architecture with the (SVM, LR, XGB) combination as Base-Level classifiers
improves the performance of the base classifiers, and in general, outperformed most of the
state-of-the-art.

5. Conclusions

In this work, we proposed a novel stacking ensemble for distinguishing between
hateful and non-hateful tweets from English Twitter datasets of various sizes.

We applied the proposed stacking classifiers approach at two levels: Base and Meta
levels. The Base-Level classifiers are trained using the features extracted from the training
set. Then, the Meta-Level classifier is trained on the predictions of the Base-Level classifiers
using the development set and the features extracted from the development set. The
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preprocessed unseen test set was then classified using our model. On all of the datasets
studied, we compared the results of the proposed approach to those of the single classifiers,
majority voting ensembles, standard stacking, and the state-of-the-art. The results indicated
that distinguishing Hateful and Non-hateful tweets is a challenging task. Compared with
single classifiers, standard stacking, and majority voting, the proposed technique achieved
the highest F1-score on all datasets. Furthermore, the proposed approach outperformed
the state-of-the-art in three out of the four datasets using the same combinations of features
(word2vec and USE), and the same combination of Base-Level classifiers (SVM, LR, XGB),
with LR as Meta-Level classifier. Even though there are two phases for training the
classifiers, this is justifiable as it is not repetitive. Nonetheless, the features that may be
useful for correct classification are related to the nature and composition of the data to be
classified; thus, fine-tuning the feature engineering stage may improve the performance
even further. More comprehensive datasets that include a more extended timeframe would
exemplify the time-varying nature of the tweets and allow the classifiers to capture the
dynamic nature of hate speech.

Future work will address the imbalance problem. The data imbalance where the
distribution of samples per class is not equal influences machine learning classifiers in
favor of the majority class. This is not desirable especially in cases such as hate speech
recognition where identifying the minority class is more important. Therefore, balancing
the dataset used for training the base classifiers in our approach is expected to improve
the performance of the proposed system. Resampling data for balancing the dataset
can be achieved by oversampling the minority class and if needed, undersampling the
majority class. During this process it is important to ensure useful information is not
lost due to undersampling and the oversampled data do not cause overfitting in machine
learning classifiers. Our proposed architecture will be extended by employing alternative
resampling methods at the base-classifier training phase of the proposed architecture.
Specifically, the effect of the minority oversampling techniques on the final performance
will be studied. Furthermore, the proposed stacking approach will be applied to different
domains of text classification with binary as well as multiple classes.
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