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Abstract: Today’s deep learning strategies require ever-increasing computational efforts and demand
for very large amounts of labelled data. Providing such expensive resources for machine diagnosis
is highly challenging. Transfer learning recently emerged as a valuable approach to address these
issues. Thus, the knowledge learned by deep architectures in different scenarios can be reused for the
purpose of machine diagnosis, minimizing data collecting efforts. Existing research provides evidence
that networks pre-trained for image recognition can classify machine vibrations in the time-frequency
domain by means of transfer learning. So far, however, there has been little discussion about the
potentials included in networks pre-trained for sound recognition, which are inherently suited for
time-frequency tasks. This work argues that deep architectures trained for music recognition and
sound detection can perform machine diagnosis. The YAMNet convolutional network was designed
to serve extremely efficient mobile applications for sound detection, and it was originally trained on
millions of data extracted from YouTube clips. That framework is employed to detect bearing faults
for the CWRU dataset. It is shown that transferring knowledge from sound and music recognition to
bearing fault detection is successful. The maximum accuracy is achieved using a few hundred data
for fine-tuning the fault diagnosis model.

Keywords: bearing fault detection; machine diagnosis; intelligent fault diagnosis; deep learning;
transfer learning; sound event detection; CWRU

1. Introduction

Although regular and scheduled maintenance strategies are still employed in many
industrial contexts, the needs to rely on condition-based monitoring for machine health
management have become increasingly pronounced due to several reasons. Industrial
rotating systems are ever more complex, and wear and fatigue life estimators may not be
accurate enough to properly schedule maintenance. Indeed, the useful life of some machine
components is characterized by a marked statistical scatter, as in the case of rolling element
bearings (REBs) [1]. On account of these aspects, early scheduled maintenance is likely to
increase avoidable machine downtimes, whereas late scheduled maintenance leads to an
unacceptable number of failures [2]. Moreover, the structural health of rotors and REBs
affect each other in actual operating conditions, given the underlying coupling between
their dynamic behavior. These issues hardly comply with the requirements of modern
industry, which increasingly tends to embrace the advantages offered by condition-based
monitoring in terms of cost savings and production targets attainment [3]. Machine fault
diagnosis concerns the study of techniques aimed at detecting, isolating, and identifying
machinery faults on the basis of monitoring data [4,5].

The last four decades have seen a growing interest towards this field within research
and industry environments. In particular, signal processing methods have been extensively
examined to uncover the links between vibration data [6–13] or acoustic emissions [14–16]
and REB health state. Typically, these approaches stem from human reasoning, which
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infer expected particularities of data in light of the physical phenomena taking place
in damaged REBs or, more generally, in defective industrial equipment. Nevertheless,
monitoring data are simultaneously influenced by a variety of factors, such as noise and
structural resonances. The superimposition of several sources of excitation further affect
vibration responses. It may therefore occur that latent paths are hardly detectable in
diagnostic features by the inferences of human intelligence, especially in real working
conditions. For this reason, artificial intelligence (AI) found fertile ground for applications
in vibration-based diagnostics and prognostics.

Research on intelligent fault diagnosis (IFD) [5] has consistently populated scientific
literature starting from the beginning of this century. At first, machine learning approaches
such as the support vector machine (SVM) [17–20] were mostly investigated. Later, deep
learning and neural networks [21] revealed their capabilities in automatically identifying in-
tricated as much as discriminative features in large image datasets [22] upon which machine
learning algorithms were in trouble. IFD soon took advantage of these AI tools with the
application of autoencoders [23,24], Convolutional neural networks (CNNs) [25–27] and
Long Short-Term Memory networks (LSTMs) [28] for machinery diagnosis tasks. However,
the encouraging results achieved by AI in fault diagnosis may present some limitations:
lack of engineering interpretability and lack of a sufficient number of labelled data.

The interpretability of AI models is a current research topic in IFD [5,29] and its insights
represent some future trends for research in the upcoming decade. Deep learning achieved
unthinkable goals until about a few decades ago in manifold scenarios (e.g., computer
vision, medicine, and speech recognition). This is also due to the availability of a sufficient
number of labelled data for training deep architectures. However, a significant amount of
data for faulty machines is barely available in practical engineering contexts [5]. In such
cases, training processes are difficult to manage, since millions of network parameters
are extremely prone to overfit small datasets. Thus, the ability to generalize the learned
knowledge is intrinsically undermined. Noteworthy research efforts have brought to light
benchmark datasets [30–33], on which several methodologies were tested. Compared
with images datasets, it is experimentally challenging to extract millions of data which
meaningfully portray probability distributions for machinery diagnosis.

Recently, transfer learning (TL) approaches began to address the problem of missing
data [5,34]. The core idea of TL relates to the possibility of applying the knowledge learned
in a source task to a target task. TL is inspired by the human brain which can intelligently
use knowledge acquired in previous tasks to face new ones quicker or more efficiently [34].
TL strategies applied to machine fault diagnosis typically rely on networks pre-trained
using images, to catch low-level features also in pictures drawn from vibration signal
processing. This is partially occasioned by the fact that most of deep learning developed
around images and CNNs. Consequently, several deep learning applications came across
images for formalizing problems of various kinds. One of the largest datasets to train AI
models for image recognition is ImageNet (https://www.image-net.org/, accessed on
29 October 2021) [35]. Currently, the dataset contains more than 14 million images, and
over the past ten years, it has been extensively used to train deep learning architectures in
extracting discriminative features of images for classifying them.

Applications of knowledge transfer for machine diagnosis using ImageNet are avail-
able in the literature. Shao et al. [36] successfully classified machine failures using neural
networks pre-trained on ImageNet. Cao et al. [37] showed that a small set of training data is
adequate to effectively perform a gear fault diagnosis using deep architectures trained with
ImageNet. Instead, Zhang et al. [38] and Hasan and Kim [39] employed TL to diagnose
machine failures, by transferring knowledge between different working conditions.

However, no previous studies have investigated knowledge transfer from sound
recognition tasks to machine diagnosis. The present work is motivated by the idea that
networks pre-trained on audios for sound event detection (SED) [40–42] may encapsulate
the necessary knowledge to classify REB spectrograms. The main goal of SED is to identify
instances of sound events in audio recordings [40,43]. Applications of machine listening are
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available for instance in the fields of traffic monitoring [44], smart rooms [45], autonomous
vehicles [46] and healthcare monitoring [47]. Identifying music, instruments or music
genres is among the capabilities of SED networks [48,49].

The search for bearings characteristic tones in vibration signals is conceptually similar
to pitch identification in sound, speech and music recognition. Then, detecting occurrences
of bearing failures through vibrations is not so different from identifying sound events
in audio signals. It is therefore reasonable to assume that the knowledge required to
label spectrograms originated from faulty bearings is partially enclosed in pre-trained
SED networks, since some of these have specifically learned to extract dominant patterns
in spectrograms.

May the knowledge gained in these tasks be transferred to characterize machine
vibrations? Is this transfer strategy successful for a small dataset? These are the questions
which moved this investigation. Obviously, vibration signals are not audio acquisitions,
but they can be pre-processed in similar ways to deal with SED networks. Indeed, SED
networks operate with feature spaces pursuant to the human perception of the sound. This
study shows that this knowledge transfer efficiently works for a small dataset containing
vibration signals.

The overall structure of this paper takes the form of six sections. The introduction
presented the condition-based monitoring topic and projected AI advantages and issues in
the field of machine diagnosis. An overview of CNNs and TL theoretical background is
provided in the second section. The third section introduces YAMNet, an efficient CNN
for sound detection. This deep architecture is employed in the fourth section for detecting
bearing faults in a limited data scenario. Findings are discussed in the fifth section, and
finally some concluding remarks are provided in the sixth section.

2. Theoretical Background
2.1. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) consist of deep layered architectures, in which
multidimensional algebra operations are carried out sequentially. These architectures
match especially well with multidimensional data since the spatial information of the
latter is preserved while being treated. For instance, the algebraic representation of RGB
images needs two dimensions for populating pixel matrices, and a third dimension for
RGB channels. The capabilities of CNNs were originally exploited for image classification
tasks [22,50], but nowadays the potentials of these deep architectures are acknowledged in
numerous fields concerning multidimensional data [25–27,42,51]. Generally, CNNs include
three types of layers, corresponding to specific operations: convolution, pooling, and fully
connected layers (Figure 1).

Figure 1. General architecture of a CNN.
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Convolutional layers convolve input tensors xl−1 of the layer (l − 1) by using filter
kernels kl [5,51,52] as reported in Equation (1):

xl = σ
(

xl−1 ∗ kl + bl
)

(1)

where ∗ is the convolution operator, bl the bias term of the layer l, and σ an activation
function, which introduces nonlinear effects. Rectified Linear Unit (ReLU) is one of the
most common activation functions for convolutional layers: ReLU(x) = max(0, x). The
output of the convolutional layer is the feature map xl . A training process essentially
attempts at optimizing the elements of the kernel kl . Such an optimization produces output
feature maps that emphasize the most significant attributes for categorizing input data.
This aspect is factually the core idea underlying automated feature extraction in CNNs,
which apprehend dominant patterns in training data. The feature extraction occurring in
stacked convolutional layers is a hierarchical process: first convolutional layers typically
learn general and low-level features, whereas deeper layers learn more complex, specific,
and high-level features. Figure 2 shows an example of hierarchical feature learning for the
well-known CNN AlexNet [22] trained on the ImageNet dataset. Such representations can
be produced by passing a random noise image through the network for several iterations.
Namely, the input noise is gradually modified by updating the network gradient in order
to maximize the activation of a chosen layer. Then, the convolutional structure outputs
images that mostly activate the channels of the specific layer. These maps highlight the
features learned by the network in such a layer.

Figure 2. Examples of features extracted from AlexNet trained with ImageNet data: (a) low-level features; (b) medium-level
features; (c) high-level features.

Pooling layers usually follow convolutional layers in CNNs architectures (Figure 1).
The output of pooling layers is a low-resolution feature map, which is obtained through
downsampling the input map. Pooling operations reduce the number of network param-
eters in order to mitigate data overfitting. Furthermore, the low-dimensional outputs of
pooling layers extract local features, while preserving the multidimensionality of data. An
example of downsampling is provided by the Max Pooling function, which only saves
the maximum value of the input map in the regions passed by the filter. Instead, Global
Average Pooling performs a global mean over the input map (Figure 3).

The features learned over stacked convolutional and pooling layers merge in the fully
connected layers which receive flattened input vectors. The number of neurons of the last
fully connected layer coincides with the number of output classes. For typical classification
tasks, the activation function of output layers is a saturating function such as Softmax,
which can account for class probability. When new data are provided to the network, the
learned features activate differently and culminate in the last fully connected layers for the
assessment of the output class.
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Figure 3. Pooling operations in CNNs.

The training is performed by minimizing an objective loss function. Equation (2)
reports the cross-entropy loss function, typically employed for classification problems:

Loss = − 1
N

N

∑
n=1

K

∑
k=1

ynk log(ŷnk) (2)

Given N observations and K classes, ŷnk is the network output for the n-th observation
and k-th class, whereas ynk is the target label (generally its value is 0 or 1 for classification
tasks). The loss function is minimized by updating the network weights and biases using a
Stochastic Gradient Descent (SGD) algorithm. Several optimization strategies such as Adam
optimizer [53] were further developed in the last decade for improving SGD performances.

2.2. Transfer Learning

The minimization of loss functions in CNNs is an optimization problem which in-
volves millions of weights. It is evident that such procedures are computationally de-
manding. Moreover, a large number of weights results in many degrees of freedom for the
SGD algorithm. When training datasets are not sufficiently large, network weights may
therefore overfit data, producing models that are unable to generalize knowledge beyond
training sets. Convergence issues can be addressed when SGD is unable to find minima in
the loss function. TL is one of the tools developed within the AI field to face these issues.

Considering a source domain Ds and a target domain Dt, TL techniques are able to
transfer the knowledge acquired in Ds for carrying out a source task Ts to the domain
Dt for fulfilling a target task Tt [5,34,36]. For instance, fault diagnosis tasks learned in
certain machine conditions can be transferred to different working conditions [38,39], or
the diagnosis knowledge can be migrated between different machines [54].

Practically, one way for implementing TL consists of freezing the first layers of CNNs,
saving the knowledge acquired for extracting low-level features. On the other hand, the
last layers are modified and further trained to fine-tune the model. Favorably, such fine-
tuning procedures require limited data for updating the remaining weights. This kind
of approach is known in the literature as parameter-based [5], since some of the network
parameters remain unchanged. In particular, the knowledge enclosed in the frozen weights
concerns the ability of the network of identifying specific features in data. The pre-acquired
knowledge can thus be employed to face new tasks, in which features detection abilities
can be re-used. In this sense the training time is drastically reduced, and few-data trainings
are less prone to overfitting. The number of replaced layers for fine-tuning essentially
depends on the degree of diversity between source and target domains [36]. Nevertheless,
the development of structured transferability criteria and metrics is a challenging focus of
current research [5]. Further TL approaches for machine diagnosis can be feature-based,
instance-based or generative models [5].

Existing literature has emphasized the capabilities of networks pre-trained on Im-
ageNet to detect machine faults [36,37]. In such cases, low-level features characterizing
ImageNet are exploited to classify time-frequency images of vibrational data. This work
is motivated by the idea that networks pre-trained for SED, speech and music recogni-
tion, hold enough knowledge for classifying bearings faults though spectrogram analysis.
Indeed, SED frameworks are already trained for the case of spectrograms classification.
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Additionally, provided the inherent similarity between source and target domains, few
layers are expected to need fine-tuning.

3. YAMNet: An Efficient CNN for Sound Event Detection

YAMNet [55–57] is a pre-trained CNN developed for SED tasks. The network is
trained with AudioSet [48], a dataset containing 632 classes of sound events drawn from
more than 2 million YouTube® clips. Environmental sounds, human sounds, music genres,
and musical instruments are examples of classes included in the dataset.

YAMNet is built on the MobileNet [58] architecture. This is an efficient framework
designed to fit low latency artificial intelligence models in mobile applications, where the
availability of computational resources is quite restrained. In MobileNet architectures,
the standard convolution is replaced with the depthwise separable convolution. This
particular approach is further detailed in the original paper provided by Google Inc. in
2017 [58], where it is showed that the computational cost may be reduced up to nine times
compared with standard convolution. In addition to input and output layers, YAMNet
contains 27 convolutional layers, 1 global average pooling layer, and 1 fully connected layer.
Standard convolution and depthwise separable convolutions are sequentially stacked up
to the pooling layer. The convolutional layers employ ReLU activation functions and batch
normalization processes [59]. Finally, the output layer brings the sound class prediction
with a Softmax activation function.

To have an idea of the effect of depthwise convolutions, it is possible to compare one of
the early CNNs such as AlexNet [22] with YAMNet. The number of parameters contained
in AlexNet amounts to 61 million in 8 layers, whereas YAMNet contains 3.7 million
parameters [41] in 30 layers. Fewer learnable weights further reduce overfitting risks in
such architectures.

Mel Spectrogram Features

The feature maps that input YAMNet are constructed on the basis of coefficients
drawn from time-frequency representations of sounds. However, human perception of
sound in terms of frequency content is not linear. It is widely known that humans perceive
pitch with better resolution at lower frequency ranges. Indeed, provided a fixed frequency
gap between two sounds, our hearing would differentiate tones at lower frequency ranges
better than in higher ranges, where tones would seem quite similar. Consequently, artificial
intelligences that learn sound perception tasks should account for this aspect. To properly
label auditory events, deep learning strategies for speech recognition, music recognition,
and SED evolved by exploiting feature spaces pursuant to the human perception of sound.
In particular, YAMNet employs a Mel spectrogram feature map.

The Mel (root of the word Melody) scale [60] and the Mel Spectrogram [61] take into
account the logarithmic nature of human hearing. The Mel scale is empirically designed on
the base of the psychoacoustic perception of pitch. The expression of Equation (3) shows
how frequencies f can be converted in Mel:

Mel =

{
f , f ≤ 1000 Hz

2595 · log10

(
1 + f

700

)
, f > 1000 Hz

(3)

In accordance with human experience, the points that are equally spaced on the Mel
scale are not linearly resolved in the Hz scale and vice versa. The Mel spectrogram is a
time-frequency representation of sounds, produced by applying Mel scale filter banks to
classic spectrograms [61]. Figure 4 shows the Mel conversion curve and reports an example
of traditional Hz and Mel scale spectrograms for a linear sine sweep.
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Figure 4. Mel scale (top). Traditional spectrogram (bottom left). Mel spectrogram (bottom right).

Figure 5 shows some of the features extracted from different layers of YAMNet.
Compared with AlexNet (Figure 2), the extracted features are distinctive of spectrograms
attributes. As previously discussed, this is due to the fact that the weights of YAMNet
are specifically optimized to detect spectrograms features. For this reason, the authors of
this work hypothesize that some of the knowledge needed to classify REB spectrograms
may be already included in the layers of SED networks. This actually means that only the
last layers would require learning adjustments, whereas the feature extraction layers and
the corresponding weights could be frozen without requiring further training. Then, a
small dataset would be sufficient for fine-tuning the net weights, complying with limited
data availability.

Figure 5. Examples of features extracted from YAMNet trained with AudioSet data: (a) low-level features; (b) medium-level
features; (c) high-level features.
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4. Bearing Fault Detection Using YAMNet and Transfer Learning

The present work investigates the capabilities of pre-trained SED networks in fulfilling
bearing fault diagnosis tasks. Namely, a TL approach was undertaken with the aim of
transferring the knowledge held by YAMNet layers to REB spectrograms classification.
To this end, the Case Western Reserve University (CWRU) [30,62] bearing dataset was
examined, representing a standard reference in this field. The dataset was pre-processed to
comply with YAMNet architecture and it was split for training, validation, and test phases.
In this context, different labelling options were considered. Afterwards, the network was
fine-tuned for dealing with fault diagnosis scenarios characterized by restricted datasets.
Finally, the model was tested under new data.

4.1. CWRU Dataset

The CWRU test bench (Figure 6) consists of an electric motor, a dynamometer, and
a torque transducer with encoder. Two ball bearings support the motor shaft: one of the
bearings (SKF 6205-2RS JEM) is placed on the motor drive end (DE), whereas the other
(SKF 6203-2RS JEM) is located at the motor fan end (FE).

Figure 6. CWRU test bench [30].

The CWRU experimental campaign considered localized faults in DE and FE bearings,
which were damaged by means of electro-discharge machining. The faults were introduced
separately at the inner race (IR), outer race (OR), and rolling elements (B), and tests were
run for motor powers of 0, 1, 2, and 3 hp with a shaft speed ranging between 1721 and
1796 rpm. This study considers the fault diameters of 0.007, 0.014, 0.021, and 0.028 inches
for the DE bearing. Vibrations signals were extracted in normal and fault conditions by
means of accelerometers placed on the motor housing. In the case hereby examined, normal
data were sampled at 48 kHz, whereas DE fault data were sampled at 12 kHz. The OR
fault condition with 0.028 in damage was not analyzed since data was not available.

4.2. Dataset Pre-Processing

Three datasets were constructed by rearranging the available vibration signals. Each
dataset matched different labelling choices:

• Dataset A includes 4 classes (B, IR, OR, and Normal);
• Dataset B includes 12 classes (B007, B014, B021, B028, IR007, IR014, IR021, IR028,

OR007, OR014, OR021, and Normal);
• Dataset C includes 13 different classes (B_0, B_1, B_2, B_3, IR_0, IR_1, IR_2, IR_3,

OR_0, OR_1, OR_2, OR_3, and Normal).

The label codification for the dataset B reports the damage type (B, IR, OR) in the
first part, whereas the second part denotes the damage severity (007, 014, 021, 028). For
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example, class IR014 contains signals of experiments run with an inner race damage of
0.014. Dataset C, instead, is labelled using the damage type (B, IR, OR) and the motor
load in horsepower (_0, _1, _2, _3). The label OR_3, for instance, indicates that a signal
was extracted at 3 hp load with an outer race fault. The network determines the output
class by assigning numerical scores at the end of the last layer (classification layer). Given
the presence of a Softmax activation function, the output of the last neurons returns the
probability of belonging to a certain class. Then, the label of the most likely class is assigned.
Essentially, the main difference between the three dataset lies in intra-class distributions.
Class B_0 contains samples linked to different damage severities as well as class B007
includes signals extracted at different working loads. Dataset C includes less samples in the
OR classes, since data for outer race damages with 0.028 in faults were not available. The
CWRU tests were conducted following the labelling of the dataset B; therefore, some class
imbalances inevitably occur for datasets A and C. The three datasets were then investigated
to have an insight into the effect of different intra-class distributions and imbalances on
model performances.

The YAMNet trained model accepts input signals sampled at 16 kHz and normalized
in the range [−1, 1] [56]. Hence, vibration data were pre-processed to fit the model input
requirements. Moreover, the similarities between the source and the target domain can
be enhanced using Mel spectrum features for vibration signals as well. In so doing, a
successful knowledge transfer is more likely to occur. The datasets were randomly split in
training (70%), validation (20%), and test (10%) sets, as reported in Table 1. The choice of
the dataset split guaranteed the availability of 300 training samples. The training set was
employed to fine-tune the model weights, whereas the validation set had the function of
monitoring the model convergence and checking potential overfitting issues while training.
Finally, the model effectiveness was verified under never-seen data through the test set. It
must be pointed out that 300 training samples constitute a very small dataset for such a
network, since 2 million AudioSet samples were necessary to properly train the YAMNet
deep architecture. Nevertheless, TL leverages on the pre-trained network and provides the
opportunity to deal with few data.

As previously mentioned, the effectiveness of the proposed strategy strongly depends
on the similarities between source and target domains. Therefore, signals were treated with
the same pre-processing that would be carried out for sound event detection. The data
pre-processing involves the extraction of the Mel spectrum coefficients for feeding YAMNet
architecture, since those coefficients constitute the input feature map. The pre-processing
procedure [55,56] provides that:

1. Signals are resampled at 16 kHz and normalized in the range [−1, 1];
2. The Mel spectrogram is computed using Hann windows with 400 samples length and

60% overlap. The Mel scale filter bank includes 64 filtering bands;
3. The resulting spectrogram is partitioned by using 96 sliding frames with 48 frames of

overlap.

In this case, spectrograms lengths resulted of 100 frames and a single 96 × 64 spectro-
gram was drawn from each signal. Table 2 reports the main features of Mel spectrograms
that are consistent with YAMNet architecture. Examples of Mel spectrograms extracted
from the CWRU dataset are shown in Figure 7.



Appl. Sci. 2021, 11, 11663 10 of 16

Table 1. Dataset split.

Dataset Classes Labels Training
Samples (70%)

Validation
Samples (20%)

Test Samples
(10%)

A 4

B 101 29 14
IR 102 29 14
OR 76 21 11

Normal 22 6 3
Total 301 85 42

B 12

B007 25 7 4
B014 25 7 4
B021 25 7 4
B028 25 7 4
IR007 26 7 4
IR014 25 7 4
IR021 25 7 4
IR028 25 7 4
OR007 25 7 4
OR014 25 7 4
OR021 25 7 4
Normal 22 6 3

Total 298 83 47

C 13

B_0 25 7 4
B_1 25 7 4
B_2 25 7 4
B_3 25 7 4
IR_0 25 7 4
IR_1 25 7 4
IR_2 25 7 4
IR_3 26 7 4
OR_0 19 5 3
OR_1 19 5 3
OR_2 19 5 3
OR_3 19 5 3

Normal 22 6 3
Total 299 82 47

Table 2. Mel spectrogram extraction for YAMNet architecture.

Window Window Length
(Samples) Overlap (%) Mel Spectrum

Bands
Mel Spectrum

Frames

Hann 400 60% 64 96

4.3. YAMNet Fine-Tuning

It is claimed that the features detectable by the YAMNet framework (Figure 5) provide
a source of knowledge to classify bearing spectrograms as well. To verify this assumption,
the fully connected and the output layers of YAMNet were replaced with new layers
and the convolutional part remained unaltered. The weights of the replaced layers were
consequently optimized by training the model with CWRU data. Given the inherent
similarities between source and target domains, the replacement of the only fully connected
layer was effective. The main hyperparameters featuring the training phase are reported in
Table 3.
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Figure 7. Mel spectrograms drawn from CWRU data: (a) Normal; (b) OR; (c) IR; (d) B.

Table 3. Fine-tuning hyperparameters.

Hyperparameter Value

Optimizer Adam
Initial learning rate 0.0003

Mini batch size 64
Max epochs 40

Validation frequency 1 4
1 An entire epoch corresponds to 4 iterations for the analyzed training sets.

The Adam optimizer was employed for adapting the learning rate during training [53].
The batch normalization process [59] normalizes mini batches of data for each network
channel independently. Such a normalization occurs within layers, thus preventing ex-
ploding gradients issues. Over an entire iteration, a mini batch set is passed through
the network, whereas a whole epoch involves the complete training set. The validation
frequency specifies the number of iterations elapsed between validations. The trend of the
loss functions was monitored over the training process. As an example, Figure 8a shows
the loss function resulting from training with dataset C.

In this dataset few samples were portioned in a considerable number of classes
(Table 1) and overfitting issues manifested. This is evident by the fact that the validation
loss remained considerably higher than the training loss. To comply with overfitting
matters, a dropout layer with 90% dropout probability was added before the fully connected
layer. Dropout layers represent an effective strategy to prevent overfitting in deep networks.
Those layers set input elements to zero with a given probability and significantly reduce
the number of network parameters. Converge issues can be hypothesized. Figure 8b shows
the improvements for network performances due to the dropout layer. A smoother training
process is achieved, and overfitting is remarkably mitigated. Training times and epochs are
reported in Table 4. For all the datasets, the training stopped either if maximum accuracy
was stably reached or if the maximum epochs were met.
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Figure 8. Fine-tuning: (a) dataset C; (b) dataset C with dropout layer.

Table 4. Training epochs and training time.

Dataset Training Epochs Training Stop Criterion Training Time (s)

A 5 Max accuracy 38
B 4 Max accuracy 29
C 40 Max epochs 330

C with dropout 40 Max epochs 330

4.4. Model Validation

The fine-tuned model was tested under new data to validate its effectiveness, and
the capabilities of TL approaches were assessed in limited data scenarios by leveraging on
networks pre-trained with sound events. The confusion matrices resulting from the test
data are shown in Figure 9, whereas Table 5 shows the overall accuracies achieved at the
end of training, validation, and test. There is evidence that the model can properly perform
ideal fault diagnosis tasks for dataset A and dataset B with 100% accuracy. Additionally, no
overfitting occurred, though extremely small datasets were employed. The class imbalances
associated to data availability for the dataset A did not affect model accuracy. In this sense,
the TL strategy was effective when the knowledge of spectrograms features is transferred
from an SED network to bearing fault detection tasks. Nonetheless, the replacement of a
single layer proved to be adequate because the source domain of YAMNet shared numerous
features with the domain of vibration signals, as long as these are properly processed. The
adoption of Mel spectrum features is part of the pre-processing, and it enhances similarities
between transfer domains. Dataset C showed lower accuracies but, when the dropout
approach is applied, performances markedly improved.

The results are consistent with the literature concerning parameter-based TL for
CWRU diagnosis. For instance, in [36] it is observed that networks pre-trained on ImageNet
are able to perform fault diagnosis tasks with 99.95% accuracy and a training time of 229 s.
However, more than one layer required fine-tuning because more training data were
available (4000 samples). It can be argued that the dominant features learned on ImageNet
were not highly specific of time-frequency images.
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Figure 9. Test confusion matrices: (a) dataset A; (b) dataset B; (c) dataset C; (d) dataset C with
dropout layer.

Table 5. Performances for bearing fault detection using YAMNet and transfer learning.

Dataset Training Accuracy Validation Accuracy Test Accuracy

A 100% 100% 100%
B 98.4% 100% 100%
C 96.9% 90.2% 83.0%

C with dropout 100% 93.9% 91.5%

5. Discussion

The maximum accuracy is reached when data are split into a considerable number of
classes, as long as balanced samples are used (dataset B). Clearly, this is a remarkable capa-
bility of TL combined to SED networks, since classes including few more than 20 training
samples deliver a very efficient diagnosis model. Training YAMNet from scratch would
actually require millions of samples. Similarly, 100% accuracy is achieved also in the
event of class imbalances (dataset A), provided that training classes are fed with more
training data (Table 1). Interestingly, performances slightly deviate from 100% when class
imbalances are superimposed to extremely few training data (dataset C).

Although the accuracy achieved for the dataset C is quite promising, appreciable
overfitting occurred in this case, as suggested by the validation and test sets (Table 5).
For the diagnosis task of dataset C, training samples did not provide full diagnosis accu-
racy and the model did not effectively generalize knowledge to new data. Nevertheless,
the implementation of a consistent dropout strategy markedly mitigated this effect and
remarkable accuracies (higher than 90%) were reached.

Dataset C resulted in a slightly harder form a diagnostic perspective. Contrary to the
dataset A, fewer data per class were available and data imbalances affected performances.
Depicting intra-class variability at a general level was a harder task for those training data.
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Indeed, when the dropout improvements are introduced, only the imbalanced OR classes
present misclassification (Figure 9d).

Future work can provide a systematic investigation on the performance variations
with respect to the size of training sets for such a TL strategy. In this context, weighted
loss function can be taken into account to deal with class imbalances. Further, the effect
of additive gaussian noise on sample data can be investigated as well. The choice of
network hyperparameters can indeed be affected by noisy signals. Automated tuning of
hyperparameters is currently a challenging aspect and deserves further improvements.
Future research will include additional experimental validation based on different datasets.

6. Conclusions

This study aimed at investigating the capabilities of deep networks pre-trained on
sound events in fulfilling bearing fault diagnosis. It is claimed that the inherent knowledge
of these architectures in identifying features of audio spectrograms can be transferred to
the characterization of machine vibrations as well. For this purpose, transfer learning is
applied to an efficient convolutional network. This latter was originally designed to fit AI
computing for sound detection in mobile devices. It is concluded that:

• Networks pre-trained on sound events can fulfill a fault diagnosis task with ideal
accuracy by adopting transfer learning approaches;

• The features learned over stacked convolutional layers of YAMNet architecture are
also relevant for spectrograms of machine vibrations;

• Limited data scenarios can be successfully addressed by replacing a single fully
connected layer for fine-tuning YAMNet;

• When limited data are split in many fault classes with imbalances, overfitting may
occur despite high accuracies. In such cases, dropout layers consistently mitigate this
phenomenon and further improvements in model accuracies are achieved.
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