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Abstract: Concrete-filled steel tubular (CFST) columns are widely used in construction due to effective
resistance to compression and bending joint action. However, currently, there is no generally accepted
effective calculation method considering both nonlinearities of the materials and lateral compression.
The article proposes the finite element analysis method of concrete-filled steel tubular columns in a
physically nonlinear formulation by reducing a three-dimensional problem to a two-dimensional one
based on the hypothesis of plane sections. The equations of Geniev’s concrete theory of plasticity are
used as relations establishing the relationship between stresses and strains. The technique was tested
by comparing the solution with the calculation in a three-dimensional formulation in the LIRA-SAPR
software package and with the experimental data of A.L. Krishan and A.I. Sagadatov. It has been
established that the effective area of operation of circular-section columns are small eccentricities of
the longitudinal force. The proposed approach can be applied to analyzing the stress–strain state and
bearing capacity of pipe-concrete columns of arbitrary cross-sections. There are no restrictions on the
composition of concrete, and the shell material can be steel and fiberglass.

Keywords: tubular steel structures; reinforced concrete; deformation; plasticity; stress analysis;
finite element method; dilatation; physical nonlinearity

1. Introduction

Concrete-filled tubular steel tubular columns (CFST) are now increasingly used in
construction, especially in the construction of high-rise buildings [1–4], due to several
significant advantages, including high load-bearing capacity, quick construction, as well as
lower materials consumption and production expenses. However, one of the considerable
disadvantages of CFST columns is the lack of generally accepted design methods that
consider the effect of lateral deformation of concrete.

There is no universal method suitable for an arbitrary cross-section of a tubular
column, which, in addition to round, can be rectangular, hexagonal, and other shapes.

Experimental studies of the compression characteristics and plasticity of rectangular
concrete-filled steel pipes were carried out in [5,6] under single and multiple uniaxial
compression. The authors investigated hysteresis curves, frame curves, energy dissipation
capacity, bearing capacity, stiffness, and deformation of specimens and the effect on axial
compression characteristics based on various structural features. The experimental studies
show that structural elements in the form of longitudinal stiffeners installed inside the
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columns contribute to the separation of axial forces and increase the structure’s rigidity,
load-bearing capacity, and plasticity. In addition, installing internal diaphragms inside the
columns can significantly increase the ultimate load-bearing capacity and energy dissipation.

Since high-strength materials are increasingly used in construction, an extensive
experimental database has been developed in [7], for square and rectangular columns.
Although the results showed that the existing regulatory framework is not effective for high-
strength materials, the flexibility of square and rectangular columns can be safely reduced.

Axial compression tests were carried out in [8] on rectangular concrete-filled steel pipe
columns under various loading methods. In [9], the authors experimentally investigated
17 rectangular CFST columns subjected to eccentric loading on uniaxial and biaxial bending.
The influence of the limiting factor and the eccentric ratio on the strength and ductility of
the samples was investigated.

The assessment of the stress–strain state of hexagonal steel columns filled with concrete
was carried out in [10–12] by the finite element method. The columns were subjected to
axial compressive forces and cyclic bending moments. Based on the FEM model, the
authors determined the hysteresis characteristics of the columns, the contact stress between
the steel pipe and concrete, and the contribution of the strength of various components over
the entire load range. In [13], the authors note that concrete-filled tubular steel columns
with rounded ends have the same advantages as regular CFST columns. 3D finite element
models for columns are developed using ABAQUS software. Numerical results show that
brittle fracture is associated with columns formed from outer thin steel cross-sections.

Experimental and numerical studies of the structural characteristics of cold-formed
high-strength steel octagonal tubular columns filled with concrete are presented in [14].
The authors studied ultimate loads, load-displacement reactions, and structural failure
modes experimentally and numerically.

The specifics of calculating the strength of short, centrally compressed concrete, steel
pipe columns of the annular cross-section are considered in [15,16]. In addition, the complex
stress state of the concrete core and the steel shell and the uneven distribution of transverse
stresses over the cross-section of the design elements are taken into account.

Except for steel, fiberglass can be used as the shell material [17]. Unfortunately, most of
the publications on the methods of calculating tube-shaped concrete, including those listed
above, are based on an empirical approach that does not fully reflect the specifics of changes
in the stress–strain state of columns under various loads. This imposes restrictions on the
cross-sectional shape, shell material, and concrete composition (heavy and lightweight
concrete, high strength concrete, regular concrete, etc.).

Experimental studies of the stress–strain state of elliptical and oval columns made
of concrete tubes subjected to axial compressive load were carried out in [18,19]. Various
column lengths, cross-sectional sizes, and concrete strengths are used to quantify the effect
of element geometry and constituent material properties on the structural behavior of CFST
elliptical columns.

Experimental and numerical studies of the steel tubular column filled with concrete
with an unequal wall thickness under eccentric compression were performed in [20]. The
series of compression tests were performed on rectangular CFST columns with varying
flexibilities, eccentricities, and wall thicknesses. The test results show that a rectangular
CFST column with unequal wall thickness has higher ductility after peak load than a
column with the same wall thickness with the same configuration.

The behavior of carbon-polymer columns reinforced with vertically bent hollow steel
beams was investigated in [21]. Sixteen curved beams with a span of 1200 mm, with four
radii of curvature; 0 mm, 2000 mm, 4000 mm, and 6000 mm were tested for three-point
bending. A theoretical model was also developed and validated to predict the elastic
behavior of CFST reinforced tubular beams using the integral Maxwell–Mohr method.

A high-strength, low-magnesia (CFST) concrete-filled tubular steel column was inves-
tigated in [22] under eccentric loading. Seven groups of columns with different eccentricity
factors were experimentally studied, and the ultimate load of each test was compared with
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the design loads from several specifications. The results of the load–vertical deflection
curves show that, with the same eccentricity, the bearing capacity of the test specimens is
12% higher than that of high-strength concrete from steel pipes. The technological features
of the manufacture of concrete tubular columns, their properties, and calculation methods
under static and dynamic influences are considered in [23–27].

The above review shows that most of the work related to the study of the stress–strain
state of CFST is carried out experimentally or numerically in a simplified formulation.
The results that are closest to the real work of structures are provided by finite element
modeling in a volumetric setting, taking into account the physical nonlinearity of the
material [28]. However, this approach requires a lot of computational time.

Thus, this work aims to develop a method that considers the nonlinear properties of
the CFST materials, which makes it possible to reduce the dimension of the problem of
determining the stress–strain state from three-dimensional to two-dimensional without a
noticeable loss of accuracy of the results.

In the framework of the set goal, the following tasks are solved:

1. Derivation of the resolving equations and computer implementation of the method
for nonlinear calculation of concrete-filled steel tubular columns by reducing the
three-dimensional problem to the two-dimensional one.

2. Verification of the method and the developed software by comparison with calcula-
tions in existing software complexes in the three-dimensional setting.

3. Approbation of the developed method on existing experimental data.
4. Study of the peculiarities of the stress–strain state of columns at various eccentricities

of the longitudinal force.

2. Materials and Methods

The calculation scheme of the structure is shown in Figure 1. The three-dimensional
problem can be reduced to the two-dimensional one by introducing the hypothesis of plane
sections. Plane triangular finite elements (FE) for concrete (Figure 2) and one-dimensional
two-node finite elements for the steel shell (Figure 3) will be used.
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Plane triangular finite elements have 2 degrees of freedom at each node (displacements
ui and vi). Linear functions perform displacement approximation

u = N1u1 + N2u2 + N3u3

v = N1v1 + N2v2 + N3v3
(1)

where Ni = 1
2A (ai + bix + ciy), A is the area of the finite element, a1 = x2y3 − x3y2,

b1 = y2 − y3, c1 = x3 − x2.
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Coefficients a2, b2, c2, a3, b3, c3 are determined by cyclically changing the indices
1→ 2→ 3→ 1.

The strain vector in the xy plane is written as

{ε} =


εx
εy

γxy

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

 = [B]{U}, (2)

where [B] = 1
2A

 b1 0 b2 0 b3 0
0 c1 0 c2 0 c3
c1 b1 c2 b2 c3 b3

, {U} =
{

u1 v1 u2 v2 u3 v3
}T is

the vector of nodal displacements.
The deformation εz is represented as a sum of the axial deformation ε0

z and the defor-
mation caused by the change in curvature χ

εz = ε0
z + yχ. (3)

When deriving the resolving equations, the presence of forced deformations ε∗x, ε∗y, ε∗z,
γ∗xy—which may include creep deformations, shrinkage, temperature deformations, dilata-
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tion effects, etc.—is considered. The relationship between stresses and deformations of
concrete, taking into account forced deformations, is written in the form

εx = 1
E
(
σx − ν

(
σy + σz

))
+ ε∗x;

εy = 1
E
(
σy − ν(σx + σz)

)
+ ε∗y;

εz =
1
E
(
σz − ν

(
σy + σx

))
+ ε∗z;

γxy = 2(1+ν)
E τxy + γ∗xy.

(4)

From (4) the stress σz can be excluded

σz = E(εz − ε∗z) + ν
(
σy + σx

)
= E

(
ε0

z + yχ− ε∗z

)
+ ν
(
σy + σx

)
. (5)

Substituting (5) into the first two equations in Equation (4), following equations can
be obtained

εx = 1
E1

(
σx − ν1σy

)
+ ε∗x − ν

(
ε0

z + yχ− ε∗z
)
;

εy = 1
E1

(
σy − ν1σx

)
+ ε∗y − ν

(
ε0

z + yχ− ε∗z
)
,

(6)

where E1 = E/(1− ν2), ν1 = ν/(1− ν).
The last equation in (4) can be written as

γxy =
2(1 + ν1)

E1
τxy + γ∗xy. (7)

Let us express in (6) and (7) stresses through deformations

σx = E1
1−ν2

1

(
εx + ν1εy −

(
ε∗x + ν1ε∗y

)
+ ν(1 + ν1)

(
ε0

z + yχ− ε∗z
))

=

= E1
1−ν2

1

(
εx + ν1εy −

(
ε∗x + ν1ε∗y

)
+ ν1

(
ε0

z + yχ− ε∗z
))

;

σy = E1
1−ν2

1

(
εy + ν1εx −

(
ε∗y + ν1ε∗x

)
+ ν1

(
ε0

z + yχ− ε∗z
))

;

τxy = E1
2(1+ν1)

(
γxy − γ∗xy

)
.

(8)

Let us write Equality (8) in matrix form

{σ} = [D]({ε} − {ε∗}) + {σ1}, (9)

where [D] = E1
1−ν2

1

 1 ν1 0
ν1 1 0
0 0 1−ν1

2

, {σ} =


σx
σy
τxy

, {ε} =


εx
εy

γxy

,

{ε∗} =


ε∗x
ε∗y

γ∗xy

, {σ1} = E1ν1
1−ν2

1

(
ε0

z + yχ− ε∗z
)

1
1
0

.

Equality (5) can be represented in the form

σz = E
(

ε0
z + yχ− ε∗z

)
+ ν
(
σy + σx

)
= E

(
ε0

z + yχ− ε∗z

)
+ ν{σ}T


1
1
0

. (10)

When deriving the resolving equations, the principle of the minimum total energy
was used. The potential energy of deformation of the concrete-filled steel tubular element is
the sum of the potential energy of concrete ∏b and steel ∏s. The value of ∏b is determined
by the formula

∏b =
1
2

∫
A

(
σxεel

x + σyεel
y + τxyγel

xy + σzεel
z

)
dA. (11)
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The subscripts “el” in Formula (11) correspond to elastic deformations, which represent
the difference between total and forced deformations. Expression (11) can be represented
in the form

∏b =
1
2

∫
A

σz

(
ε0

z + yχ− ε∗z

)
dA +

1
2

∫
A

{σ}T({ε} − {ε∗})dA. (12)

Let us consider the first integral separately in (12)

1
2

∫
A

σz

(
ε0

z + yχ− ε∗z

)
dA =

1
2

∫
A

E
(

ε0
z + yχ− ε∗z

)2
dA +

ν

2

∫
A

{σ}T


1
1
0

(ε0
z + yχ− ε∗z

)
dA. (13)

The first term in (13) vanishes after minimization over the nodal displacement vector
{U}. The second term can be represented in the form

ν
2

∫
A
{σ}T


1
1
0

(ε0
z + yχ− ε∗z

)
dA = ν

2

∫
A
({σ1}T +

(
{ε}T − {ε∗}T

)
[D])


1
1
0

(ε0
z + yχ− ε∗z

)
dA =

= ν
2

∫
A

(
{σ1}T − {ε∗}T [D]

)
1
1
0

(ε0
z + yχ− ε∗z

)
dA +

∫
A
{U}T [B]T [D]


1
1
0

(ε0
z + yχ− ε∗z

)
dA

.

(14)

The first integral in (14) also vanishes after minimization. In the second integral, it can
be assumed that the deformation ε∗z within the finite element is constant. With this in mind,
it is presented in the form

ν
2

∫
A
{U}T [B]T [D]


1
1
0

(ε0
z + yχ− ε∗z

)
dA = ν

2{U}
T [B]T [D]


1
1
0


((

ε0
z − ε∗z

)
A + χ

∫
A

ydA

)
=

= 1
2{U}

T [B]T A·ν[D]


1
1
0

(ε0
z + ycχ− ε∗z

)
= 1

2{U}
T [B]T A E1ν1

1−ν2
1


1
1
0

(ε0
z + ycχ− ε∗z

)
=

= 1
2{U}

T [B]T A{σ1}.

(15)

In Formula (15) yc = (y1 + y2 + y3)/3 is the coordinate of the center of gravity of the
finite element.

Let us further consider the second term in (12)

1
2

∫
A
{σ}T

{
εel
}

dA = 1
2

∫
A

[(
{ε}T − {ε∗}T

)
[D] + {σ1}T

]
({ε} − {ε∗})dA =

= 1
2

∫
A
{ε}T [D]{ε} − 2{ε}T [D]{ε∗}+ {ε∗}T [D]{ε∗}+ {σ1}T{ε} − {σ1}T{ε∗}dA.

(16)

The terms {ε∗}T [D]{ε∗} and {σ1}T{ε∗} after minimization with respect to {U} vanish.
Let us consider each of the remaining terms separately

1
2

∫
A

{ε}T [D]{ε}dA =
1
2
{U}T [B]T [D][B]A{U} = 1

2
{U}T [Kb]{U}, (17)

where [Kb] = [B]T [D][B]A is the concrete stiffness matrix.

1
2

∫
A
{σ1}T{ε}dA = 1

2

∫
A
{ε}T{σ1}dA = 1

2{U}
T [B]T{σ1}A;∫

A
{ε}T [D]{ε∗}dA = {U}T [B]T [D]{ε∗}A = {U}T{F∗}.

(18)
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For the FE of steel shell, the displacements are approximated as

u(s) = u1 +
u2 − u1

l
s. (19)

The circumferential deformations of the shell are defined as

εsθ =
du
ds

=
[
− 1

l
1
l

]{ u1
u2

}
= [Bs]{Us}. (20)

These formulas calculate the stresses in the steel

σsθ = Es
1−ν2

s
(εsθ + νsεsz) =

Es
1−ν2

s

(
εsθ + νs

(
ε0

z + ysχ
))

;

σsz =
Es

1−ν2
s
(εsz + νsεsθ) =

Es
1−ν2

s

(
ε0

z + ysχ + νsεsθ

)
.

(21)

The ys coordinate within the FE is not constant. For convenience, it can be calculated
in the middle of the element. The potential deformation energy of the FE is written in
the form

∏
s

=
1
2

δ

l∫
0

σsθεsθds + δ

l∫
0

σszεszds

. (22)

The first integral in (22) is defined as

δ
l∫

0
σsθεsθds = Esδ

1−ν2
s

l∫
0

(
{Us}T [Bs]

T + νs
(
ε0

z + ysχ
))

[Bs]{Us}ds =

= Esδl
1−ν2

s
{Us}T [Bs]

T [Bs]{Us}+ Esνsδl
1−ν2

s

(
ε0

z + ysχ
)
[Bs]{Us} =

= {Us}T [Ks]{Us}+ {Us}T [Bs]
T Esνsδl

1−ν2
s

(
ε0

z + ysχ
)
,

(23)

where [Ks] =
Esδl

1−ν2
s
[Bs]

T [Bs] =
Esδ

l(1−ν2
s )

[
1 −1
−1 1

]
—stiffness matrix of the steel cage.

The second integral in (22) is calculated as

δ
l∫

0
σszεszds = Esδ

1−ν2
s

l∫
0

(
ε0

z + ysχ + νs{Us}T [Bs]
T
)(

ε0
z + ysχ

)
ds =

= Esδ
1−ν2

s

(
l∫

0

(
ε0

z + ysχ
)2ds + νs

l∫
0
(ε0 + ysχ)[Bs]{Us}ds

)
.

(24)

The first integral in (24) vanishes after minimization over the vector of nodal displace-
ments. The second integral is written as

Esδνs

1− ν2
s

l∫
0

(ε0 + ysχ)[Bs]{Us}ds = {Us}T [Bs]
T Esδνsl

1− ν2
s

(
ε0

z + ysχ
)

. (25)

External forces on the displacements of the CFST column in the xy plane do not
perform work; therefore, the total energy functional for the problem under consideration
is equal to the potential deformation energy. By minimizing the potential energy of
deformation along the vector of nodal displacements, a system of linear algebraic equations
can be obtained

[K]{U}+ {Fb}+ {Fs} − {F∗} = 0, (26)
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where [K] = [Kb] + [Ks], {Fb} = [B]T{σ1}A = [B]T A E1ν1
1−ν2

1

(
ε0

z + ycχ− ε∗z
)

1
1
0

,

{Fs} = [Bs]
T Esδνsl

1− ν2
s

(
ε0

z + ysχ
)

. (27)

The vector {Fs} in (27), as well as the matrix [Ks] in (23) are written in the local
coordinate system of the element. When compiling the system of equations of the FEM, the
coordinates are transformed according to the formulas

{
U
}
= [L]{U}; [K] = [L]T

[
K
]
[L]; {F} = [L]T

{
F
}

; [L] =
[

cos α sin α 0 0
0 0 cos α sin α

]
. (28)

where
{

U
}

,
{

F
}

,
[
K
]

are the nodal displacement vector, load vector, and stiffness matrix in
the local coordinate system; {U}, {F}, [K] are the same for the global coordinate system.

System (26), in addition to the vector of nodal displacements, contains two more
unknowns: the quantities ε0

z and χ. Equilibrium conditions act as two additional equations

F = −∑ σz,i Ai − δ ∑ σsz,ili;

M = Fe = −∑ σz,iyc,i Ai − δ ∑ σsz,iys,ili.
(29)

The stress σz in the i-th triangular FE of concrete is defined as

σz = E
(
ε0

z + ycχ− ε∗z
)
+ ν
(
σx + σy

)
= E

(
ε0

z + ycχ− ε∗z
)
+ ν
{

1 1 0
}
{σ} =

= E
(
ε0

z + ycχ− ε∗z
)
+ ν
{

1 1 0
}
([D]([B]{U} − {ε∗}) + {σ1}) =

=

(
E + 2E1ν1

1−ν2
1

)(
ε0

z + ycχ− ε∗z
)
+ ν
{

1 1 0
}
[D]([B]{U} − {ε∗}).

(30)

The stress σsz in the i-th one-dimensional FE of the steel shell is defined as

σsz =
Es

1− ν2
s

(
ε0

z + ysχ + νsεsθ

)
=

Es

1− ν2
s

(
ε0

z + ysχ + νs[Bs][L]{U}
)

. (31)

Thus, for the total number of nodes n, the problem is reduced to 2n + 2 equations with
2n + 2 unknowns.

As equations establishing the relationship between stresses and deformations in concrete,
the dependences of the deformational theory of plasticity of concrete by G.A. Geniev [29] can
be used as

εx = 1
E(Γ)

(
σx − ν

(
σy + σz

))
+ εd;

εy = 1
E(Γ)

(
σy − ν(σx + σz)

)
+ εd;

εz =
1

E(Γ)

(
σz − ν

(
σx + σy

))
+ εd;

γxy = 2(1+ν)
E(Γ) τxy,

(32)

where εd = −g0Γ2/3 are the dilatation deformations, g0 is the dilatation module,

Γ =
√

2
3

√
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε1 − ε3)

2 is the intensity of shear deformations.
Dilatation deformations can be considered as a special case of forced deformations

ε∗x, ε∗y, ε∗z.

The dilatation modulus g0 in Geniev’s theory is defined as

g0 = − θc

Γ2
c

, (33)
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where θc is the ultimate volumetric deformation of concrete at pure shear, Γc is the limiting
intensity of shear strains at pure shear, calculated as

Γc =
2Tc

G0
. (34)

In Formula (33) Tc =
√

RbRbt/3 is the limiting intensity of shear stresses, Rb and Rbt
are the compressive and tensile strength of concrete, respectively, G0 = E0/(2 (1 + νb)) is the
initial shear modulus of concrete, E0 is the initial modulus of elasticity of concrete.

The formula determines the secant module E(Γ)

E(Γ) = E0

(
1− Γ

2Γs

)
, (35)

where Γs is the limiting intensity of shear deformations, depending on the nature of the
stress state

Γs = Γck(λ, ω), k(λ, ω) =
λ(1 + ω)

2
+

√
λ2(1 + ω)2

4
+ (1 + ω). (36)

The parameter ω in (35) is defined as

ω = e
(

S
T

)3
, (37)

where T = 1√
6

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 is the shear stress intensity,

e = RbRbt
3T2

c
− 1, S =

√
3
[

1
2 (σ1 − σ)(σ2 − σ)(σ3 − σ)

] 1
3 , σ = (σ1 + σ2 + σ3)/3.

The parameter λ in (35) is calculated by the formula

λ =
f σ

T
, (38)

where f = 3Tc(Rb−Rbt)
RbRbt

.
The calculation is performed by a stepwise method. The load is increased in small

portions ∆F. The dilatation strain increment is defined as

∆εd = εd(Γ + ∆Γ)− εd(Γ) = −
g0
3
(
Γ2 + 2Γ∆Γ + ∆Γ2)− g0

3 Γ2 =

= − g0
3
(
2Γ∆Γ + ∆Γ2). (39)

The value of ∆Γ2 in comparison with the first term in the parenthesis can be neglected,
since it is a quantity of a higher order of smallness, and then Formula (38) takes the form

∆εd = −2g0Γ∆Γ
3

. (40)

The material of the shell is assumed to be ideal elastoplastic; the Huber-Mises-Genka
plasticity condition is used

1√
2

√
σ2

sz − σszσsθ + σ2
sθ = Ry, (41)

where Ry is the yield strength of steel.
For calculations, the authors have developed the program in the MATLAB environment.
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3. Results

To control the accuracy of the equations obtained and the developed methodology, the
first step was to solve the test problem in elastic formulation with subsequent comparison
in the LIRA-SAPR software package [30]. The solution was carried out with the following
initial data: D = 0.3 m, δ = 2 mm, Eb = 3 × 104 MPa, Es = 2 × 105 MPa, F = 100 kN, e = D/2,
νs = 0.3, νb = 0.2. By virtue of symmetry, half of the cross-section was considered. The
LIRA-SAPR software package solved the problem in the three-dimensional formulation,
volumetric prismatic FE modeled concrete, and the steel shell was modeled by flat shell FE.
To exclude local effects at the point of application of the force, the plate of high rigidity was
installed at the upper end of the column. The calculation scheme is shown in Figure 4.
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The resulting mosaics of stresses σz, σx, σy are shown in Figures 5–7. A comparison of
the maximum stress values in LIRA-SAPR and MATLAB is given in Table 1.
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Table 1. Comparison of maximum stresses in LIRA-SAPR and MATLAB.

σz, MPa σx, MPa σy, MPa

MATLAB 5.23 0.125 0.0659
LIRA-SAPR 5.2 0.123 0.0639

The scatter of stresses σy in neighboring elements is observed both when solving in the
three-dimensional formulation in LIRA-SAPR, and when solving in the two-dimensional
formulation in MATLAB. This is because the stresses σy are significantly lower than the
stresses σz. In addition, the reason may be low approximation properties of simplex
triangular elements. In the finer FE mesh, this scatter decreases (Figure 8). Calculation on
the coarse mesh gives overestimated stress values, which goes into a safety margin.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

Table 1. Comparison of maximum stresses in LIRA-SAPR and MATLAB 

 σz, MPa σx, MPa σy, MPa 
MATLAB 5.23 0.125 0.0659 

LIRA-SAPR 5.2 0.123 0.0639 

The scatter of stresses σy in neighboring elements is observed both when solving in 
the three-dimensional formulation in LIRA-SAPR, and when solving in the two-dimen-
sional formulation in MATLAB. This is because the stresses σy are significantly lower than 
the stresses σz. In addition, the reason may be low approximation properties of simplex 
triangular elements. In the finer FE mesh, this scatter decreases (Figure 8). Calculation on 
the coarse mesh gives overestimated stress values, which goes into a safety margin. 

 
Figure 8. Mosaic of stresses σy (MPa) for the finer FE mesh in MATLAB. 

Also, the developed methodology and software was tested on experimental data pre-
sented in the works of A.L. Krishan and A.I. Sagadatov [31–33]. The comparison with the 
experimental data for two series of columns with an outer diameter of the concrete core 
of 159 and 219 mm and wall thickness of 6 and 8 mm, can be introduced respectively. 

Table 2 presents the experimental values of the ultimate loads ,expuN , the theoretical 
values ,u theorN  were obtained, as well as the values of the ultimate loads ,u bsN , calculated 
without taking into account the lateral compression of the core. 

Table 2. Comparison of experimental results with theoretical values of ultimate loads 

Sample 
Number 

D, 
mm δ, mm Rb, MPa e/D Nu,exp, kN Nu,theor, kN Nu,bs, kN Nu,theor/Nu,bs 

1 159 6 22.0 0.065 1412 1430 1200 1.19 
2 159 6 22.5 0.13 1213 1210 1060 1.14 
3 159 6 22.3 0.26 958 950 920 1.03 
4 219 8 32.5 0.065 2911 2911 2780 1.05 

Figure 8. Mosaic of stresses σy (MPa) for the finer FE mesh in MATLAB.

Also, the developed methodology and software was tested on experimental data
presented in the works of A.L. Krishan and A.I. Sagadatov [31–33]. The comparison with
the experimental data for two series of columns with an outer diameter of the concrete core
of 159 and 219 mm and wall thickness of 6 and 8 mm, can be introduced respectively.

Table 2 presents the experimental values of the ultimate loads Nu,exp, the theoretical
values Nu,theor were obtained, as well as the values of the ultimate loads Nu,bs, calculated
without taking into account the lateral compression of the core.
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Table 2. Comparison of experimental results with theoretical values of ultimate loads.

Sample Number D, mm δ, mm Rb, MPa e/D Nu,exp, kN Nu,theor, kN Nu,bs, kN Nu,theor/Nu,bs

1 159 6 22.0 0.065 1412 1430 1200 1.19
2 159 6 22.5 0.13 1213 1210 1060 1.14
3 159 6 22.3 0.26 958 950 920 1.03
4 219 8 32.5 0.065 2911 2911 2780 1.05
5 219 8 30.5 0.13 2508 2515 2365 1.06
6 219 8 32.1 0.26 1945 1950 1870 1.04

For all specimens, the modulus of elasticity of steel was taken equal to Es = 2 × 105 MPa
and the yield strength was assumed to be Ry = 400 MPa. For the samples 1–3, the initial
modulus of elasticity of concrete Eb0 and tensile strength Rbt were taken Eb0 = 3 × 104 MPa
and Rbt = 1.8 MPa. For the samples 4–6: Eb0 = 3.7 × 104 MPa and Rbt = 2.25 MPa.

From Table 2, it can be seen that the agreement of the results is quite good; the greatest
deviation of the ultimate loads theoretical values from the experimental ones is

δ =

∣∣Nu,exp − Nu,theor
∣∣

Nu,exp
· 100% =

|1412− 1430|
1412

· 100% = 1.3%. (42)

Figures 9 and 10 show the theoretical graphs of changes in stresses σsθ at y = -R (at
the point with the lowest absolute value of the compressive stresses σsz) and y = R (where
the highest compressive stresses along z occur) depending on the load for columns 1–3 in
Table 2.
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From the presented graphs, it can be seen that—with an increase in eccentricity—
the stresses σsθ decrease, which also indicates a reduction in the stresses of the lateral
compression of concrete. This explains the fact that the area of effective operation of CFST
columns is small eccentricities of the longitudinal force.
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4. Discussion

The constructed model of CFST columns deformation is based on the general equations
of the mechanics of a deformable solid and, unlike many existing approaches, does not
contain empirical coefficients. The proposed technique makes it possible to model columns
of not only circular but also annular, rectangular, hexagonal, and octagonal cross-sections.
It is possible to determine the stresses in the cross-section for eccentric compression and
bending. In contrast to empirical approaches when using the finite element method there
are no restrictions on the composition of the concrete and the shell material. In the future,
it is planned to conduct a study of the stress–strain state of columns of non-circular cross-
section, as well as columns in a fiberglass shell.

The disadvantage of the proposed model is that it does not consider the additional
eccentricity of the longitudinal force arising from the deflection of the element. In other
words, the proposed approach allows to the calculation of only short CFST columns.
The composite finite element is currently developed for flexible columns that include
the traditional beam finite element and the cross-section (Figure 11). When constructing
the fundamental relationships, both physical and geometric nonlinearity will be taken
into account.
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5. Conclusions

1. The method and software for determining the stress–strain state and calculating the
bearing capacity of short CFST columns by reducing the three-dimensional prob-
lem to the two-dimensional one were developed. The proposed approach leads
to significant savings in computational time in comparison with the calculation in
the three-dimensional formulation. In the proposed approach, only the displace-
ments of the nodes in the section plane xy and two additional variables ε0

z and χ act
as unknowns.

2. The proposed method was verified by comparing the solution in the elastic formu-
lation with the solution in the LIRA-SAPR finite element software package based
on the three-dimensional model. With the same mesh density in the section plane
discrepancy in stresses was 0.6% for σz, 1.6% for σx and 3.1% for σy.

3. The developed method was also tested on the experimental data of A.L. Krishan and
A.I. Sagadatov for six eccentrically compressed specimens with different eccentricities
of the longitudinal force and diameters. The maximum discrepancy between the
theoretical and experimental values of the ultimate load was 1.3%. These results also
indicate the possibility of applying Geniev’s deformational theory of plasticity of
concrete to the calculation of CFST columns.

4. It was found that, with an increase in the eccentricity of the longitudinal force, the
effect of concrete work under conditions of a triaxial stress state in CFST columns with
a circular cross-section decrease. The increase in bearing capacity due to the work of
concrete under conditions of a triaxial stress state for the samples with D = 159 mm
was 19% at e/D = 0.065 and only 3% at e/D = 0.26. Thus, the area of effective work
for columns of circular cross-section is small eccentricities of the longitudinal force.
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