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Abstract: The article addresses the issue of clustering of multidimensional data arrays with a noise
using the methods of discrete mathematical analysis (DMA clustering). The theory of DMA clustering
through the logical densities calculus is detailed, and the new algorithm Linear Discrete Perfect
Sets (LDPS) is described. The main objective of the LDPS algorithm is to identify linearly stretched
anomalies in a multidimensional array of geo-spatial data (geophysical fields, geochemistry, satellite
images, local topography, maps of recent crustal movements, seismic monitoring data, etc.). These
types of anomalies are associated with tectonic structures in the upper part of the Earth’s crust
and pose the biggest threat for integrity of the isolation properties of the geological environment,
including in regions of high-level radioactive waste disposal. The main advantage of the LDPS
algorithm as compared to other cluster analysis algorithms that may be used in arrays with a noise is
that it is more focused on searching for clusters that are linear. The LDPS algorithm can apply not
only in the analysis of spatial natural objects and fields but also to elongated lineament structures.

Keywords: finite metric space; density; solidity; clusters; discrete perfect sets; linear structures

1. Introduction

In 2019, the construction of an underground research laboratory (URL) was started
in granitic gneiss rocks of the Nizhne–Kansky rock mass (Russia, Krasnoyarsk Territory)
to justify the safety of disposal of high-level radioactive waste (HLRW). The safety of
HLRW underground insulation for a period of ten thousand years or more is guaranteed
due to a geological barrier. The main threat of disturbance of the isolation properties
of the geological environment where HLRW are disposed is associated with large-scale
geodynamic processes and phenomena.

Therefore, a priority task in the field of geo-sciences includes the analysis of multidi-
mensional geological and geophysical data as well as the creation of a geodynamic model
based on such data, which provides a forecast of the safety of the rock isolation properties
over the whole period of time when the radiobiological danger of a radioactive nucleus
persists [1].

In order to resolve this task, we must determine linearly stretched anomalies in a
multidimensional array of geo-spatial data (geophysical fields, geochemistry, satellite
images, local topography, maps of recent movements, seismic monitoring data, etc.). As is
known, these types of anomalies are associated with tectonic structures in the upper part
of the earth crust—faults, the boundaries of large blocks, linear structures, potential zones
of possible earthquakes, etc.
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These are geodynamic zones that pose the biggest threat to the isolation properties
of the greatest [2]. Their search is mandatorily regulated by the statutory documents
applicable in the field of HLRW disposal.

It should be emphasized that the developed methodology is very versatile and can be
applied to a wide range of practical tasks of the earth sciences—in geology, geodynamics,
mineral exploration, etc. Thus, this methodology is used where there is a problem in
identifying linear extended anomalies from spatially referenced data of field observations.
A specific link to the problem of HLRW burial in geological formations is due to the fact
that these algorithms were developed in the framework of the project on this problem.

The available geospatial data arrays are almost always insufficient, uncertain and
distorted due to the noise, which dictates the need for developing effective analysis and
interpretation algorithms [3–5]. This issue is resolved in the article within the framework
of discrete mathematical analysis (DMA), an original data analysis approach developed at
the Geophysical Center of the Russian Academy of Sciences.

One of the development areas of discrete data analysis and discrete math is substan-
tially related to modeling the researcher’s data analyzing skills. An experienced researcher
will—better than any formal technique—distinguish any anomalies within physical fields
with a small number of dimensions, move from their local level to the global one for holistic
interpretation, find signals of the required form (morphology) on records of small length
and many other things.

However, the researcher is helpless if faced with a large number of dimensions and
volumes; therefore, a task teaching the computer in date analysis to act like a human
being becomes ever more topical. When solving this task, it was considered that when the
researcher thinks and operates not with numbers, but with fuzzy concepts; therefore, a
technical framework for modeling includes fuzzy math and fuzzy logic along with classical
math [6,7].

The advantage that researcher has in the analysis of discrete data over formal tech-
niques is due to his or her more flexible, adaptive and stable attitude to real discrete-
stochastic manifestations of fundamental mathematical properties (proximity, limitation,
continuity, connectivity, trend, etc.) as compared with formal techniques, since the data
analysis algorithms are built precisely on this basis as from a constructor. Hence, the plan
for computer learning in the researcher’s skills is as follows: building fuzzy models for
discrete counterparts of fundamental math properties and then using them according to
classical math scenarios to create data analysis algorithms.

The said tasks were implemented as a researcher-oriented data analysis approach,
which takes an intermediate position between hard math methods and soft combinatoric
methods. This is called discrete mathematical analysis (DMA) [8–11].

This paper addresses the study of stationary data arrays representing the sets in
multidimensional spaces, using the DMA methods by means of clustering. The initial
concept in DMA clustering is a fuzzy model of fundamental mathematical properties, such
as “limitations”. This is called density in DMA and represents a non-negative relationship
between an arbitrary subset and any point in the initial finite space where the clustering is
assumed to be carried out.

The value of density should be understood as a binding force between the subset
and the point and interpreted as the degree of effect from the subset on the point, or,
ambiguously, as the degree of limitation of the point for the subset. This view of density
automatically requires that is shall be monotone over a subset: the larger the subset, the
stronger its effect on the point, and it is more limiting for such subset.

Recording the density level α and understanding it as an ideality level, we can define
any topological concept in the initial space, in particular, discrete perfection with level α: a
subset is called discrete-perfect with the level of limitation (density) α if it is comprised
precisely of all points of the initial space α that are of limiting kind for such a subset.

Taking into account what was said about density above, we give an equivalent for-
mulation of the concept of discrete-perfectness: a subset is discrete-perfect with level α, if
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the strength of its connection with each of its points is not less than α, and with any point
outside the subset is strictly less than α. Precisely this understanding of clustering formed
the basis of the article and became the subject of this study. DMA has a strict theory of
discrete perfect (DPS-) sets [12,13]. This serves as a methodological framework for DMA
clustering and is summarized in Section 3. DMA clustering algorithms and their operation
examples are shown in Section 4.

2. Review

Although there is no unified understanding of cluster, Everitt’s empirical definition of
cluster is one of the largest known and most convincing definitions in cluster analysis with
the following wording: “Clusters are ‘continuous’ areas of a (certain) space with a relative
higher density of points, separated from other similar areas by the areas with a relatively
low density of points” [14]. Subsequently, this interpretation of the cluster is referred to as
empirical. It has an advantage as it does not reduce the concept of cluster to a simple form.

One possible approach to formalizing an empirical cluster is as follows: first, we
introduce the idea of a dense subset against the background of the entire source space, and
then a maximum subset is distinguished inside of such space, which, in turn, is broken
down into connected components. The latter will be dense, isolated regions in the original
space, i.e., clusters.

It is precisely this scenario that underlies the SDPS DMA-clustering algorithm, which
came into the spotlight due to its effective applications in seismology [15]. The space where
it operates is assumed to be a finite metric space (FMS), and the density of a subset at a
point is equal to the number of points at its intersection with its spherical neighborhood.
We will call this "sets" and designate its value by S. The concept of density relative to a set
is explained in Figure 1.

Figure 1. The concept of density relative to a set. A—a set of red dots, in which four points a, b, c
and d are highlighted. The density S of the subset A at the selected points is equal to the number of
red points included in the balls described around them. The densest point relative to A will be point
c, followed by points b, d and a.

With the density S and setting its level to α, the most natural answer to the question
about the density against the general background seems to be an answer in the form of a
level solution, i.e., the subset of all points in the original space where the density level S is
not lower than α. However, this is only a first approximation, and it may not be sufficient: a
dense point may be isolated because space is dense here and not in its neighbors. Therefore,
density against the general background requires more, i.e., that each dense point has a
sufficient number of dense neighbors capable of ensuring the desired level of density α on
its own here (using its own resources).
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The discrete α-perfection of the density of “Sets” is exactly a formal expression of
the above. The DMA theory of α-perfect sets guarantees that there is such a maximum
subset available within the original space and that α-perfection will retain its property
when passing to its connected components. The SDPS algorithm finds this subset and
splits it into connected components. The fuzzy comparisons developed within DMA [8]
allow us to effectively choose the level of limitation α so that the SDPS results are indeed
internally indiscrete and externally dense, thus, embodying an empirical understanding of
the cluster.

The application of the SDPS algorithm is illustrated in Figure 2. With the viewing
radius for the density S and its level α, the SDPS algorithm begins its work on the array
X (Figure 2a). SDPS acts on X iteratively, sequentially in four steps (Figure 2b–e) carving
out of it the desired result—a local α-perfect subset X(α) in X (Figure 2e). The green points
in Figure 2b–d show the points that did not pass the next iteration in SDPS. SDPS further
splits X(α) into connected components (Figure 2f, yellow and black subsets).

Figure 2. Application of the SDPS algorithm to the array X (a). Four iterations are shown in figures
(b–e). The result is a local α-perfect subset of X(α) in X (e). The green points in figures (b–d) show
the points that did not pass the next iteration in SDPS. SDPS further splits X(α) into connected
components ((f), yellow and black subsets).
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Let us detail the SDPS algorithm within the framework of classical cluster analysis:
SDPS-density algorithm of direct, free, parameter-dependent classification that does not
require human involvement and does not depend on the order of space scanning [16,17].
The SDPS algorithm, like the well-known modern algorithms DBSCAN, OPTICS, and
RSC [18–20], represents a new stage in cluster analysis, since it not only breaks the orig-
inal space into homogeneous parts but also pre-clears it of noise (filters), passing to the
maximum α-perfect subset.

The use of the construction of α-perfect sets is an essential difference of the SDPS algo-
rithm. For example, the SDPS and DBSCAN algorithms have the same initial parameters:
the radius r of the view and the density level α (the minimum number of points that must
be in a ball of radius r). Then, they act in different ways. As mentioned above, SDPS cuts
out the maximum α-perfect set from the original space, parses it into connected components
and considers them to be clusters. The DBSCAN algorithm uses an asymmetric reachability
ratio, searches for regions of such reachability with centers at dense points, combines under
the condition of r-proximity and considers them to be clusters.

Figure 3 shows examples of clustering a complex array (Figure 3a) using algorithms:
MDPS (Figure 3b), DBSCAN (Figure 3c) and OPTICS (Figure 3d). Removing noise from
space and then partitioning the balance part into connected components is possible based
on a large and most important class of local monotone densities. This scenario is called a
DPS-scheme, and its specific implementations at a particular density are called DPS-series
algorithms (DPS-algorithms). They represent the state-of-the-art DMA clustering.

Figure 3. Examples of clustering a complex array (a) using algorithms: MDPS (b), DBSCAN (c) and
OPTICS (d).

Previous DMA clustering algorithms Rodin, Crystal and Monolith [21–23] were based
on non-monotone densities, and, despite successful applications, theoretically, they had
drawbacks that are characteristic of density-based cluster analysis algorithms: dependence
on the order of space scanning and, as a consequence, ambiguity of results, issues with
convergence, etc.
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In conclusion of the general description of DMA clustering, we note that the DPS-
series algorithms are extremely versatile: they are capable of working with any kind of
similarity in cluster analysis (distance, correlation and associativity factors). The point is
that DMA has effective procedures in place that construct monotone densities.

Let us go back to the SDPS algorithm. The resulting clusters do not have any special
geometry: they are simply “continuous” and contain “much space” locally. It seems that the
natural extension of research should be the search for clusters with a particular geometry.
Doubtless, the first step in that process is deemed to be linear structures.

3. Materials and Methods

As mentioned in the Introduction, by clustering in the initial finite space, we mean
discrete perfection with respect to the density set on it. Density is an expression in the
language of fuzzy mathematics of the “limit” property. By fixing the level of the selected
density in the original study, it is possible to define the reference through the normal
topology. Thus, in the original dimension, there is an indexed by non-negative numbers
and an ascending family of topologies. It starts at zero with the minimal inseparable
topology of concatenated points and ending with the separable maximal topology of all
subsets.

On an arbitrary finite metric space, one can define densities that reflect various fuzzy
interpretations of the “limit” property, and some of them are used in present paper. Thus,
each density on a finite metric space sets its own view of it and the corresponding research
program. Density, which expresses a fuzzy interpretation of the “limit” property in a finite
space, is a new concept that is not reducible to the concepts of classical mathematics, for
which finite metric spaces are topologically arranged in the same way–zero-dimensional,
separable.

Within the framework of this work, in the family of topologies generated on the basis
of density, the property of “perfection” is of interest. We will provide a brief summary of
the theory of discrete perfect sets. Its complete proof can be found in [12].

3.1. Discrete Perfect Sets

Suppose X is a finite set, and A, B, . . . and x, y, . . . are its subsets and points, respectively.

Definition 1. Let us call a mapping of the product of 2X × X into non-negative numbers R+ in
the set X, increasing by the first argument and trivial-on-zero inputs as the density P:

P(A, x) = PA(x)
∀x ∈ X, A ⊂ B⇒ PA(x) ≤ PB(x), P∅(x) = 0

(1)

For a density P set on X and a level α ∈ R+, we make a sequence of α-n-hulls of A in
X by P:

A1 = {x ∈ X : PA(x) ≥ α}
. . . . . . . . .

An = {x ∈ X : PA∪An−1(x) ≥ α}
. . . . . . . . .

Induction on n, using the increasing monotonicity of P, establishes the following

Statement 1. A1 ⊆ . . . ⊆ An . . .

Due to the finiteness of the set X, in the non-decreasing and bounded sequence of
α-n-hulls, starting from some number n∗, stabilization occurs:

A1 ⊂ . . . ⊂ An∗ = An∗+1 = . . . (2)

Definition 2. Let us call the set An∗ α-∞-hull of the set A and represent it by A∞.
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The A∞ set demonstrates semi-invariance: its first density hull (A∞)1 does not fall
beyond the A∞ set.

Statement 2. A∞ contains its first α-hull by the density:

(A∞)1 ⊆ A∞

Hence, it immediately follows that for a set A∞ a series (2) of its α-n-hulls is constant.

Consequence 1. (A∞)n = (A∞)1 ∀n ≥ 2

Let us designate α-∞-hull for A∞ through A2∞. Therefore:

A2∞ = (A∞)∞ = (A∞)1 ⊆ A∞

Sequentially plotting the α-∞-hulls based on the density P, we obtain the follow-
ing scheme:

A → A1 ⊆ . . . = A∞

A∞ ⊇ (A∞)1 = . . . = A2∞

· · · · · · · · · · · · · · · · · · · · ·
Am∞ ⊇ (Am∞)1 = . . . = A(m+1)∞

· · · · · · · · · · · · · · · · · · · · ·

Due to the X finiteness in a non-increasing sequence

A∞ ⊇ · · · ⊇ Am∞ ⊇ . . .

starting with some number m∗, stabilization occurs:

A∞ ⊃ . . . ⊃ Am∗∞ = A(m∗+1)∞ = . . .

Let us designate the set Am∗∞ by A(α). The process of constructing A(α) has a stage
of increasing from A1 to A∞ and a stage of decreasing from A∞ to A(α):

A→ A1 ⊂ . . . ⊂ An∗ = A∞ ⊃ . . . ⊃ Am∗∞ = A(α) (3)

Statement 3. A(α) matches its first α-hull.

Remark 1. Statement 3 means that the set A(α) is comprised exactly of those points x of space X
where its density is more than α or equal to it:

A(α) =
{

x ∈ X : PA(α)(x) ≥ α
}

.

Let us treat the density PA(x) as a limiting measure of the point x for the set A. The point
x with sufficiently large density PA(x) ≥ α is considered to be the limiting one for A. Thus, the
first hull of A1 represents the set of all limiting points for A in X in that sense. The points from the
second hull A2 will, in general, be limiting points for A in X through A1—that is, of the second
order, etc. Statement 2 means that A∞ is a closed set as it contains all its α-limiting points in X.
Moving inside A∞ leads to the already α-perfect set A(α), for restated Statement 3 means that
A(α) consists exactly of all finite points to it in X, i.e., it is a perfect one.

Definition 3. The set A consisting of exactly all α-limiting with regard to this set points of the
initial space X is called an α-discrete perfect (simply perfect, DPS-) set in X:

A −DPS-set in X ↔ A = {x ∈ X : PA(x) ≥ α}
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Numerous studies and the examples below show that DPS-sets are condensations in
X and are closely related to clustering therein. We have a way of generating them in X, i.e.,
A→ A(α) construction. It depends on four parameters: the initial space X, set A, density
P and level α:

A(α) = AP(α|X).

Statement 4. Dependencies for A, P and X are increasing dependencies, and dependence for α are
decreasing dependence:

1. If A ⊆ B, then A(α) ⊆ B(α).
2. If P, Q densities on X and PA(x) ≤ QA(x) ∀x ∈ X, A ⊆ B, then AP(α) ≤ AQ(α).
3. If α < β, then A(β) ⊆ A(α).
4. If A ⊆ X ⊂ Y and measure P are set to Y, then A(α|X) ⊆ A(α|Y).

3.2. Complete DPS: Scheme and Algorithms

Definition 4. The construction process for the set A in the universe X based on the density P of
its hull A(α) = AP(α|X) is called the complete Discrete Perfect Sets algorithm and is designated
through DPS

DPS(· ) = DPS(· |X, P, α) : 2X → 2X

A→ DPS(A|X, P, α)→ AP(α|X) = A(α)

Remark 2. On a fixed space X, the DPS algorithm depends on two parameters, the major one
being the density P. In order to emphasize this fact, we will write DPS(P), omitting the level
α, though keeping it in mind. Furthermore, we will need a broader understanding of DPS as a
correspondence P→ DPS(P) between densities and algorithms on X. In this case, we will speak of
DPS as a scheme on X.

Generally, the DPS algorithm has two stages (3):
increasing

An ↑ A∞ ↔ A ⊂ A1 ⊂ . . . = A∞

and decreasing
A∞ ↓ A(α)↔ A∞ ⊃ A2∞ ⊃ . . . = A(α)

There are situations when it works “faster” and has no more than one stage. The
trivial “zero stages” case takes place for α-perfect A.

The DPS algorithm constructs for each A ⊆ X its perfect hull A(α). Given that A(α)
is of a non-trivial kind, we consider it as a promising set in X, playing a reference role and
most naturally related to A. Hull A(α) answers the question of the role and effect of A in
X. By substituting A, through the set {A(α); A ⊆ X}, we obtain the information about the
structure of X at the selected level of limitation α.

Therefore, the DPS algorithm is required for a thorough study of the space X through
perfect hulls of its subsets, and for cluster analysis in X is too redundant and unnecessarily
clumsy. Further research will show that clusters should be considered “connected pieces”
of the X-maximal perfect subset X(α). They will be searched using a simplified version of
the DPS algorithm DPS.

3.3. Simple DPS: Scheme and Algorithms

Throughout the entire space X, the DPS(P, α) algorithm has only a decreasing stage,
iteratively carving from X its maximum α-perfect subset XP(α), playing a major role, and
therefore it has a separate name “simple Discrete Perfect Sets” algorithm and designation
DPS = DPS(P, α).

The DPS(P, α) algorithm is antagonistic by its nature to the DPS(P, α) algorithm to
a certain extent: a simple DPS(P, α) algorithm is of global kind, intercepts the maximum
perfect subset XP(α) from X, whereas full DPS(P, α) is largely of local king, passing from
A to AP(α) by “auto-critical crystallization”.
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Remark 3. As in Remark 2, the correspondence P→ DPS(P) is called a DPS scheme. DPS(P)
algorithms are resulted from matching the densities P and a DPS scheme, and therefore they are of
the same nature (DPS scheme), independent of P. There will be five such matching instances, e.g.,
SDPS = DPS(S), MDPS = DPS(M), FDPS = DPS(F), GDPS = DPS(G) and their complex
LDPS-combination.

In this context, we are talking about them as DPS-algorithms, DPS-set algorithms.

If there is a d-metric on X space and the density P (5) is consistent with it, the α-
perfection property is inherited by “connected” components X(α). They are those that
most accurately correspond to the idea of empirical clusters.

Subsequently, a metric d is set on X; therefore, (X, d) is a FMS. For DA(x, r) we
designate a full-sphere in A with the center in x radius r:

DA(x, r) = {a ∈ A : d(x, a) ≤ r}

Definition 5. Given that P is the density on X (1), r > 0 is the proximity radius. We assume that
P has r-local influence (r-local) if

∀x ∈ X.A ⊆ X → PA(x) = PDA(x,r)(x)

Based on equivalence d(x, A) > r ↔ DA(x, r) = ∅ and normalization on P, it follows
that

Statement 5. If the density P is r-local, then the implication is valid

d(x, A) > r → PA(x) = 0.

3.3.1. Topological Retreat

Two points x and y in A are called r-connected if there is a chain of r-close points in A–
x0, . . . , xn with the starting point x0 = x and terminus xn = y (d(xi, xi+1) ≤ r, i = 0, . . . , n−
1). The ratio of r-connectivity is an equivalence splitting the set A into components of
r-connectivity Cr A(1), . . . , Cr A(k∗), k∗ = k∗(A, r):

A = Cr A(1) ∨ . . . ∨ Cr A(k∗). (4)

Algorithmically, the split (4) is achieved as follows: let a point be in A and Cr A(a)
component of r-connectivity that contains it. Then,

Cr A(a) = ∪∞
i=1Ci

r A(a)

where
C0

r A(a) = a
C1

r A(a) = DA(a, r)
. . . . . . . . . . . . . . .

Ci+1
r A(a) = ∪ā∈Ci

r A(a)DA(ā, r)
. . . . . . . . . . . . . . .

By virtue of finiteness A everything is balanced and makes sense. Let us consider
Cr A(a) as the first component Cr A(1) in (4). If it is not the last one, the same reasoning
applies to A1 = A rCr A(a). As a result, we have the second component Cr A(2) and so on.

Statement 6. If the density P is r-local, then every r-link component of the set X(α) is α-perfect.

In the event of r-local density, we will understand the DPS(P, α, r) algorithm through
a broader lens.
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Definition 6. The process of construction for the finite metric space (X, d) based on the r-local
density P of the α-hull X(α) with its subsequent splitting into r-connected components is called a

“simple DPS algorithm”:

DPS = DPS(P, α, r)→ 22X

DPS(X) = {CrX(α)(1), . . . , CrX(α)(k∗)}

Let us summarize our conversation about DPS(P, α, r) with its flow charts and com-
ments to it (Figure 4).

Figure 4. Block diagram of the DPS.

The first stage of DPS intercepts the maximal subset X(α), dense against the general
background, from the initial space X. The second DPS stage splits X(α) into components
CrX(α)(k). Each component combines density against the background and connectivity,
that is, it formally expresses empirical clustering.

3.3.2. Parameter Selection: Localization Radius r

Suppose that dX be the set of all non-trivial distances in X:

dX = {d = d(x, y) : x 6= y ∈ X}

The localization radius r is defined as a power mean with a negative exponent d of all
distances from d(X):

r = rq(X) =

(
∑d∈d(X) dq

|dX|

)1/q

(5)

3.3.3. Parameter Selection: Density Level α

The selection of level α greatly affects the result of the DPS algorithm. A convenient
means for selecting the level α is fuzzy comparisons [8]. They allow us to effectively
construct the limitation level so that the DPS results are really dense against the general
background, that is, they are empirical clusters.

The fuzzy comparison n(a, b) of two non-negative numbers a and b is a measure of
the superiority of number b over number a, expressed as a scale of segment [−1, 1]:

n(a, b) = mes(a < b) ∈ [−1, 1]

A fuzzy comparison of a number a and a finite set B (a ∈ R+, B ⊂ R+) can be defined
as the mean of fuzzy comparisons a with all numbers from B:

n(a, B) = ∑b∈B n(a, b)
|B| , n(B, a) = ∑b∈B n(b, a)

|B|
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and understood as a measure of minimality mes minB a and a measure of maximality
mes maxB a of the number a against the background B:

mes minB a = n(a, B), mes maxB a = n(B, a).

The measure of maximality mes maxB a enables formulating the necessary requirement
for the DPS algorithm results: its density at each of its points must be significant (maximum
enough) against the background X.

To do this, it is necessary first to calculate the density of the entire space X at all
its points

PX(X) = {PX(x) : x ∈ X}.

This is a background of X. If β ∈ [−1, 1] is the required level of density extremeness
P against the background of X, then the immediate level α = α(β) for P is uniquely
determined by β from equation

n(PX(X), α) = β, (6)

since the relation α→ n(PX(X), α) is of continuous and monotone kind. Equation (6) can
be solved by dividing the segment at halves.

Therefore, the DPS algorithm must find a subset X(β) in X, that is β-extremely P-dense
against the general background X at each of its points:

x ∈ X(β)↔ n(PX(X), PX(β)(x)) ≥ β↔ PX(β)(x) ≥ α(β)

and split it by the components of the r-connectivity for r from (5).

3.3.4. Quality Criterion

The DMA methods allow us to evaluate the quality τ(P, α, r) of the DPS(P, α, r) algo-
rithm in a different way, as an advantage of the result XP(α, r) over complement XP(α, r).

One of the options for the quality criterion will be discussed in Example 6.

3.4. Density

If, in comparison (6) α is replaced by PA(x) with arbitrary x ∈ X and A ⊆ X, then we
obtain a variable density alternating in sign on X with values on the scale [−1, 1].

Definition 7. Density
mes max PA(x) = n(PX(X), PA(x)) (7)

is called the extreme density generated by P (extreme P-density).

The value of mes max PA(x) does not clearly answer the following question: “To what
extent is the subset of A dense at the point x against the general background of space X?”

It is convenient for us to consider the segment [−1, 1], rather than the segment [0, 1],
as the base scale in fuzzy mathematics and fuzzy logic, and given (7), all densities are
normalized to the scale [−1, 1]. Following these assumptions, the density PA(x) at fixed
A is a fuzzy structure on X. Therefore, with the help of fuzzy logic operations, as well as
some others, it is possible to obtain new densities on the basis of the existing ones. This
extends the capabilities of the DPS and DPS algorithms in space X.

Statement 7. 1. If P and Q are densities on X and R = R(y1, y2) : [−1, 1] × [−1, 1] →
[−1, 1] nondecreasing mapping, then superposition

R(P, Q)A(x) = R(PA(x), QA(x))

will be the density on X.
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2. If ¬ fuzzy negation on [−1, 1], then the superposition

¬PA(x) = ¬(PĀ(x))

will be the density on X.
3. If n is a fuzzy comparison on R+, then the superposition

C(P, Q)A(x) = n(QĀ(x), PA(x))

will be the density on X.

Consequence 2. 1. R-connection P and ¬P will be the density on X

R(P,¬P)A(x) = R(PA(x),¬PA(x))

2. If > (⊥, Mp) is t-norm (t-co-norm, generalized averaging operator) [7], then superpositions
>(PA(x), QA(x)), ⊥(PA(x), QA(x)), Mp(PA(x), QA(x)) will be densities on X.

3. If λ ∈ [0, 1], then λ-connection λPA(x) + (1− λ)QA(x) will be density on X.
4. A “fuzzy comparison” CP will be the density on X:

CPA(x) = C(P, P)A(x) = n(PĀ(x), PA(x))

3.4.1. The Logical Densities Calculus

Suppose that P1, . . . ,PK properties of elements of space X, which clusters can be
obtained by the DPS algorithm with respect to densities P1, . . . , PK.

If P is a complex property obtained from properties P1, . . . ,PK using the fuzzy logic
formula Φ containing only monotone operations: P = Φ(P1, . . . ,PK) then clusters for P in
X can be obtained using DPS algorithm with density P = Φ(mes max P1, . . . , mes max PK).

Remark 4. The schemes DPS and DPS depend on parameters, the main of which is the density
P. Connecting with it, they become algorithms DPS(P, α) and DPS(P, α) with a subordinate
parameter α.

Therefore, DPS and DPS induce relations P → DPS(P) and P → DPS(P), that to a
certain extent resemble “functors” from the “category of densities” to the “category of
algorithms”. This enables correct understanding (“through functors”) of the results of
Statement 7–Section 3.4.1: the operations described therein can be considered “functors”
on densities. Their superpositions with DPS and DPS provide new mappings of densities
into algorithms, that is, new algorithmic schemes that depend on density.

Example 1. 1. Scheme ¬DPS : P→ DPS(¬P)
2. Scheme CDPS : P→ DPS(CP)
3. Scheme (λ, 1− λ)DPS : P→ DPS(λP + (1− λ)¬P)

Algorithms representing implementations of these schemes on specific densities play
an important role in the FMS analysis and will be discussed below.

Remark 5. Combination of fuzzy logic with densities gives great expressive power at the local level
in studying of FMS X. On the other hand, the DPS scheme is very effective in connecting local
data. These two circumstances make the DPS algorithms a powerful tool in studying of FMS X at
the global scale.

The final part of the article will address the empirical evidences of this scheme by giving
examples of DPS with different densities thus describing versions of DPS.
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4. Results
4.1. SDPS Algorithm

Historically, the set-theoretical SDPS was the first in a series of DPS-algorithms. It is
based on the density S with the name “Number of points” (“Number of space”) [12,13]
and conveying the degree of concentration of space X round each of its points x (the most
natural understanding of density X in x).

The density SA(x) depends on the localization radius r = rq(X) (5) and the non-
negative parameter p, considering the distance to x in the full-sphere DA(x, r):

SA(x) = SA(x|q, p) = ∑
y∈DA(x,r)

(
1− d(x, y)

r

)p

When p = 0, we have the usual number of points, explaining the name S:

SA(x|q, 0) = |DA(x, rq)|

The S density is r-local, and the SDPS algorithm is the implementation of the DPS
scheme based on S, described in Definition 6–Section 3.3.3: SDPS = DPS(S, r, β). The result
of SDPS is condensations in X ≡ sets locally containing “many X”. They correspond to
empirical clusters in terms of the most formal criteria. By varying the SDPS parameters, it
is possible to obtain a fairly complete picture of the hierarchy of clusters in X.

Example 2. Figure 5b shows the result of selection by level β = −0.3 for density S on the initial
array X (Figure 5a), that is, the first iteration X1(−0.3) of the SDPS algorithm. It contains isolated
points that needs to be removed, and in this sense is inferior to the final result X(−0.3) of the SDPS
algorithm on X (Figure 5c.)

Figure 5. Application of the SDPS algorithm (q = −2, β = −0.3, p = 0): (a) the original array;
(b) the result of the first iteration X1(−0.3) containing isolated points; and (c) the final result of
applying SDPS.

Example 3. In the conditions of the Example 2, the inverse correlation of the SDPS algorithm
performance with the parameter β is shown. By increasing it, we go inside the condensation, finding
dense nuclei inside them (Figure 6a–c).

Figure 6. Inverse dependence of the result of the SDPS algorithm on the parameter β: (a) the result
of the SDPS algorithm at β = −0.35; (b) the result of work at β = −0.15; and (c) the result of work at
β = 0.05. (In all cases q = −2, p = 0).
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Example 4. In the conditions of Example 2 the direct correlation of the SDPS algorithm perfor-
mance with the parameter q is shown. By lowering it, we make the SDPS algorithm more local,
focusses on finding smaller condensations (Figure 7a–c). All small condensations in Figure 7c are
shown in black.

Figure 7. Dependence of the result of the SDPS algorithm on the parameter q: (a) the result of the
SDPS algorithm at q = −2; (b) the result of work at q = −2.8; and (c) the result of work for q = −3.5
(in all cases β = −0.2, p = 0).

Example 5. In the conditions of the Example 2, the inverse correlation of the SDPS algorithm
performance with the parameter p is shown. By increasing it, we make the SDPS algorithm more
stringent (Figure 8a–c).

Figure 8. The inverse nature of the dependence of the SDPS algorithm on the parameter p: (a) the
result of the SDPS algorithm at p = 0; (b) the result of work at p = 0.5; and (c) the result of work for
p = 1 (in all cases q = −2, β = −0.5).

The above examples illustrate the general property of SDPS algorithm dependence on
parameters: the stronger the localization (p, q) and the density level β is, the stricter the
SDPS algorithm is, and its results are denser and finer.

Example 6. Let us illustrate the clustering quality τ(S, r, α) introduced in Section 3.3.4 on the
SDPS work in the array shown in Figure 9. Let us designate by M(β, r) and M(β, r) the mean
densities of the sets XS(β, r) and XS(β, r) at their points, then the result of their fuzzy comparison
τ(β, r) = n

(
M(β, r), M(β, r)

)
can be considered a version of the quality of the SDPS(β, r)

algorithm on the space X. From left to right it is equal to 0.858, 0.595, 0.510 respectively. This is
true: the clustering in Figure 9a is clearly better, and Figure 9b,c are fairly the same.
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Figure 9. Illustration from left to right of the quality of the SDPS algorithm at β = −0.3; 0.1; 0.3.
Clustering in figure (a) is clearly better, and in figures (b,c) is approximately the same. (As a fuzzy
comparison, we used n(a, b) = (b− a)/(b + 1).

4.2. MDPS Algorithm

The SDPS algorithm is especially effective in heterogeneous, irregular spaces, where
the property “density against the background” is strongly pronounced. If it is weakly
expressed, there may be disadvantages in the work of SDPS caused by the density S.

Example 7. 1. Suppose that X is a uniform finite grid. The nodes at the edge X have a lower
density S than the central nodes, although space X looks equally homogenous in both cases.

2. If in a full-sphere DA(x, r) all points other than x, are concentrated on the circle CA(x, r)
and there are many of them, then the density SA(x) is significant, regardless ther-isolation x.

Another construct of the density M, which is also expressing the concentration of
space X at the point x does not have such disadvantages, It is called solidity and is part of
the main DMA-clustering algorithm with the correspondent name [21]. Let us talk about it.

Fix natural number m ∈ N and construct a uniform grid of nodes ri =
ir
m , i = 0, . . . , m

in the interval [0, r]. Then, we define a concentric in x semi-open ring Ti(x, A) for each
i 6= 0:

Ti(x, A) = {y ∈ A : ri−1 < d(x, y) ≤ ri}

For each Ti(x, A), we assign the relevant weight ψi : 1 ≥ ψ1 ≥ . . . ≥ ψm > 0. Solidity
MA(x) is defined as the ratio of the sum of the weights of non-empty rings to the sum of
the weights of all rings:

MA(x) =
∑Ti(x) 6=0 ψi

∑m
i=1 ψi

The solidity M is r-local, and the MDPS algorithm is the implementation of the M-
based DPS scheme described in Definition 6–Section 3.3.3: MDPS = DPS(M, r, β).

Remark 6. Constructs S and M express the density of X in x in a different way, and this difference
is shown in their names: construct S is focused on the “quantity” DA(x, r), is concentrated around
x, while construct M is focused on “uniformity” DA(x, r), around x, expressed through the presence
in rings Ti(x).

Example 8. The dumb-bell shaped in Figure 10a has a monolithic but weak handle, so MDPS
highlights it cleanly (Figure 10c), while SDPS cannot do so (Figure 10b). This example illustrates
the independence of the MDPS and SDPS algorithms.
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Figure 10. An illustration of the independence of the MDPS and SDPS algorithms: the “dumbbell”
in the original array (a) has a sparse handle, which MDPS highlights cleanly (c); SDPS cannot do
this (b).

4.3. FDPS Algorithm

The functional version of the DPS algorithm is related to a special r-local density
F = F(ν), based on function weighting ν : X → R+:

FA(x) = ∑ ν(y) : y ∈ DA(x, r)
|DX(x, r)|

The FDPS algorithm is the operation of the DPS circuit on F, as described in
Definition 6–Section 3.3.3: FDPS = DPS(F, r, ν, β) [24]. It aims at finding subsets in X
with r-local high weights ν, and is capable to work on regular spaces and successfully
complements the SDPS and MDPS algorithms.

Remark 7. Weight ν can be thought of as a non-negative relief on X. The FDPS algorithm
efficiently searches for the bases of these elevations, which is fundamental in data analysis, in
particular in time series analysis (DRAS, FC ARS algorithms etc.) [25].

Example 9. Figure 11a shows how the FDPS algorithm works: space X in this case is a regular
grid on the horizontal axis, where the weight ν of each point x ∈ X is plotted vertically. The result
of the FDPS algorithm will be two red bars on the horizontal axis, serving as the bases of the two
most significant stochastic ν-elevations on X.

As can be seen from this figure, the FDPS algorithm is stable: it disregards to insignificant
drops of contour ν below the set level, as well as to insignificant rises of ν above it. This property
of the FDPS explains the solidity of its highlighted elevations and is essential in decision-making
issues: the selected areas must be massive and resistant to minor disturbances within them.

To compare, Figure 11b shows a classical selection on grid X with respect to a given level for
relief ν. As we can see from the figure, it is unstable, it gives a lot of weak elevations.

Figure 11. Operation of the FDPS algorithm on a regular grid (a). The FDPS algorithm results in two
red lines on the horizontal axis, which serve as the bases of the two most significant stochastic heights.
Figure (b) shows a classic choice with respect to a given level, highlighting many weak heights.
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4.4. GDPS Gluing: Scheme and Algorithms

Suppose P the local property of space X at each of its points x, P(x) ≥ 0 its quantifi-
cation, a U(x) = U(x|P) is a subset in the full-sphere D(x, r), where it is reached. In other
words, U(x) is the subset in D(x, r) where the property is most clearly pronounced. It does
not necessarily coincide with D(x, r).

Task 1. For a fixed level of α property P , find the subset A = X(P, α) in X, whose each full-sphere
DA(a, r) would have the property P at each point a ∈ A to the power ≥ α.

If the quantification of property P function P is the density on X Definition 1, then
the result of the DPS(P, r, α) algorithm can be taken as A. Otherwise, we consider a set of
local data in X

Uα = Uα(P) = {U(x|P) : P(x) ≥ α}

and try to comprehensively fit into Uα the global subset A ⊂ X. Let us formulate the
requirements for A:

(P(a) ≥ α) ∧ (DA(a, r) ⊆ U(a)) ∧ (difference U(a)r DA(a, r) is minimal) ∀a ∈ A (8)

Under the natural assumption of “continuity” of the property P we can expect its
level of occurrence on DA(a, r) to be close to α.

The mismatch DA(a, r) with U(a) in (8) can be understood differently. Some variants of
it make it possible to find a solution of (8) using the DPS scheme (Definition 6–Section 3.3.3)
with respect to densities specifically constructed by covering Uα. Let us focus on one of
them.

The initial space Y will carry the covering Uα:

Y = Supp Uα = {x ∈ X : P(x) ≥ α}

The difference in (8) is expressed through the intersection and induces a density G
on Y:

GB(y) =
|DB(y, r) ∩U(y)|

|U(y)| y ∈ Y, B ⊆ Y (9)

The density G is normalized: GB(y) ∈ [0, 1], and its level γ is the proximity index
in (9).

The dependence P→ G(P) (9), connecting with the DPS scheme (Definition 6–Section 3.3.3),
leads to another dependence P→ DPS(G(P)), which we designate as GDPS and will be
understood like DPS Remark 2 and DPS Remark 3 ambiguously:

• as a schema if we are talking about a dependency given above;
• as the GDPS algorithm when it comes to the operation of the DPS scheme

(Definition 6–Section 3.3.3) on density G(P) with parameter γ: GDPS = DPS(G, γ).
Its GDPS(Y) result solves problem Task 1 by “gluing” local data Uα in a certain way.
This explains the name of the algorithm (gluing).

If the quantification of P property P is the density on X, then the space Y is the first α-
hull X1(α) of space X. The first solution Task 1 (let us call it “a strong one”) is the operation
of SDPS on X with respect to P with level α. It may differ from the second solution Task 1
(let us call it “a weak one”), which represents the operation of GDPS.

The point is that the SDPS algorithm in its interception on X1(α) is guided primarily
by preserving the density level α, while the GDPS algorithm seeks to preserve the proximity
level γ on X1(α). The weak version is more versatile, since the quantification of P property
P shall not be necessarily the density on X and it is also more “save” when carving. There-
fore, it is the GDPS algorithm that will be part of the DPS-scheme Definition 6–Section 3.3.3
operation when the property P represents a local linearity in X.

Let us explain the above on two examples relating to the density S = S(q, p). In this
case, the property P will be the r-local “space count”, and S will be its formal expression.
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Since S is a density Definition 1, this Task 1 has two possible solutions: a strong and weak
one. The basis for these is the space Y = X1(S, β)—the first iteration of the initial space X
of relative density S for the level of extremeness β.

The strong solution is the result of the SDPS algorithm on X with parameter β (a
subset of SDPS(X, β)) in Y. The weak solution is the result of the GDPS algorithm in this
setting, i.e., the result of a DPS-scheme with density G = G(S, β) constructed on the basis
of local data U(S, β) = {DX(y, r) : y ∈ Y = X1(S, β)}:

GB(y) =
|DB(y.r) ∩ DX(y, r)|

|DX(y, r)|

and a given level of proximity γ (a subset of DPS(G, γ) ⊆ Y).

4.5. LDPS Algorithm

We believe that the initial FMS lies in the Euclidean plane. It is convenient to designate
it by Q rather than X for reasons that will be clear below. In this paragraph we implement
in detail the previous scenario for the local linearity property in Q. The result of this work
done will be the LDPS algorithm from the series of DPS-algorithms, aimed at finding global
linear structures in Q.

4.5.1. Initial Data and Designations

Π is the universe plane

xOy—fixed orthogonal coordinate system on Π,
xϕO∗yϕ—loose orthogonal coordinate system on Π, obtained by moving coordinate
origin O to point O∗ = (x∗, y∗) and turning the axes xϕ, yϕ by the angle ϕ ∈ [0, π],
Relation of coordinates

xϕ = cos ϕ(x− x∗) + sin ϕ(y− y∗)
yϕ = − sin ϕ(x− x∗) + cos ϕ(y− y∗)

,

Q is a finite-state array in Π: Q = {q} =
{

qi|Ni=1
}

,
r = rs(Q), s < 0 (5),
L—the property of local linearity in Q.

4.5.2. Quantification L

Let q∗ be an arbitrary fixed point in Q, ϕ arbitrary angle in [0, π]. Let us move to
the coordinates xϕq∗yϕ and we denote the “square” neighborhood Q in q∗of radius r
KQ(q∗|ϕ, r):

KQ(q∗|ϕ, r) =
{

q ∈ Q : |xϕ(q)| ≤ r, |yϕ(q)| ≤ r
}

.

The additional parameter “height” h ∈ (0, r] enables defining the corridor KQ(q∗|ϕ, r, h)
in KQ(q∗|ϕ, r)

KQ(q∗|ϕ, r, h) =
{

q ∈ Q : |xϕ(q)| ≤ r, |yϕ(q)| ≤ h
}

.

Using KQ(q∗|ϕ, r) and KQ(q∗|ϕ, r, h) we define a measure of local linearity LQ(q∗|ϕ, r, h)
of space Q at point q∗ to the direction ϕ as the density KQ(q∗|ϕ, r, h) against the background
of KQ(q∗|ϕ, r) by serial relation:

LQ(q∗|ϕ, r, h) =
|KQ(q∗|ϕ, r, h)|

KQ(q∗|ϕ, r)| .

Maximum value
LQ(q∗|r, h) = max

ϕ
LQ(q∗|ϕ, r, h)

will be considered a quantitative expression of the property L for Q in q∗, and the neigh-
borhood of U(q∗,L) is the best corridor KQ(q∗|r, h) where this maximum is reached.
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For geometrical reasons, the relation hr−1 ∈ (0, 1/2] must be considered as satisfied.

4.5.3. Search for Global Linear Structures

A quantification L of the property L is made. Hence, it is possible to involve a
GDPS scheme based on L for the weak solution of Task 1 in this case, which leads to
the GDPS(P, α, γ) algorithm, where α is the expression level of property L and γ is its
representativity degree.

Research shows that in the generic case its result Z on space Y = Q1(L, α) needs
additional filtering, which is done by the MDPS algorithm with a solidity level ε. Its result
MDPS(Z, ε) is considered final in the search for linear structures within the space.

The LDPS algorithm is the described superposition of GDPS and MDPS:

Q→ Q1(L, α) = Y → GDPS(Y, γ) = Z → MDPS(Z, ε) = LDPS(Q).

Its parameters will be (parameters L) + (parameters M)+(α, γ, ε), and the result is the
global linear structures in Q relative to them.

The LDPS algorithm has four stages:

• the first of them with the selected parameters of local linearity r and h constructs its
quantification LQ(q|r, h) at each point q of space Q, and the best corridor KQ(q|r, h),
where the estimate LQ(q|r, h) is reached;

• the second stage includes constructing the basis for application of the GDPS scheme,
namely coverage Uα(L) = {KQ(q|r, h) : LQ(q|r, h) ≥ α} for a given level of local
linearity α;

• the third stage is GDPS scheme working on Uα(L) data. Its result will represent linear
structures in Q. On space

Y = Supp Uα(L) = {q ∈ Q : LQ(q|r, h) ≥ α}

a measure G = G(Uα(L)) is constructed (9)

GB(y) =
|DB(y, r) ∩ KQ(q|r, h)|

|KQ(q|r, h)| .

The result will represent the raw linear structures on Q;
• the fourth stage is their filtering by solidity using the MDPS algorithm with a level

of ε.

In conclusion, we will address the operation of the LDPS algorithm on two arrays,
while the operation in the first instance will be explained in detail, and in the second
instance only the result is shown.

Example 10. The initial array Q is shown in Figure 12a

• At the first stage with the chosen parameters at each blue point q a linear corridor KQ(q|r, h)
is constructed with parameters r = 1.09 and h = 0.44, then its separability LQ(q|r, h) is
calculated. Figure 12b,c show corridors in green with centers at black points. Their separability
equals to 0.64 and 0.5, respectively. In the second instance, it proves to be insufficient to
overcome the second stage.

• Second stage. The separability level α is assumed to be 0.6. Figure 13a shows the points y
in red, that passed this selection and formed the basis Y—the first half for application of the
GDPS scheme. The second half GDPS scheme: corridors KQ(q|r, h) are shown for the already
familiar point on the left (Figure 13b) and at some point on the right (Figure 13c). It can be
seen from the figures that the relative density of red dots in the left corridor is higher than in
the right one. This circumstance will help the left point overcome the third stage and move into
the lower linear structure, while the right point will not stand the test with GDPS operation
and will not be included in the final result.
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Figure 12. The first stage of the LDPS algorithm. (a) original array; (b) a corridor with a separability
equal to 0.64; and (c) a corridor with a separation of 0.5. The position of the fragments of the original
array shown in figures (b,c) is indicated by the leaders in figure (a).

Figure 13. The second stage of the algorithm. (a) The original array with the selected base (red dots);
(b) points from in the corridor from Figure 12b; and (c) points from in the corridor from Figure 12c.
The position of the fragments of the original array shown in figures (b), (c) is indicated by the leaders
in figure (a).
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• Third scheme. The GDPS scheme operation on the red points from the Y. Its result Z is shown
in Figure 14a. It needs to be filtered.

Figure 14. Result of the third and fourth stages of the LDPS algorithm. (a) The result of the third
stage–the work of the GDPS algorithm; (b) the result of the fourth stage–the work of the MDPS
algorithm; (c) the result of the DBSCAN algorithm; and (d) the result of the OPTICS algorithm.

• Fourth stage. This is implemented by the MDPS algorithm on Z. The result is shown
in Figure 14b. Figure 14c,d show how the well-known DBSCAN [18] and OPTICS [19]
algorithms operates in this instance.

Example 11. The initial array is shown in Figure 15a, and the LDPS result is shown in Figure 15b.

Figure 15. Operation of the LDPS algorithm. (a) The original array. (b) The linear structure indicated
by red dots, built by the LDPS algorithm.
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5. Discussion

This paper addressees the study of stationary data arrays, which are finite sets in
multidimensional spaces, using the DMA methods by means of clustering.

A complex local condition is a conjunction of the conditions of local linearity and local
representativeness. Local linearity: each point L has a linear corridor containing it that is
dense against the background of Q, i.e., each point q ∈ L on the plane has a rectangle K(q)
centered at q, which is a local corridor for L, and the intersection K(q) ∩Q is dense against
the background Q. Local representativeness: the intersection K(q)∩L is dense in K(q) ∩Q.

The global condition for L consists of the requirement that L has no isolated points,
i.e., in its discrete perfection. The detection of local linearity in the implementation of LDPS
consists of a direct check for all points of the original space Q of this property. Analytical
procedures are available to reduce routine calculations. In addition, in the future, we
propose to modify the algorithm so that the dimensions of the corridors generally change
from point to point.

The points in Q that pass the local linearity test form a subset of Y—the first approxi-
mation in Q to linear structures. We checked the linear representativity on Y in the LDPS
algorithm as an implementation of the DPS scheme with respect to the special density G
(clause 4.5.3). In the future, we plan to implement other variants of the LDPS algorithm
based on a change in the interpretation of linear representativeness.

Studies have shown that, among the subset of points Z ⊂ Q that have passed the local
test for representativeness, there may be isolated points. The global condition in LDPS
eliminates this drawback: its check for Z is also organized as an implementation of the
DPS scheme with respect to the density “monolithicity” (MDPS algorithm). The points
that pass the global test will be the result of applying the LDPS—that is, the union of all
linear structures in Q.

In the general case, the set of linear structures L is divided into connected components.
For example, in the examples given in Figures 14b and 15b, two connectivity components
are obtained. In the first example, the components of connectivity should be considered
independent linear structures, and in the second example, as part of a single whole. In the
future, we plan to introduce an additional procedure for joining the results of applying the
LDPS algorithm in order to obtain global linear structures in the original space Q.

Comparison of the LDPS algorithm with the well-known new generation cluster
analysis algorithms DBSCAN and OPTICS, as well as with the previously created DMA
clustering algorithms, shows that the LDPS algorithm is not inferior to them in detecting
clumps; however, at the same time, it is more focused on recognizing clumps with a
linear structure.

The implementation of the formal approach as shown in the article can be very
effective in various fields of Earth sciences where linear structures play a special role in the
investigation of spatial patterns of geographical location and geometric configuration of
natural objects. This is vital when solving the issue of predicting the isolation properties of
the geological environment for the preparation of a rationale for the geodynamic stability
over long periods of time (ten to one hundred thousand years), arising in the selection
of HLRW disposal sites. Further to this task, the algorithm can apply to the analysis of
elongated artificial structures, such as road networks, etc.
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