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Abstract: Tailing is defined as an event where a suspicious person follows someone closely. We
define the problem of tailing detection from videos as an anomaly detection problem, where the goal
is to find abnormalities in the walking pattern of the pedestrians (victim and follower). We, therefore,
propose a modified Time-Series Vision Transformer (TSViT), a method for anomaly detection in
video, specifically for tailing detection with a small dataset. We introduce an effective way to train
TSViT with a small dataset by regularizing the prediction model. To do so, we first encode the
spatial information of the pedestrians into 2D patterns and then pass them as tokens to the TSViT.
Through a series of experiments, we show that the tailing detection on a small dataset using TSViT
outperforms popular CNN-based architectures, as the CNN architectures tend to overfit with a small
dataset of time-series images. We also show that when using time-series images, the performance of
CNN-based architecture gradually drops, as the network depth is increased, to increase its capacity.
On the other hand, a decreasing number of heads in Vision Transformer architecture shows good
performance on time-series images, and the performance is further increased as the input resolution
of the images is increased. Experimental results demonstrate that the TSViT performs better than the
handcrafted rule-based method and CNN-based method for tailing detection. TSViT can be used in
many applications for video anomaly detection, even with a small dataset.

Keywords: tailing detection; Vision Transformer; anomaly detection; deep learning; computer vision

1. Introduction

Tailing is a situation in which one pedestrian follows another pedestrian in the same
direction for some amount of time. The intention of a tailing person can range from assault-
ing, snatching, or even kidnapping. According to the statistics released by United Nations
Office on Drugs and Crime (UNODC) [1], between 2006–2008, there were 4671 kidnapping
events in Canada, 10,509 kidnapping events in Turkey, 2034 kidnapping events in the
United Kingdom, and 23,991 kidnapping events in India. Figure 1 shows two of the alleged
kidnapping attempts (on left), and three snatching cases (on right).

The events given in Figure 1 are recorded using surveillance cameras, which are,
presently, cheaper to deploy, and comes with an easier installation process. According
to a survey [2], the surveillance cameras installed in 2016 worldwide will produce ap-
proximately 566 GB of data in one day. This rapid growth of surveillance video data
presents higher challenges for video processing and understanding. In addition, the man-
ual methods of monitoring also put limits to the effectiveness of these surveillance systems.
Searching for abnormal incident in recorded sequences using human supervisors is tedious,
and time-consuming work. Thus, the development of computer vision techniques of event-
detection [3], video retrieval [4] and video summarizing [5] are eminent part of modern
surveillance systems.
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Figure 1. Real world example of tailing, in the streets of London (source-YouTube). On left: Two examples of tailing, in
both cases the tailing person was yielding a knife while tailing (London). On Right: Three examples of tailing, followed by
snatching (India). Suspect in red rectangle, while victim in yellow rectangle.

Since tailing detection can prevent crimes such as assault and kidnapping in advance,
tailing detection becomes an important problem to solve. However, tailing detection from
surveillance videos is not an easy task, due to the diversity in the behavior and motion
patterns of the suspect and victim. Moreover, it is difficult to distinguish suspected tailing
people from normal people. Previous work on suspicious event detection in surveillance
videos is mostly inspired by anomaly detection [6], where the anomalous events are defined
as of low probabilities relative to normal events, or events that are inconsistent with normal
samples, and those which deviate from the normal behavioral and appearance patterns.

Basic anomaly detection methods consist of two major steps, (i) representation of the
event using visual or behavioral features and (ii) establishment of the anomaly detection
model that distinguish between normal and abnormal event. Examples of low-level
visual or behavioral features include spatiotemporal 3D gradient features [7], multi-scale
histogram of optical flow (MHOF) [8], structural context descriptor (SCD) [9], and mixture
of dynamic textures (MDT) [10], while the examples of high-level features include object
trajectory features [11] and object appearance characteristics [12]. Building an anomaly
detection model refers to defining a set of rules or models to distinguish between normal
and abnormal events, based on the input features. Cluster-based anomaly detection
models [13] tend to cluster similar normal events together, and the events whose center
lies farthest from the center of the cluster are regarded as abnormal events. Another
method used as an anomaly detection model is the state inference model [14], where the
assumption for a normal event is that the normal events undergo a fixed change over time,
while abnormal events do not. Finally, the sparse reconstruction [8,15]-based anomaly
detection models calculate the reconstruction error of events and expect a small error
relative to the reconstruction error of the abnormal events.

The problem of tailing detection differs from event classification methods [16], where
the task is to classify the event into one of multiple classes such as “attempting a board
trick”, “feeding an animal” and “making a sandwich” based on detection of one or more
primitive actions, such as “jumping”, “sliding” and “flipping”. Another related problem
is the human-interaction recognition [17], where the goal is to recognize the activity of
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a person with respect to its surroundings based on body posture, body part movement,
etc. [18]. However, tailing detection need to find some abnormal behaviors of pedestrians
based on their walking patterns. Thus, in this paper, we define the problem of tailing
detection as an anomaly detection problem, where the abnormal event is defined as a low
probability event where a suspect follows the victim in the same direction by maintaining
a predefined distance from the victim for a given amount of time. In contrast with the
previous anomaly detection methods, this paper presents following major contributions:

1. For the first time, we define and formulate the tailing detection problem as an anomaly
detection problem.

2. To address the difficulties of empirical evaluation of tailing detection, we introduce
the very first tailing detection dataset and define the metrics to evaluate and compare
the tailing detectors.

3. Unlike traditional multi-input CNN-based architectures or Recurrent Neural Net-
works (RNN), we propose the Time-Series Vision Transformer (TSViT) as a new
method for solving time-series image data for tailing detection.

4. Most previous anomaly detection methods process the complete input frame. Conse-
quently, their performance is highly dependent upon context information. In contrast,
to make the proposed tailing detection scheme robust against view changes, lighting
conditions or cluttered background, we only pass the spatial information of the pedes-
trian to the TSViT, by encoding frames with the pedestrian’s location information into
embedding tokens.

5. We also show the successful use of Ordered Random Sampling (ORS) method to not
only avoid overfitting, but also to augment the data and increase the probability of
detection of the anomalous event.

The remainder of the paper is organized as follows: Section 2 reviews, in general,
previous work on anomaly detection. With the mathematical characterization of the
handcrafted rule-based method and CNN-based event classifier, we present the proposed
TSViT-based tailing detection method in Section 3. With the introduction to our tailing
detection dataset, we present the experimental details and the performance comparison of
the proposed method in Section 4. Finally, the paper is concluded in Section 5.

2. Related Work

To the best of our knowledge, there has been no previous research on tailing detection
with systematic experiments and quantitative results. However, the method of tailing
detection is similar to anomaly detection in videos. Therefore, following we review some
of the research articles related to anomaly detection.

Recent work in anomaly detection addresses event representation and globally con-
sistent statistical inference, where researchers define features and models for the discrimi-
nation of normal and anomalous events. Some researchers proposed two-stage anomaly
detection schemes, where the first stage consists of extracting low-level or high-level
appearance features from the input frames of the video, and the second stage consists
of classifying the features using trained anomaly detection models. Amraee et al. [19]
proposed a histogram of gradient (HOG) descriptors and a Gaussian Mixture Model
(GMM)-based method to detect abnormal events, such as in crowd videos. A rule-based
connected component analysis scheme is used to preprocess the frames before computing
the HoG features.

To cope up with the lack of data, Sikdar et al. [20] proposed a training-less framework
for anomaly detection in crowd scenes. Their method consists of object detection followed
by computing the saliency-guided optical flow of the moving objects in the scene, and then
comparing the global optical flow using Earth Mover’s Distance (EMD).

Fusion techniques where two or more appearance cues are fused, have also been
proposed. Zhang et al. [21] presented an anomaly detection framework that integrates
motion and appearance cues to detect abnormal objects and behaviors in video. A Support
Vector Data Description (SVDD) model is trained using spatiotemporal gradient features,
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to classify the events. In another research [12], the authors generated intermediate classi-
fication scores of Convolutional Neural Network (CNN)-based features and optical flow
maps using trained GMM classifiers, and then fuse those two scores using late fusion.

However, some researchers argue that the two-stage anomaly detection exhibit poor
generalization capabilities, as the event representation stage and anomaly detection stage
are designed separately [22]. Moreover, handcrafted features rely on object appearance,
which is difficult to handle in a crowded scene, especially for moving objects that occlude
each other.

Given the development of deep neural networks, and their application to diverse
computer vision problems such as object detection [23], semantic segmentation [24] and
video summarizing [5], many researchers shifted their focus from two-stage anomaly
detection to one-stage detection using deep learning techniques. Given a large-scale labeled
dataset, a deep convolutional neural network is trained to jointly optimize the feature
extraction and abnormal event recognition stages. A recent study [25] uses FlowNet2 [26]
to extract optical flow maps of different time stamps of the input video, and then fuses
them to boost the prediction probability. In addition to reconstruction loss, Zhao et al. [27]
trained a 3D CNN with weight-decreasing prediction loss. The purpose of prediction loss
is to capture the trajectory of the moving objects and enforce the encoder to better extract
the temporal features. Most of the anomaly detection methods detect abnormality in crowd
videos, where the behavior of the individual is compared against the global behavior, and
thus, the techniques are vulnerable to overfitting.

The anomaly detection methods that are similar to the proposed method of tailing
detection are those using object trajectories. It is comprised of either explicitly or implicitly
segmenting and tracking each object in the scene, and fitting models to the resulting object
tracks [28] (event classification), Ref. [29] (distinguish between vehicle and pedestrian
based on tracking pattern), Refs. [30,31] (crowd behavior), Ref. [32] (traffic videos). Al-
though capable of identifying abnormal behaviors of high-level semantics (e.g., unusual
long-term trajectories), these procedures are both difficult and computationally expensive
due to the tracking algorithm. All these techniques use handcrafted features along with
tracking algorithms, which make them vulnerable to varying environmental conditions.
The main difference between our method and these prior studies is that we do not use any
tracking algorithm, rather, the discrete spatial locations of the objects are used to train a
transformer network.

To the best of our knowledge, there has been no prior research to detect tailing events
from surveillance videos. Furthermore, no public dataset on tailing exists. Hence, in
this research, we first present a large tailing dataset named, Sogang Tailing Detection
Dataset (STD dataset), containing videos of tailing events and normal events. Second,
we investigate three methods for the purpose of tailing detection. (i) A handcrafted
rule-based method, (ii) a convolutional neural network-based (CNN) event classifier, and
(iii) the proposed Vision Transformer-based unified framework. The handcrafted rule-
based method detects tailing using trajectory similarity and cosine similarity based on the
pedestrian’s position. However, the rule base method is sensitive to noise, which leads to
bad performance. The convolutional neural network [33] detects tailing using the channel-
wise concatenated one-hot encoded frames, based on pedestrian location information.
However, the one-hot encoded pattern is diluted as it passes through the series of CNN
layers, and the performance decreases as the structure of the network is extended. On the
other hand, the proposed TSViT achieved high performance with smaller training dataset
than the rule-based or CNN-based method. TSViT [34] uses transformer to solve image
classification problems for time-series tasks. Inspired by the way ViT divides images into
patches and uses them as embedding tokens, TSViT also uses each fixed-length frame as an
embedding token. Furthermore, previous work on anomaly detection that uses CNN [35],
treats samples that are different from normal samples as anomalies, thus, they ignore the
fact that abnormal events have a smaller probability of occurrence. Many normal samples
that do not appear are often misjudged as abnormal, leading to false alarms. For tailing
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detection, it is highly unlikely that the motion patterns of the suspect and the victim match
in random frames. Hence, in addition, to TSVit, we also introduce an ordered random
sample method to complement the performance of TSVit when working with time-series
data, and fully use the fact that the abnormal events are less likely to occur.

The comparison of TSViT against rule-based method and simple-CNN classifier proves
the significance of the proposed TSViT method for anomaly detection on STD dataset, and
shows that TSViT can be used in many applications for video event detection.

3. Proposed Methods

According to a personal security expert Robert Siciliano, to identify whether someone
is being followed, one should take a wrong turn (or mix up walking pattern) as “it is rare
for two people to make the same wrong turn at the same time. If a potential stalker mimics
your maneuver, your suspicions may be warranted” [36] Similarly, we approach the tailing
detection as a spatiotemporal anomaly detection problem, where the abnormal event is
defined as: on a less crowded street, it is highly unlikely that the trajectories of the two
persons match above a defined threshold for more than a specified amount of time. Here,
the temporal abnormality refers to the recurrence of the tailing for more than a specified
amount of time, while the spatial abnormality is reflected from the similarities of the two
trajectories. Hence, under normal conditions, a statistical model px(x) is assumed for
the distribution of measurements X. Abnormalities are defined as measurements whose
probability is lower than a threshold under this model. In the following subsections, we
first define the proposed ordered random sampling method that is used to leverage the
low probability constraint of an anomalous event, to train the anomaly detection models,
followed by the three different implementations of tailing detection models including two
baseline methods and one proposed method.

3.1. Anomaly Modeling with Ordered Random Sampling

In general, tasks for time-series images are learned by sampling the subset data using
a sliding window method [37]. However, on a small dataset, the sliding window method is
likely to cause overfitting, as the sliding window-based method can only generate a limited
amount of data. To solve this problem, we used the ordered random sampling method.
Ordered random sampling is a method of making input data by randomly sampling
some frames from data and then sorting them in time order. Consequently, in the case of
ordered random sampling, the amount of training dataset increases combinatorically. A
combinatorial increase is defined as the rapid growth of the data due to the generation of
finite combinations of data.

Another important benefit we extract from the ordered random sampling, is the
fact that it relatively reduces the probability of an abnormal event. In other words, it is
highly unlikely that the location patterns of two pedestrians in a random subset of frames
are the same. Thus, in this way, the information related to the low probability of the
anomaly event is used during the training of the tailing detector. This approach makes
our method distinguishable from other end-to-end anomaly detection frameworks [35],
where the relative probability of the anomaly event is not considered. By using ordered
random sampling we improve the reality of the likelihood model of the normal and
abnormal events.

3.2. Removing Context Dependency

As indicated by [14], anomaly detection is highly affected by context information.
The role of context in anomaly judgments is observed to be situation-specific, and hence
previous techniques are somewhat less generalizable on datasets. For example, in some
cases, the interaction of the pedestrians with their immediate surrounding information
improves the anomaly detection performance due to the relative local context, but the
anomaly detection performance drops when compared with the general global context.
Consequently, the context information can negatively affect the anomaly detection perfor-
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mance due to the contradicting local and global saliency maps of the pedestrian with their
surroundings. Although capturing the STD dataset, enough variations are added; how-
ever, it is impossible to capture all possible variations. In tailing detection, the proposed
methods can overfit the predictions based on contextual information, such as the visual
appearance of the persons, their relative motion with respect to the background, or objects
in the background. Thus, we adopted to use only location information of the pedestrians
in all three methods. We used an off-the-shelf person detector to convert the input RGB
frames to location information, by encoding the location information (represented by a
bounding box around the pedestrian) into one-hot encoding, as shown in Figure 2. Later,
this encoded location information is concatenated with respect to the time axis, and passed
as input to the proposed method. In this way, the proposed method is leveraged to use
the location information to distinguish between tailing and non-tailing events. We discuss
three different implementations of the tailing detection algorithm including the proposed
method, and compare their performance in the following sections.

Figure 2. Pedestrian location information is encoded into a one-hot pattern; white regions represent the background, and
black regions represent the bounding box surrounding each pedestrian. The encoded location information is concatenated
along the time axis to form a 1 × N × H ×W-dimensional tensor.

3.3. Baseline Method 1: Handcrafted Rule-Based Tailing Detection

For handcrafted rule-based tailing detection, we adopt the classical formulation of
anomaly detection, where anomalies or tailing events are considered to be outliers. First,
we extract pedestrian coordinates using an off-the-shelf object detector. Similar to [29],
we construct the trajectories of the motions of people using the pedestrians coordinates
in each frame. These trajectories are used to estimate the pedestrians motion pattern. To
perform the rule-based tailing event detection, we considered two models for the similarity
measurement, i.e., trajectory similarity and cosine similarity.
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3.3.1. Trajectory Similarity

Moving objects change their locations over time and tracking them generates a se-
quence of points in time and space, called a trajectory [38]. There are various similarity
measures to compare two different trajectories such as Euclidean and Hausdorff. To con-
sider multiple points on trajectories, we used Fréchet distance as the similarity measure.
Fréchet distance is a non-metric measure that takes into account both the location and
ordering of the points along curves of the two trajectories [38]. When trajectories of tailing
suspect and victim, Ta and Tb are given, the Fréchet distance is defined as:

F(Ta, Tb) = inf
α,β

max
t∈[0,1]

{d(Ta(α(t)), Tb(β(t)))}, (1)

where α and β are non-decreasing function from [0,1] onto [α, β] [39]. The shorter the
Fréchet distance, the more similar the two trajectories.

3.3.2. Cosine Similarity

Cosine similarity is the method used to measure the degree of similarity [40]. With
this method, two pedestrians in the same direction, will have a value close to 1, and −1 in
the opposite case as in Equation (2). Comparing the direction of the pedestrian’s path, we
assume direction vectors using the pedestrian’s coordinates.

similarity = cos(θ) =
A · B
‖A‖‖B‖ =

∑n
i=1 Ai × Bi√

∑n
i=1(Ai)2 ×

√
∑n

i=1(Bi)2
(2)

In the case of tailing, two pedestrians walk in the same direction by maintaining
a constant distance. If the distance between trajectories of two pedestrians is similar to
the Fréchet distance value and the cosine similarity is close to 1, we declare this as a
tailing event.

3.4. Baseline Method 2: CNN-Based Detection

In image classification, the convolutional neural networks learn and classify object
patterns from 3-channel images [41]. To learn the pattern in time-series images, we accu-
mulate the one-hot encoded frames over time as shown in Figure 2, and used it as the input
to the convolutional neural network.

To observe the effects of the depth of the CNN on the tailing detection performance,
we experimented with time-series images using a simple-CNN and a ResNet [42] archi-
tecture. Figure 3 shows the simple-CNN and ResNet architectures. Simple-CNN consists
of three convolution layers and two fully connected layers. Simple-ResNet consists of
three connection blocks. Each connection block consists of two residual blocks, which are
composed of convolution, batch normalization, and activation layer as shown in Figure 3.
With this simple-ResNet architecture, we focus on two factors. First, we want to check
whether the residual block shows good performance on time-series data. Second, we want
to reduce the size of the model to optimize memory usage. We also experimented with
the original ResNet architecture to analyze the relationship between network size and
performance. The input channel of the first convolution layer of all ResNet is changed to
the number of accumulative frames, N, in Figure 2.

3.5. Method 3: Proposed Tsvit Method

Figure 4 shows the overall process of TSViT-based tailing detection. TSViT has a
structure that embeds the time-series images into tokens and passes them through the
transformer encoder. The transformer encoder consists of layer normalization (LN), multi-
head self-attention (MSP), and multi-layer perceptron (MLP) block, as the original ViT [34].
We explain methods for dealing with time-series images of small dataset below.
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Figure 3. The network architecture of simple-CNN and ResNet.

Figure 4. Overall process of the proposed TSViT-based tailing detector.
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Embedding Time-Series Images

In the natural language processing (NLP) tasks, input embedding can be expressed as
the sum of the embeddings in a sentence, allowing parallel processing of words [43]. To
handle 2D images with the transformer, equi-sized patches from one image are reshaped to
1D token embedding [34]. To process time-series images with transformers, we configure
token embeddings from extracted frames. To ensure the frame order, positional embedding
is also added.

Vision-Transformers generally show a weaker inductive bias resulting in increased
reliance on model regularization or data augmentation when trained on a relatively smaller
dataset. The proposed ordered random sampling also acts as a data augmentation method,
where the data combinations are generated during training. For every n distinct samples,
we can generate n!/((n − r)! × r!) ordered pairs, where r denotes the size of samples
chosen at a time. However, in the case of sliding window-based sampling, only n− (r− 1)
samples can be generated.

4. Experiments and Analysis
4.1. Sogang Tailing Detection Dataset

The absence of any public or private tailing dataset is the main motivation to develop
our own tailing dataset. The dataset consists of video clips recorded with a stationary
camera, overlooking pedestrian walkways in the Sogang University campus, mimicking
CCTV footage. The videos are recorded in such a way that the crowd situation is kept as
low as possible. When the number of people increase in the video, a highly sophisticated
tracking method is required to obtain accurate trajectories of people. In such a case the
tailing detection performance greatly depend on the tracking performance. We decoupled
the tailing detection and tracking problems by limiting the number of people in the video,
and focused mainly on developing the tailing detection technique.

We collected a balanced set of 246 videos with 123 tailing and 123 normal (no tail-
ing) events, making it the largest dataset among the anomaly detection datasets such as
UCSD [44] (70 video clips) and Avenue dataset [7] (37 video clips). The total durations are
1495 and 1085 s for tailing and normal videos, respectively. The videos are collected under
various lighting conditions, background variations, camera viewpoints, and non-aligned
surfaces (like stairs). In total, four volunteers appear in the videos by switching their
roles, such as subject A acts as a victim and subject B acts as a suspect, while in another
video, they switch their roles. In this way, the dataset is made invariant of the appearance
of the pedestrians. The tailing event is mimicked by volunteers in such a way that the
suspect follows the victim by maintaining a fixed distance, with similar walking speed and
direction as the victim. The volunteers try to act as naturally as possible. The videos are
recorded at a resolution of 1920 × 1080 with 30 frames per second. The average length of
videos is 10 s. Figure 5 shows example frames from the STD dataset.

4.2. Experimental Settings

For the experiments, we used a balanced set of 100 tailing, and 100 normal videos for
training, and 23 tailing and 23 normal videos for the testing. We extracted 2 frames per sec-
ond from the video to construct the time-series images. In the rule-based method, only the
extracted frames and object detection results are used for the tailing detection. In the case
of the deep learning methods (i.e., CNN and TSViT), we constructed an encoded pattern
from the pedestrian detection results. The encoded pattern represents two-dimensional
one-hot encoding including the bounding box information of the detected pedestrians. To
pass the frames as time-series data, we concatenate 9 one-hot encoded frames along the
time axis. For reporting the performance of the proposed tailing detection method and
comparing the performance with baseline methods, precision and recall values are reported.
We also present the per frame event classification accuracy. Given the seriousness of the
consequences of a tailing event, we mainly focus on improving the recall of the tailing
event detection. We evaluate all three methods using the same test set as explained above.
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Figure 5. Frames of different videos from the Sogang Tailing Dataset (STD). Suspect: Red rectangle, Victim: Yellow rectangle,
Pedestrians: Green rectangle, Volunteers mimicking a non-tailing event: Cyan rectangle.

4.2.1. Method 1: Handcrafted Rule-Based Method

The rule base method achieved 61.45% of accuracy with 77.73% precision and 53.48%
recall. Due to differences in camera angles and perspective effects, the rule-based method
did not use normalized coordinates. Since rule-based methods are sensitive to noise, it is
difficult to expect high detection accuracy. Figure 6 shows the example cases where the
handcrafted rule-based method fails. Figure 6a,b depicts the situation where the spatial
information becomes corrupted due to Figure 6a overlapping, and Figure 6b occlusion.
However, Figure 6c,d illustrate the perspective effect, i.e., the distance between the victim
and suspect is same in both Figure 6c,d but due to perspective difference, the distance
between the victim and suspect appears different in Figure 6c,d. Handcrafted rule-based
method shows poor tailing detection results in these situations.

Figure 6. The handcrafted rule-based tailing detection method fails to detect tailing when (a) victim is partially occluded or
(b) fully occluded by the suspect. The rule-based method also fails to handle the perspective effect depicted in (c,d).
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4.2.2. Method 2: CNN-Based Method

The CNN exhibits better performance than that of the handcrafted rule-based method
because CNNs can robustly learn tailing patterns from the images of multiple views,
and handle the noisy localization generated by the object detector, during the extensive
training process. The CNN can also handle the perspective effect illustrated in Figure 6c,d,
and perform better than rule-based method in the partial occlusion situation depicted in
Figure 6. The tailing event detection result with various CNN architectures are summarized
in Table 1. The number written next to model, i.e., 512, represents the input frame size
512 × 512.

• Training configurations. We trained all the CNN architectures used in this experiment
for 100 epochs using SGD [45] with momentum = 0.9, weight decay = 0.0001, and a
batch size of 64. We performed a grid search with a learning rate (lr) in [0.001 0.01].
We use MultiplicativeLR as the lr scheduler.

Table 1. Tailing detection performance comparison among different CNN architectures.

Tailing

Model Params (M) Accuracy (%) Precision Recall

Simple-CNN 229 63.54 0.7224 0.6741
Simple-ResNet 584 59.37 0.7148 0.5794
ResNet-50/512 1591 60.24 0.6255 0.9025
ResNet-101/512 2410 62.32 0.6371 0.9192
ResNet-152/512 3399 61.63 0.6462 0.8496

From the experimental results, we can make a few observations. First, CNN perfor-
mance did not significantly increase as the depth of the model is increased. The simple-
CNN shows the best detection accuracy at 63.54%. On the other hand, if we compare the
recall of the tailing detection, ResNet-101 shows the best performance among all CNN-
based models, while slightly outperforming ResNet-50. The recall drops as the ResNet
architecture is further deepened to ResNet-152. The general consensus is that the larger
the convolutional neural network, the better the performance [46]. However, according
to the experimental results, there is no significant gain with increasing model size. We
consider that this is due to two reasons, (i) overfitting on small datasets, and (ii) spatial
inconsistency. In general, as the size of the model increases, with a sufficient dataset, the
capacity of the model increases, and so does its performance. However, in the case of
small datasets, as the model capacity increases, overfitting may incur. Secondly, as the
network size is increased, the spatial information becomes inconsistent due to the increase
in the receptive fields of the deeper filters. We believe that these two reasons constitute
the main reasons behind the low performance of deeper networks such as ResNet-152, in
comparison with simpler-CNN in terms of accuracy and precision.

4.2.3. Method 3: Proposed TSViT

We used TSViT configuration based on ViT [34], which is summarized in Table 2. The
“Base”, and “Large” models are adopted from ViT, while we added a variant called “Small”
in our experiments. In Tables 2 and 3, B, L and S stand for Base, Large and Small, while the
number written next to the model name, i.e., 256 and 512, represent the input frame size
512 × 512.

• Model variants.
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Table 2. Details of the various Vision Transformer architectures used in our experiments.

Model Layers Hidden Size D MLP Size Heads Params(M)

TSViT-S/256 6 1024 2048 16 448
TSViT-B/256 12 768 3072 12 516
TSViT-L/256 24 1024 4096 16 1408
TSViT-B/512 12 768 3072 12 1092
TSViT-S/512 6 1024 2048 16 1216
TSViT-L/512 24 1024 4096 16 2176

Table 3. Performance comparison of the proposed end-to-end TSViT-based tailing detection frameworks.

Tailing

Model Params (M) Accuracy (%) Precision Recall

TSViT-S/256 448 74.65 0.7631 0.8607
TSViT-B/256 516 71.35 0.7185 0.8886
TSViT-L/256 1408 73.09 0.7629 0.8245
TSViT-B/512 1092 76.56 0.7333 0.9805
TSViT-S/512 1216 74.65 0.7631 0.8607
TSViT-L/512 2176 73.09 0.7629 0.8245

• Training configurations. We trained all TSViT for 100 epochs using AdamW [47] with
β1 = 0.9, β2 = 0.999, weight decay = 0.01, and a batch size of 64. We performed five
ordered random sampling per video in each epoch. We performed grid search with a
learning rate in [0.0025, 0.1]. We used a learning rate with gradual warmup [48] up to
20 epochs and then cosine annealing decay [49] for the remaining epochs. For data
augmentation, we only used random horizontal flipping.

The overall comparison of Tables 1 and 3 reveals that the proposed TSViT method
outperform all CNN-based models. Transformer-based “Base” model TSViT-B/512 exhibits
the best accuracy of 76.56% in comparison with the 63.54% best accuracy of simple-CNN,
a 13.02% improvement. Similarly, the recall is improved from 91.92% of ResNet-101 to
98.05% of the TSViT-B/512 model, even with the smaller model size (1092 M vs. 2410 M
parameters). This shows that the transformer can have better inductive biases compared to
CNN by using temporal information in a better way of embedding time-series data frame
by frame. Third, the performance of Transformer-based models increases as the input
frame size is increased. This is because the self-attention layer in the transformer embeds
positional information from the input image [50], and thus, higher resolution translates to
more accurate positional embedding.

The proposed TSViT-based tailing detector shows a processing time of 7.69 millisec-
onds per sample (a sample consists of 9 frames), while the object detector exhibits a delay
of 23 milliseconds. Overall, the tailing decision is made within 30.69 milliseconds using
one GPU.

4.3. Effectiveness of the Proposed Sampling Method

In Table 4, we compare the performance of the proposed ORS method with the
sliding window-based sampling method. We trained the proposed TSViT tailing detection
algorithm with ORS method and then trained the TSViT with the sliding window-based
sampling method and reported the performance comparison in Table 4. Table 4 shows
the average performance of all the six implementations of TSViT (given in Table 2). It
is clear from Table 4 that the ORS method not only increase the amount of training data
by augmentation, but improves the performance over sliding window-based sampling
method. However, there is a small performance difference when observing the accuracy
and precision, but ORS shows a high performance gain in terms of recall.
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Table 4. Performance comparison between proposed ORS and the sliding window-based sampling method.

Model Accuracy (%) Precision Recall

TSViT with Sliding Window 71.03 0.7860 0.7362
TSViT with ORS 73.90 0.7506 0.8732

4.4. Discussion on Tailing Detection Performance with Model Size

We also performed a scaling study of different models. Since the recall is more
important factor in tailing detection, we compared recalls of these models. The model set
includes: five variants of CNN: (i) Simple-CNN, (ii) Simple-ResNet, (iii) ResNet50/512, (iv)
ResNet101/512, (v) ResNet152/512; and six variants of TSViT: (i) TSViT-S/256, (ii) TSViT-
B/256, (iii) TSViT-L/256, (iv) TSViT-B/512, (v) TSViT-S/512, (vi) TSViT-L/512. In the
case of TSViT, the recall drops as the network size increases, except for TSViT-S/256 (see
Figure 7). We believe that this is related to the fewer attention heads and smaller number
of hidden layers in TSViT-B/256 and TSViT-B/256, compared with TSViT-S/256. On the
other hand, for CNN variants, ResNet-101 shows very little improvement over ResNet-50
considering the increase of its model size. However, further increasing the network to
ResNet-152 reduces the performance, as shown in Figure 7.

Figure 7. Performance of each network according to model size.

Generally, CNN-based methods perform better when they are fed with contextual
information, and CNN makes the relationship between context and the tasks in the deeper
layers. However, in our implementation, we only use one-hot encoded frames to represent
location, which contains little contextual information. Moreover, the granularity of the
location information degrades, because of the presence of max-pooling layers in the CNN,
and thus resulting in performance degradation with deeper CNNs. Figure 8 illustrates the
phenomena of increasing receptive field as we go deeper into the network.
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Figure 8. A very small region (yellow) in layer 3 represents a large receptive field (yellow and green
grids of layer 1), resulting in loss of spatial information. Moreover, the bigger receptive field in layer
1 (yellow and green) represents more contextual information, which negatively affect the tailing
detection performance as discussed in Section 3.2.

On the other hand, TSViT performance drops when the attention heads are increased.
According to [34], attention distance is analogous to receptive field size in CNN. As depth
increases, attention distance increases for all heads. This leads to using more context
information, and thus negatively affects the performance of the TSViT.

5. Conclusions and Future Work

In this paper, a method of tailing detection based on Vision Transformer is proposed,
which is an end-to-end trainable framework. Tailing or following someone is an unwanted
social behavior that can lead to extreme crimes such as abduction, assault or snatching.
The proposed method models the tailing detection as an anomaly detection problem,
where the tailing event can be captured as spatiotemporal characteristic patterns in time-
series image data. With the help of the proposed ordered random sampling method, we
leveraged the low probability constraint associated with the abnormal event in the training
of the proposed Vision Transformer-based tailing detector. We also removed the context
dependency from the proposed tailing detector by encoding location information into
one-hot patterns, and passing them to the Vision Transformer using the token embedding
method. This paper also introduced a challenging tailing detection data set, composed of
scenes of pedestrians mimicking normal and tailing situations.

We present two baseline methods, (i) a rule-based method that computes the similarity
between the location patterns of the pedestrians using cosine and trajectory similarity,
(ii) a CNN-based method that takes multiple input frames using multiple channels. A
comparison of the performances showed the significance of the proposed method. The
tailing detection performance of TSViT was further improved by regularizing the model
through the ordered random sampling method that can address the small dataset problem.

We believe that this paper presents the first step towards computer vision-based tailing
detection, and the evaluations given in this study can be a guideline for future research in
this area. The proposed work has a great potential in the field of computer vision-based
surveillance. The proposed system can also be used in automatically identifying potential
areas of criminal activity. Future efforts will aim towards using auto-augmentation methods
to cope up against data scarcity, imposing more constraints on the visual cues to identify
tailing events, borrowing key concepts from human-interaction recognition for tailing
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detection, and an analysis of the effects of image sequence length on the performance and
processing speed.
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