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Abstract: Diffusion is a well-known physical phenomenon governing such processes as movement
of particles or transportation of heat. In this paper, we prove that a close analogy to those processes
exists in medical data behavior, and that changes in the values of medical parameters measured while
treating patients may be described using diffusion models as well. The medical condition of a patient
is usually described by a set of discrete values. The evolution of that condition and, consequently, of
the disease has the form of a transition of that set of discrete values, which correspond to specific
parameters. This is a typical medical diagnosis scheme. However, disease evolution is a phenomenon
that is characterized by continuously varying, temporal characteristics. A mathematical disease
evolution model is, in fact, a continuous diffusion process from one discrete slot of the diagnosed
parameter value to another inside the mentioned set. The ability to predict such diffusion-related
properties offer precious support in diagnostic decision-making. We have examined several hundred
patients while conducting a medical research project. All patients were under treatment to stabilize
their hemodynamic parameters. A diffusion model relied upon simulating the results of treatment
is proposed here. Time evolution of thoraric fluid content (TFC) has been used as the illustrative
example. The objective is to prove that diffusion models are a proper and convenient solution for
predicting disease evolution processes. We applied the Fokker-Planck equation (FPE), considering it
to be most adequate for examining the treatment results by means of diffusion. We confirmed that
the phenomenon of diffusion explains the evolution of the heart disease parameters observed. The
evolution of TFC has been chosen as an example of a hemodynamic parameter.

Keywords: Fokker-Planck equation; diffusion; heart failure; impedance cardiography; thoracic
fluid content

1. Introduction

The current state of the art in predicting disease evolution may be summarized in
the following manner. Hemodynamic assessment procedures are widely described in the
literature, primarily by means of biological models for flow or response functions [1–4].
Numerous investigations aimed to estimate the risk of heart failure by relying on common
statistical data processing tools and regression models [5–7]. Highly illustrative investiga-
tions were proposed by Lassnig at al. [8]. Other clinical prediction models (CPMs), also
known as clinical prediction scores or rules, are used to estimate the risk of an existing
disease (diagnostic prediction model) or future outcomes (prognostic prediction model) for
a given individual and consist of analyzing the values of numerous predictors (prognostic
or risk factors), such as age, sex, and biomarkers [9–12]. Generic prediction models are
widely used in adult intensive care medicine. These include, for instance, acute physiology
and chronic health evaluation (APACHE) II, APACHE III, APACHE IV, simplified acute
physiology score (SAPS) II, SAPS 3, and mortality probability model III [13]. So, different
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predictive approaches are present in the literature. The results presented in there are orga-
nized in accordance with risk analysis, and such an approach does not allow us to simulate
disease evolution. The following question arises: are we able to simulate the evolution of
hemodynamic parameters during medical treatment? In this paper, we propose a model
explaining the rules of hemodynamic parameter evolution in patients with heart failure.
Simulation of the disease evolution seems to be possible with the presented approach.

The activities undertaken may be divided into experimental and theoretical phases.
In the experimental phase of the project, a multicenter, prospective, randomized, open-
label, and controlled, parallel group trial was conducted (ClinicalTrials.gov Identifier:
NCT03476590). Here, 605 patients suffering from heart failure were recruited to partici-
pate in the project. In the theoretical phase, we propose to describe the behavior of the
hemodynamic parameters measured by relying on diffusion models.

In Section 2, experimental observations and analyses are presented. Section 3 presents
theoretical models describing the diffusion phenomena. Section 3 contains the results
of confrontation theoretical models with experimental data. Finally, Section 4 contains a
summary and a discussion.

The achieved aim is the creation of a continuous, differential model for disease evolution.

2. Experimental Data

The experimental data used in this study were sourced from the AMULET research
project [14], under which a multicenter, prospective, randomized, open-label and controlled,
parallel group trial was conducted (ClinicalTrials.gov Identifier: NCT03476590) at nine
locations throughout Poland. In total, 605 patients with heart failure were recruited. To our
study, we examined electrocardiogram (ECG—electrocardiogram) and impedance (ICG—
impedance cardiogram) curves recorded with the use of an ICG device (Cardioscreen
2000, Medis, Illmenau, Germany). This non-invasive diagnostic method allows one to
collect a set of specific hemodynamic parameters, such as: heart rate (HR—heart rate),
diastolic and systolic blood pressure (DBP—diastolic blood pressure, SBP—systolic blood
pressure), stroke volume (SV—stroke volume), and thoracic fluid content (TFC—thoraric
fluid content). In our analysis, TFC has been used as an illustrative example. The value of
TFC is the inverse of chest impedance with unit (1/Ohm).

TFC values were measured during a clinical examination of 605 patients, performed
in a relaxed, seated position [14]. The total number of measurements made is 2860, with
the number of individual patient observations differing for each patient within the mea-
surement set. The results registered are illustrated in Figure 1. At least half of the patients
were investigated several times, with the observation period lasting for up to 12 months
per patient.

All intervals of the investigated TFC value have been divided arbitrarily into 15 dis-
crete value slots, as shown in Figure 1. The assumed number of slots must be greater than
five to allow statistical analysis (especially χ2 tests) but not too high to avoid complexity
of calculations. With computer calculation, we estimate that 15 slots allow an acceptable
accuracy of calculations. The time series was registered as follows: due to the irregular
flow of the measured data, we adopted a registration period that was 31 days long for
each slot. The result of the measurement was placed inside a given slot if number of days
between the sequenced examination of the patient remained within the k ± 0.5 range, with
k being the duration of the registration period between measurements. Each slot includes
hits counted during measurements registered over a five-month period. Hits registered
during each single measurement period are illustrated below.

One can observe that, for the increasing ∆t, the total number of TFC hits registered
tends to have the same stationary distribution of TFC, as shown in Figure 1. We assumed
that the period of 5 months during which the measurements were made (see Figure 2 and
comments to Figure 1) is sufficient for proper estimation of stationary distribution.
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3. Theoretical Model and Calculation

The Fokker-Planck equation with one variable (here, variable x denotes the TFC value)
has the following form [15]:

∂P
∂t

=

[
− ∂

∂x
D(1)(x) +

∂2

∂x2 D(2)(x)
]

P (1)

In this equation, D(2) (x) > 1 is the diffusion coefficient, and D(1) (x) is called the drift
coefficient. In general, both coefficients may also depend on time. The equation describes
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behavior P(x, t), i.e., the P(x, t) is distribution of probability. We assumed stochastic process
characterizes the linear drift coefficient, and the diffusion coefficient is constant.

∂P
∂t

= γ
∂(xP)

∂x
+ D

∂2

∂x2 P (2)

In our experiment, drift γx is present due to therapy data registration, so drift presence
is necessary. Diffusion describes the transition between slots of parameter values measured.
A solution of Equation (2) is of the form [15]:

P
(

x, t
∣∣x′, t′

)
=

√
γ

2πD
(
1− e−2γ(t−t′)

) exp

−γ
(

x− x′e−γ(t−t′)
)2

2D
(
1− e−2γ(t−t′)

)
 (3)

Green function (3) of Equation (2) is one of the basic ways for system dynamic descrip-
tion [15,16]. The stationary solution for γ > 0 and a sufficiently long-period γ(t − t′) >> 1
takes the following form:

W(x) =
√

γ

2πD
exp
(
−γx2

2D

)
(4)

For γ ≤ 0, no stationary solutions exist. Formal mathematical procedures enable us
to find coefficients γ and D with a normalization condition and a boundary condition.
Due to the existence of a stationary shape of W(x) distribution obtained in the experiment,
we can assume that the boundary conditions are properly fulfilled despite not being fully
established in the formal way. In such a situation, the assumption that coefficients γ and
D are well-matched by means of conjugated gradient algorithm and, simultaneously, to
minimize root mean square error (RMSE) between the experiment data and the theoretical
model (4) is permissible.

The set of solutions for W(x) is placed in Table 1, where local and global minima have
been shown for the illustrative subset of γ and D. The shape for stationary distribution
with γ and D for the global minimum is presented in Figure 3.

Table 1. Illustrative values of RMSE, with the global minimum highlighted in bold print obtained by
means of conjugated gradient algorithm.

RMSE γ D

0.09810952 0.4 11.99

0.09838436 0.06 1.75

0.09811257 0.2 5.99

0.09811050 0.3 8.99

The results obtained with the conjugated gradient solution are placed in Table 1. The
global minimum is placed in the first row of Table 1.

The green function of FPE with adjusted γ and D values, and stationary distribution
W(x′) is applied to determine P(x, t) distribution in accordance with:

P(x, t) =
∫

P
(

x, t
∣∣x′ − x0

)
W
(

x′ − x0
)
dx′ (5)

Distribution P(x, t) allows us to verify if the calculated and measured evolution of
TFC values is statistically convergent by conducting an χ2 test. Item x0 is commonly the
maximum observed value of W(x′) or may also be the boundary point. A comparison of the
theoretical P(x, t) with the experiment’s results is presented in Table 2, and the outcomes of
statistical tests are shown in Table 3.
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Table 2. The TFC slots filling obtained during measurements (see also Figure 2) and values predicted with P(x, t).

TFC Slot
Number

Observation Period
t2–t1

Observation Period
t3–t2

Observation Period
t4–t3

Observation Period
t5–t4

Registered
hits of TFC

Predicted
TFC hits

Registered
hits of TFC

Predicted
TFC hits

Registered
hits of TFC

Predicted
TFC hits

Registered
hits of TFC

Predicted
TFC hits

1 19 18.9475 23 22.8236 40 29.9024 48 28.6218

2 27 31.5513 31 39.8768 55 55.6347 59 55.9634

3 33 40.8633 47 53.8865 75 79.7512 84 84.2399

4 43 39.6876 51 55.9473 91 87.9519 102 97.5805

5 46 37.5247 65 54.1467 100 86.493 104 97.1694

6 39 39.6876 49 55.7919 67 83.7667 71 89.5681

7 42 40.8643 49 44.0522 69 62.3851 75 63.5276

8 26 31.5513 35 15.541 47 20.981 49 20.549

9 17 10.9594 22 19.0808 24 24.5837 24 23.2358

10 15 13.509 22 7.9594 29 9.5469 29 8.5716

11 17 5.8755 22 2.5746 25 2.8579 25 2.4346

12 10 0.7917 14 0.7780 16 0.6587 17 0.5322

13 6 0.5562 8 0.6613 10 0.1285 10 0.0982

14 3 0.1235 3 0 3 0 3 0
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Table 3. Calculations of χ2 test for sequence of period of measurement.

Time Period in
Experiment χ2 Test Value

Number of Independent
Variables

Significance Level
(Critical Value α)

t2–t1 314,375 14 α = 0.005

t3–t2 570,858 14 α < 0.001

t4–t3 811,461 14 α < 0.001

t5–t4 922,901 14 α < 0.001

4. Discussion and Conclusions

Claiming that hemodynamic parameter values measured in a population of patients
behave in accordance with the rules of drifted diffusion, we have identified a step-by-step
procedure allowing to verify such a statement. From the green function of FPE, we obtained
stationary distribution W(x) of the thoracic fluid content (TFC) parameter observed, and by
minimizing RMSE between the theoretical model and the experimental observations of
stationary distribution, we adjusted the parameters of the stochastic process with the use
of conjugated gradient algorithms. It turned out that the resulting form of the stochastic
process is the Ornstein–Uhlenbeck process. So, we found the Ornstein–Uhlenbeck diffusion
process as a model for medical treatment of heart failures. From the analytical form of the
FPE solution (green function of FPE), we determined the “ex definition” distribution P(x, t)
for the observed hemodynamic parameters and determined dynamics of TFC evolution.
The last step had the form of a statistical χ2 test, aiming to accept or to reject the proposed
theoretical model. The χ2 test confirms the accepted level of efficiency of the theoretical
model of the Ornstein–Uhlenbeck process, describing TFC evolution.

Finally, we may conclude that the diffusion processes have turned out to be useful
tools for predicting disease evolution. We have also proved that:

1. The Ornstein–Uhlenbeck process, including the linear drift component, seems to be a
precise tool for simulating the evolution of TFC and, supposedly, other hemodynamic
parameters, also during medical treatment.

2. We obtained the distribution P(x, t), allowing us to predict and simulate TFC evolution.
3. Parameter γ describes the effectiveness of medical treatment in the population of

patients, thus being a mathematical measure of such treatment effectiveness that is
worth being analyzed in a more thorough manner, e.g., by focusing on variations
depending on sex, occupation, age, severity of heart failure in accordance with the
NYHA standard, etc.

The idea of diffusion occurring inside a potential force field is deeply exploited in solid
state physics and quantum electronics [16–22], but its successful application in medical
diagnostics seems to be a new approach that suggests, to some extent, the existence of
a “hidden general symmetry” between physics and biology as well. Diffusion theory is
relevant not only for microscopic observations made in physics, but also for much larger
scale phenomena, e.g., in medicine. In medicine, fluctuations take place due to multiple
and multilevel interactions occurring in the patient’s system. Such fluctuations are hard to
describe in a precise manner, although their presence seems to be obvious.

The results presented herein are based on data processed during a medical experiment
and, to the best of the authors’ knowledge, form the first model of its type proposed in
medical diagnostics. The results we obtained allows us to predict the time evolution of TFC.
Simultaneously, we have confirmed that the fluctuation theory, reflected here by means of
FPE, is an inherent element of medical diagnostic processes.

It must be underlined that prospective validation of the model is continued now
in collaborative clinics under Amulet project. We do suppose that limitations of the
model will be analyzed during further validation. An evident strength of the model is its
continuous, differential model of disease evolution. As far as authors know, it seems to be
a new approach.
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