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Abstract: This paper presents a novel parameter identification and uncertainty quantification method
for flutter derivatives estimation of bridge decks. The proposed approach is based on free-decay
vibration records of a sectional model in wind tunnel tests, which consists of parameter identifica-
tion by a heuristic optimization algorithm in the sense of weighted least squares and uncertainty
quantification by a bootstrap technique. The novel contributions of the method are on three fronts.
Firstly, weighting factors associated with vertical and torsional motion in the objective function
are determined more reasonably using an iterative procedure rather than preassigned. Secondly,
flutter derivatives are identified using a hybrid heuristic and classical optimization method, which
integrates a modified artificial bee colony algorithm with the Powell’s algorithm. Thirdly, a statistical
bootstrap technique is used to quantify the uncertainties of flutter derivatives. The advantages of
the proposed method with respect to other methods are faster and more accurate achievement of
the global optimum, and refined uncertainty quantification in the identified flutter derivatives. The
effectiveness and reliability of the proposed method are validated through noisy data of a numerically
simulated thin plate and experimental data of a bridge deck sectional model.

Keywords: flutter derivatives; bridge deck; artificial bee colony; bootstrap; weighting factors

1. Introduction

As one kind of flexible structures, long-span bridges tend to vibrate greatly under
wind load. One of the most important wind-induced vibration phenomena is the flutter
since it is tightly linked to the safety of bridges. The safety margin for flutter must be
carefully evaluated during the design process. Although CFD and AI-based methods can
predict the wind pressure and vibration response of structures [1–3], wind tunnel tests are
still the main research tool for evaluating the wind resistance performance of structures
and will last for a period in the future [4]. The sectional model test is a common method of
wind tunnel testing. In sectional model tests, representative models of a bridge deck with
aerodynamic and geometrical similarity are elastically suspended in the wind tunnel, and
their behavior in the wind flow can be extrapolated to full scale.

For flutter studies, a semi-empirical model characterizing the motion-dependent
self-excited forces was first introduced by Scanlan in the 1970s [5]. In this model, the
self-excited forces are functions of the flow speed, vibration frequency, and state vector,
while the coefficients in front of the state vector are called flutter derivatives because they
are essentially the first partial derivatives of the self-excited forces with respect to the state
vector. To estimate the flutter derivatives in Scanlan’s model, free decay vibration, forced
vibration, or random vibration sectional model wind tunnel tests are usually performed.
The free decay vibration method measures the bending-torsion coupled free vibration
response of the sectional model under no wind and in wind flow, and then extracts the
flutter derivatives from the free vibration response. The forced vibration method refers to
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the use of a special mechanical device to drive the model to do harmonic vibration with a
controllable frequency and amplitude; directly measure the vibration signals, such as the
aerodynamic force, acting on the model and displacement or acceleration of the model;
and then directly perform spectral analysis or time-domain analysis on the measured
aerodynamic force and vibration signals to obtain the flutter derivatives. Traditionally,
flutter derivative identification is carried out in uniform flow, and the effect of turbulence
is ignored. Turbulence will alter the flow pattern around the section, which will affect
the identification of the flutter derivatives. The random vibration method is to identify
the flutter derivatives of the bridge deck by sectional model wind tunnel test in the grid-
generated turbulence field. Either traditional eight flutter derivatives related to vertical
bending and torsional motion from a two-degree-of-freedom (2DOF) sectional model or
18 flutter derivatives including additional sway motion from a 3DOF model are obtained.
Among these three kinds of flutter derivative extraction methods, the free-decay vibration
approach is the simplest one; for this reason, it is widely adopted and will be the focus of
the present work. This method was first proposed by Scanlan and Tomko [5], using first
two SDOF free-decay tests to extract the direct derivatives (H∗1 , A∗2 , A∗3) and then a coupled
2DOF free-decay test to extract cross-derivatives (A∗1 , H∗2 , H∗3 ). Sarkar et al. [6] proposed a
system identification procedure designed to estimate eight derivatives simultaneously by a
single 2DOF free-decay test. Gu et al. [7] proposed the unifying least squares (ULS) method
to extract flutter derivatives, where a unified error function combining vertical and torsional
motion was employed. In order to balance the vertical and torsion signals, Ding et al. [8]
were the first researchers who introduced weighting factors into the ULS method for flutter
derivative identification. Later, Li et al. [9] proposed the weighting ensemble least-square
method (WELS) to extract flutter derivatives of bridge decks. Bartoli et al. [10] modified
the ULS method by introducing proper weighting factors in the unified error function
and enhancing the iterative solving procedure. The iterative scheme in the ULS was also
enhanced by Xu et al. [11] using an improved stochastic search algorithm.

Most of the methods mentioned above are based on least squares. The flutter deriva-
tives are extracted by minimizing the residual between measured signals and predicted
responses. In these methods, the parameters are identified from the residuals related to
vertical bending and torsional motion separately [5], or the sum of them without or with
weighting factors [7,9,10]. By utilizing weighting factors in the objective function, the
accuracy of the identification results is improved. However, the weighting factors used
in the previous methods are preassigned, which may not be optimal. In contrast, in this
paper, the weighting factors are optimized using an iterative procedure.

Generally, the flutter derivatives are extracted by solving an optimization problem, in
which a good initial guess of the parameters is usually required, so that difficulties may
arise to obtain a sound result when a poor initial value is used. Indeed, some researchers
used the Modified Ibrahim Time Domain (MITD) approach [6,7] or the covariance block-
Hankel matrix (CBHM) method [12,13] to determine the initial values of system parameters
when identifying flutter derivatives of bridge decks. The results may not be accurate
enough but are good enough to be the initial values. However, an extra step is required
to determine the initial values in these methods. Therefore, methodologies based on
heuristic search algorithms without initial values can be employed for this purpose. Several
heuristic stochastic algorithms for global optimization have been developed in recent years,
such as particle swarm optimization, harmony search algorithm, ant colony optimization,
firefly algorithm, differential evolution algorithm, and gravitational search algorithm, etc.
Besides the above-mentioned algorithms, in 2005, Karaboga [14] proposed a novel swarm
intelligence algorithm, i.e., the artificial bee colony (ABC) algorithm, to solve complex
numerical optimization problems. ABC is a heuristic optimization algorithm with the
advantage of simple structure, convenient implementation, and good stability. For a good
optimization algorithm, two search capabilities of exploitation and exploration need to
be balanced. Exploitation is the behavior of probing a local region of the search space
by fine-tuning, with the hope of improving a promising solution that we already have at
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hand. Exploration is the behavior leading to disengagement from the current solution by
probing a larger search space for alternatives, with the hope of finding other promising and
needing to be further refined solutions. However, the standard ABC algorithm is strong in
exploration but weak in exploitation, which has greatly affected its performance. In truth,
it is a critical issue for such a kind of heuristic search algorithm to keep a proper balance
between the exploration and exploitation. Aiming at these problems, this paper introduces
a modified ABC algorithm with Powell’s method (MABC-Powell) to solve the optimization
problem, where the standard ABC is enhanced by several modifications [15–18].

It is noted that only a single optimal estimate of flutter derivatives can be made for
one set of test data for most of the methods, and repeated tests for wind tunnel tests
are only limited to some cases [19]. Moreover, due to the effects of flow turbulence,
measurement noise, and mathematical model error, the estimation of flutter derivatives
shows dispersed results in repeated experiments. Subsequently, if mishandled, the inherent
uncertainty can lead to estimation errors. Uncertainty quantification is crucial to flutter
reliability analysis [19–23] and reliability-based optimum design [24–26] of bridges. In
order to properly quantify the uncertainties in the identified flutter derivatives, a statistical
tool termed as bootstrap is proposed to determine the statistical characteristics of flutter
derivatives [27].

In this study, an enhanced identification method of flutter derivatives of bridge
decks is proposed. The proposed method has new improvements in the following three
aspects: (1) the weighting factors are optimized in an iterative procedure; (2) an improved
heuristic algorithm termed MABC-Powell is proposed for flutter derivatives identification;
and (3) a bootstrap scheme is proposed for parameter uncertainty quantification. The
proposed method is validated with simulated data of a thin plate and experimental data of
a bridge deck.

2. Optimization Formulation of Flutter Derivatives Identification

According to Scanlan’s model for flutter analysis, a 2DOF linear oscillator representing
the bridge deck section vibrating in vertical displacement h(t) and torsional angle α(t) is
shown in Figure 1. The equations of motion can be written as follows:

m(
..
h + 2ζhωh

.
h + ω2

hh) = Lh (1)

I
( ..

α + 2ζαωα
.
α + ω2

αα
)
= Mα (2)

where m and I are the mass and mass moment of inertia per unit length; ωh and ωα are
the circular frequencies of the vertical bending and torsional modes; ζh and ζα are the
damping ratios of the vertical bending and torsional modes; Lh and Mα are the lift and
pitching moment per unit length. Generally, the terms of the lift and pitching moment on
the right-hand side involve three components of mean, buffeting, and self-excited forces;
nevertheless, for free vibration tests, only the self-excited forces are retained since the
motion is dominated by free decaying vibration around a mean position and thus the load
due to signature turbulence can be neglected. The self-excited forces Lse and Mse can be
expressed in Scanlan’s form as follows:

Lse =
1
2

ρU2B[KH∗1 (K)

.
h
U

+ KH∗2 (K)
B

.
α

U
+ K2H∗3 (K)α + K2H∗4 (K)

h
B
] (3)

Mse =
1
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.
h
U

+ KA∗2(K)
B

.
α

U
+ K2 A∗3(K)α + K2 A∗4(K)

h
B
] (4)

where ρ is the air density, H∗i and A∗i (i = 1, 2, 3, 4) are the flutter derivatives, B is the deck
width, U is the mean wind velocity, and K = Bω/U is the reduced frequency of oscillation.
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Substituting Equations (3) and (4) into Equations (1) and (2), respectively, yield:

..
h + 2ζhωh

.
h + ω2

hh = H1
.
h + H2

.
α + H3α + H4h (5)

..
α + 2ζαωα

.
α + ω2

αα = A1
.
h + A2

.
α + A3α + A4h (6)

where H1 = 1
2 ρB2ωH∗1 (K)/m, H2 = 1

2 ρB3ωH∗2 (K)/m, H3 = 1
2 ρB3ω2H∗3 (K)/m, H4 =

1
2 ρB2ω2H∗4 (K)/m, A1 = 1

2 ρB3ωA∗1(K)/I, A2 = 1
2 ρB4ωA∗2(K)/I, A3 = 1

2 ρB4ω2 A∗3(K)/I,
A4 = 1

2 ρB3ω2 A∗4(K)/I. Rewriting Equations (5) and (6) in matrix form, yields:

..
x + C

.
x + Kx = 0 (7)

where x = [h, α]T, C =

[
2ζhωh − H1 −H2
−A1 2ζαωα − A2

]
, K =

[
ω2

h − H4 −H3
−A4 ω2

α − A3

]
. Using

a state vector y = [x,
.
x]T , Equation (7) can be rewritten in state-space form as follows:

.
y = Ay (8)

where A = [O, E; −K, −C], O is a 2 × 2 zero matrix and E is a 2 × 2 identity matrix. The
flutter derivatives are involved in matrix A, and the free vibration response can be obtained
by solving Equation (8). Neglecting the aerodynamic damping and stiffness in still air, the
aerodynamic matrices are obtained by comparing the measured matrices in wind flow and
in still air.

The predicted free-vibration time histories of vertical displacement h(t) and torsional
angle α(t) can be expressed as follows:

h(t) =
2

∑
i=1

eait(cicosbit + disinbit) (9)

α(t) =
2

∑
i=1

eait(eicosbit + fisinbit) (10)

where the four parameters ai and bi are determined by the complex conjugate eigenvalues
of matrix A in Equation (8), λi = ai + ibi, λ∗i = ai − ibi; the other eight parameters ci, di, ei,
and fi are determined by the initial conditions.

Let the data length of one set of measured vertical displacement signal ĥ and torsional
angle signal α̂ be N, the error vectors between measurements and predictions can be
expressed as follows:

{eh}T = {h1 − ĥ1, h2 − ĥ2, . . . , hN − ĥN} (11)

{eα}T = {α1 − α̂1, α2 − α̂2, . . . , αN − α̂N} (12)
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If the tests are repeated for M times at the same wind speed, and then M sets of
free-vibration records are available, the total residual error function takes the form:

J =
M

∑
m=1

whm{ehm}T{ehm}+
M

∑
m=1

wαm{eαm}T{eαm} (13)

where whm and wαm are the weighting factors for vertical bending and torsional motion
of the mth free-vibration records, respectively. In the previous methods, the weighting
factors were almost preassigned by experience and intuition. For example, in the weighted
ensemble least squares method [9], the weighting factors are chosen as the ratio of
maximum of root-mean-square (RMS) values to the corresponding RMS of the free-
vibration time history so as to balance the relative errors between them. In the MULS
method [10], the weighting factors are chosen based on the transformation of torsional
angles from vertical displacements of the section leading edge. Herein, instead of using
preassigned weighting factors, we propose using optimal weighting factors, which are
determined iteratively. Christodoulou and Papadimitriou carried out a strict theoretical
derivation of the optimal weighting factors in the weighted least squares method [28].
They showed that the optimal weighting factor of a residual group in the objective
function is asymptotically, for a large number of measured data, inversely proportional
to the residual group value of the optimal parameters. The general weighted least
squares objective function can be written as:

J(θ, w) =
M

∑
m=1

wm Jm(θ) (14)

where Jm(θ) is a function of unknown parameters θ related to a specific group of residuals,
and wm is the associated weighting factor. The optimal value of wm in Equation (14) is
given by:

ŵm =
γm

Jm(θ̂opt)
(15)

where θ̂opt is the estimated optimal value of θ with regards to minimization of Equation (14),
and γm is a scale parameter representing the ratio of data volume in each residual group. Let
Nm denote the number of data in the mth group of data, then the total number Nt = ∑ Nm,
γm = Nm/Nt, satisfying ∑ γm = 1. However, the optimal value ŵm given in Equation (15)
is a function of the optimal parameter vector θ̂opt to be determined, which cannot be
obtained directly and can only be solved iteratively. The initial values of ŵm can be set to
1/M. Solving Equation (14) by using an optimization method, a temporary optimal value
θ̂opt is obtained, and then the new weight factor ŵm is recalculated by using Equation (15).
This procedure is repeated several times until a convergence criterion is satisfied. This
procedure is depicted in Figure 2. The optimization method utilized is described in the
next section.
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3. Artificial Bee Colony Algorithm
3.1. Standard ABC Algorithm

Inspired by bees’ nectar collecting behavior in nature, the optimization process of
the ABC algorithm is based on the mechanism of searching for the best nectar source. In
the ABC algorithm, the location of a nectar source stands for a possible solution to the
optimization problem, and the amount of nectar represents the fitness of the corresponding
solution. In applying the ABC algorithm to the flutter derivatives identification problem,
finding the possible “best” nectar source is equivalent to finding the optimal solution
corresponding to Equation (13).

In the ABC algorithm, the artificial bee swarm consists of three types of bees: employed
bees, onlooker bees, and scout bees. The number of solutions in the population is equal
to half of the total bee number: the first half of the swarm are employed bees, while the
second half are the onlooker bees. The algorithm begins with a population of size SN (X1,
X2, . . . , XSN), which are randomly sampled from the parameter space, and each cycle of
the search consists of three steps: employed bee phase, onlooker bee phase, and scout
bee phase.

In the employed bee phase, a new nectar source Vi is produced based on its preceding
position Xi by a solution search equation as follows. In vector components, this can be
written as:

vij = xij + φij

(
xij − xkj

)
(16)

where k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are randomly chosen indexes, and D is
the number of optimization parameters; k has to be different from i, and φij is a random
number in the range [−1, 1]. If Vi is better than Xi, then Xi is replaced with Vi; otherwise,
the old nectar source Xi is retained.

In the onlooker bee phase, an onlooker bee chooses a nectar source depending on the
probability value pi associated with the nectar amount of that nectar source:

pi =
f iti

∑SN
j=1 f itj

(17)

where fiti is the fitness value of solution i. The fitness value is calculated as f iti = 1/(1 + J),
and J is the value of total residual error function in Equation (13).

Finally, in the scout bee phase, a nectar source is considered depleted and discarded
when it remains unchanged for a predefined limit number of times. If the nectar source
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Xi is abandoned, then a new nectar source will be chosen by the scout bee at random, as
shown below:

xij = xlb
j + rand(xub

j − xlb
j ) (18)

where rand is a random number uniformly distributed within the range [0,1], and [xlb
j , xub

j ]

is the boundary constraint for the jth variable.
The pseudo-code of the standard ABC algorithm is given in Appendix A (Algo-

rithm A1).

3.2. Modified ABC Algorithm with Powell’s Method

Optimization algorithms have two behaviors: exploration and exploitation. Explo-
ration is the behavior of generating candidate solutions that are not adjacent to the current
solution to avoid local optimality, while exploitation is the behavior of searching for a better
solution in the neighborhood of the current solution. As a swarm intelligence algorithm,
the standard ABC algorithm is strong at exploration but weak at exploitation. To tackle
this problem, three modifications of the standard ABC algorithm are proposed to improve
its convergence and provide a good trade-off between exploration and exploitation. These
modifications involve solution updating with a best neighbor-guided approach and a
decaying factor, enhanced local search with Powell’s method, and Scout solution rebirth
with Gaussian mutation.

3.2.1. Modification I: Solution Updating with a Best Neighbor-Guided Strategy and a
Decaying Factor

As we all know, the solution updating strategy plays a crucial role in the optimization
process. For standard ABC, a candidate solution is generated according to Equation (16) by
imposing a perturbation on the original solution, where the perturbation is a product of a
random number and the difference between another random solution in the population
and the original solution, and it leads to good exploration but weak exploitation. In
recent years, new solution search strategies have been proposed, such as gbest-guided
search strategy [29], which takes the global best solution as the learning object and shows
good exploitation performance. However, the best information has both advantages and
disadvantages, as it improves the exploitation ability to speed up the convergence rate
but weakens the exploration ability to be apt to fall into the local optima. Therefore,
rather than using the global best solution, the best solution chosen from the neighboring
solutions of the current solution is used in the solution updating equation, which is called
the best neighbor-guided strategy [18]. It is noted that the neighbors are randomly selected.
Moreover, a nonlinear decaying factor is employed for convergence rate control to enhance
the balance between the global and local search at each generation [15]. The new solution
updating strategy is formulated as follows:

vi,j = xnbest,j + χiterφij

(
xnbest,j − xi,j

)
(19)

where Xnbest is the best solution selected from the N neighboring solutions of the current
solution Xi, and N is the number of neighbors (with N = 5 one gets fairly good results); χiter
is a nonlinear decaying factor to make the convergence rate to change nonlinearly with the
number of iteration steps, which is defined as:

χiter = 1−
∣∣∣∣ iter− δ

MCN

∣∣∣∣m (20)

where iter is the current iteration step number, MCN is the maximum step number, δ is
an integer ranging from 0 to MCN/2, and m is an exponent. By altering δ and m, the
convergence rate of the search process can be controlled properly. As suggested by Sun and
Betti [15], the choices of m and δ follow the rule that χiter starts to nonlinearly decrease not
any earlier than the 1/3MCN step and eventually reaches no less than 0.5. In this manner,
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the search will probe over the entire search space at early iterations and get into a local
search phase with faster convergence towards the end of the iteration process. The choice
of the MCN value should ensure that no better solution occurs after more iterations. A
large value can ensure that the algorithm obtains a good enough solution, but the larger
the value of MCN, the longer the computation time required. The proposed enhanced
algorithm improves the convergence speed and thus reduces the MCN value.

3.2.2. Modification II: Enhanced Local Search with Powell’s Method

We note that the ABC algorithm is good at global search, while Powell’s method [30]
has a strong local search ability. For the sake of fully utilizing the good exploitation ability
of Powell’s method and good exploration ability of the ABC algorithm, we adopt a hybrid
strategy, which combines ABC and Powell’s method in the optimization process [16]. The
main modifications of the hybrid strategy that differ from the pure ABC algorithm are
outlined as follows. Just after the onlooker bee phase, at the end of each T loop of ABC, a
local search is conducted with Powell’s method starting from a random position to find a
finer solution. Subsequently, the scout bee phase is carried out, and the steps above are
repeated until a predefined stop condition is satisfied.

3.2.3. Modification III: Scout Solution Rebirth with Gaussian Mutation

In the standard ABC algorithm, the discarded solution rebirth is carried out in the scout
bee phase by uniformly random sampling the parameter space, as shown in Equation (18).
This random nature is beneficial in the initial stage but might be ineffective in later iterations.
Herein, a Gaussian rebirth strategy is adopted in the scout bee phase by utilizing the
population information at the current stage:

xsc
l,j = xl,j + N(0, ς2

j ) (21)

where j = 1, 2, . . . , D, and l denotes the discarded solution; ςj is the standard deviation of
the jth parameter within the solution population.

Based on the previous elaboration, the pseudo-code of the proposed modified ABC
algorithm with Powell’s method (MABC-Powell) is given in Appendix B (Algorithm A2).

4. Bootstrap Scheme for Uncertainty Quantification

Generally, without repeated experiments, there is only one single estimate of flutter
derivatives by using the methods mentioned above or many others. However, due to the
effects of flow turbulence, measurement noise, and mathematical model errors, uncertain-
ties in the identified flutter derivatives is inevitable, especially in the free-vibration tests. In
effect, the estimation of flutter derivatives shows variations in multiple experiments [19]. If
one wants to accurately characterize the uncertainties associated with flutter derivatives, a
large amount of repeated tests should be performed, which is not economical and some-
times even impossible. In order to solve this problem, nonparametric resampling schemes,
such as bootstrap, can be adopted in these cases. Bootstrap is a nonparametric statistical
method that relies on random sampling with replacement. It can provide valid statistics
(mean, variance, confidence intervals, etc.) without the distribution assumption (such as
the normal distribution assumption) or sufficiently large samples [27]. Its core ideas and
basic steps are as follows:

• Repeated random sampling technique with replacement is used to extract a certain
number of samples from the original sample data;

• The estimated parameter of interest θ̂∗ is calculated based on the extracted samples;
• The steps above are repeated a large number of times, say N, to obtain N estimates

of θ̂∗;
• The sample statistics (mean, variance, confidence intervals, etc.) of the N samples

(θ̂∗1 , θ̂∗2 , . . . , θ̂∗N) are calculated, so as to quantify the uncertainty of the estimated
parameters.
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Based on the above description, the standard deviation σ̂∗θ of the samples (θ̂∗1 , θ̂∗2 , . . . , θ̂∗N)
is given as follows:

σ̂∗θ =

√√√√ 1
N − 1

N

∑
n=1

(θ̂∗n − θ
∗)2

(22)

where θ
∗

is the bootstrap mean, which is calculated as:

θ
∗
=

1
N

N

∑
n=1

θ̂∗n (23)

Moreover, in addition to the bootstrap mean and standard deviation, the probability
density function of θ can also be estimated based on the bootstrap ensemble (θ̂∗1 , θ̂∗2 , . . . , θ̂∗N).
The percentile confidence interval at level 1 − 2p is approximately given as:

[θ̂low, θ̂up] = [θ∗p, θ∗1−p] (24)

where θ∗p and θ∗1−p are respectively the (p·100)th and ((1 − p)·100)th empirical percentile
values.

In the system identification process, the bootstrap can be utilized by fully making use
of existing information to quantify the uncertainty [31–34]. In this study, combining with
the identification method introduced above, a bootstrap scheme is proposed to quantify the
uncertainty of the flutter derivatives. Figure 3 shows the proposed scheme. Firstly, repeated
free-vibration tests are performed L times for each angle of attack and wind velocity, and
L data sets of free-decay time histories are obtained as the sample population. Secondly,
a bootstrap sample of M free-decay time histories is generated by randomly drawing M
samples from the sample population. For a practical implementation of this process, firstly
number the L data sets, and then generate M random integers that is not smaller than
one and not greater than L. Finally take out M samples according to these numbers. N
bootstrap samples are obtained by N times of random sampling with replacement. Thirdly,
flutter derivative identification is carried out on each bootstrap sample of M free-decay
time histories using the proposed optimized weighted least square method with the MABC-
Powell algorithm, so that N sets of flutter derivatives are obtained. Lastly, the statistics of
the identified flutter derivatives (e.g., mean, standard deviation, and confidence intervals)
are calculated by Equations (22)–(24).
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5. The Whole Flow Chart of the Proposed Method

The whole flow chart of the proposed method is shown in Figure 4. Firstly, L free-
decay vibration response data sets are obtained by repeated sectional model wind tunnel
tests for L times. N bootstrap samples are obtained by bootstrap resampling technique.
Then based on the weighted least square principle, the objective function involving each
bootstrap sample is established and the optimal weighting factors are obtained by an
iterative procedure. When identifying the flutter derivatives by solving the optimization
problem, the proposed hybrid method of modified artificial bee colony algorithm and
Powell’s algorithm is adopted to improve the accuracy and convergence rate. Finally,
based on the set of flutter derivatives identified from each bootstrap sample, the mean and
standard deviation of flutter derivatives are calculated, thus not only the optimal value of
flutter derivatives, but also their uncertainties are obtained.
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6. Numerical Illustrative Examples
6.1. Benchmark Functions

The proposed MABC-Powell method is tested in the optimization solutions of six
well-known benchmark functions and compared with the standard ABC algorithm to
verify its performance. The details of these benchmark functions are listed in Table 1. In
the numerical experiment, the two algorithms are independently run 50 times for each
benchmark function. The common parameter settings of the two algorithms are consistent
(MCN = 1000, SN = 80, limit = 300). In MABC-Powell, the number of neighbors N is set
to 5; the parameters δ and m are set respectively to 150 and 5 in the nonlinear decaying
factor; and the number of cycles to launch Powell’s method T is set to 60. The computing
hardware of the numerical experiment was a desktop with 3.2 GHz Dual-core Processor
and 12 GB RAM, and the software environment was Windows 10 platform.
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Table 1. Test suite with six benchmark functions.

Name Function Search Range Accepted Accuracy

Sphere f1(X) =
n
∑

i=1
x2

i
[−100, 100]n 1× 10−8

SumSquare f2(X) =
n
∑

i=1
i·x2

i
[−100, 100]n 1× 10−8

Step f3(X) =
n
∑

i=1
(bxi + 0.5c)2 [−100, 100]n 1× 10−8

Exponential f4(X) = exp(0.5
n
∑

i=1
x2

i )− 1 [−1.28, 1.28]n 1× 10−8

Rosebrock f5(X) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−5, 10]n 5× 100

Alpine f6(X) =
n
∑

i=1
|xi· sin xi + 0.1·xi| [−10, 10]n 1× 10−8

Table 2 shows the experimental results (mean, maximum, and minimum) of the stan-
dard ABC and MABC-Powell algorithms for the six benchmark functions with dimension
equal to 30. It can be seen that, compared with the standard ABC algorithm, the MABC-
Powell algorithm proposed in this paper has better solution accuracy. Figure 5 shows
convergence lines for the six benchmark functions obtained with standard ABC and MABC-
Powell. It can be seen that, compared with the standard ABC algorithm, the MABC-Powell
algorithm has a better convergence rate and solution accuracy. Therefore, MABC-Powell
becomes an attractive method for the identification of flutter derivatives. It should be
pointed out that since the new algorithm adds an. additional Powell operator, it takes a
little more time for the same iteration step. For the Sphere function, 50 times were calcu-
lated with MABC-Powell and Standard ABC, respectively, 100 iterations per time, with an
average computational time of 1.207 s and 0.215 s per time, respectively. This increase in
computation cost is worth it because the computational accuracy is greatly improved.

Table 2. Accuracy comparison of standard ABC and MABC-Powell on the six benchmark functions with dimension D = 30.

Fun Precise
Value

ABC MABC-Powell

Mean Maximum Minimum Mean Maximum Minimum

Sphere 0 5.99 × 10−12 2.10 × 10−11 3.66 × 10−13 2.95 × 10−24 6.92 × 10−23 8.88 × 10−37

SumSquare 0 8.67 × 10−13 3.97 × 10−12 7.09 × 10−14 1.18 × 10−24 4.76 × 10−23 2.52 × 10−35

Step 0 5.43 × 10−12 1.52 × 10−11 6.40 × 10−13 1.25 × 10−23 5.76 × 10−22 0
Exponential 0 1.32 × 10−15 3.77 × 10−15 4.44 × 10−16 0 0 0
Rosebrock 0 0.312669 1.297957 0.029511 3.43 × 10−5 3.47 × 10−4 4.95 × 10−7

Alpine 0 0.000269 0.001712 3.90 × 10−5 8.67 × 10−7 3.57 × 10−6 7.29 × 10−8

6.2. Numerical Model of a Thin Plate

In order to verify the effectiveness and reliability of the proposed method in identify-
ing the flutter derivatives of the bridge deck, the numerical model of a theoretical thin plate
section was first employed. The following parameters were used for the numerical model:
the width of the thin plate model B was 0.45 m, the mass per unit length m was 11.25 kg/m;
the mass moment of inertia per unit length I was 0.2828 kg·m2/m; the frequency of vertical
bending mode was 1.9274 Hz; the frequency of torsional mode was 3.0239 Hz; and the
damping ratios of vertical bending and torsional modes were both 0.5%. Smooth oncoming
wind with 0º angle of attack was assumed. The air density ρ was set to 1.293 kg/m3.
In total, 20 sets of free-decay time histories were obtained for each wind speed, and a
random noise was superimposed to the simulated response. Three cases of noise level
were considered: 2%, 5%, and 10%. These 20 sets of data formed the sample population
for bootstrap sampling. The proposed method was used to identify all eight flutter deriva-
tives of the thin plate model. The control parameters in the MABC-Powell for numerical
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optimization were those specified in the numerical example with benchmark functions.
A bootstrap sample consisting of three sets of vertical bending and torsional time histories
was randomly selected from the sample population of 20 data sets. Therefore, there were
six weighting factors in the objective function: three for vertical bending signal residuals
(wh

1, wh
2, wh

3) and the other three for torsional signal residuals (wα
1 , wα

2 , wα
3). Figure 6 shows

the convergence lines for the six weighting factors for three cases of noise level at a wind
velocity of 8 m/s. It is observed that only three iterations are needed for the convergence
of weighting factors. In addition, the weighting factors related to torsional signal residuals
are generally smaller than those related to vertical bending signal residuals. Please note
that the unit of vertical displacement and torsional angle signal is m and rad, respectively.
This is probably because the magnitude of torsional signal residuals is larger than that
of vertical bending ones. According to Equation (15), the optimal weighting factors are
inversely proportional to the related residuals, so the larger the residuals, the smaller the
corresponding weighting factors.
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The number of bootstrap samples is 500, i.e., random sampling with replacement was
performed 500 times on the population of 20 data sets, and each bootstrap sample consists
of three vertical bending and torsional angle time histories. Consequently, the identification
process using the proposed method was repeated 500 times, and 500 sets of identified
flutter derivatives were obtained. Through statistical analysis of the identified results,
mean and standard deviations were obtained. The comparison between flutter derivatives
identified by the proposed method and the theoretical values [5] is shown in Figures 6–8.
The mean and the mean plus or minus two times the standard deviation are shown in the
figures. In the case of low noise level (2%, Figure 7), the calculated mean values are nearly
perfectly consistent with the theoretical values, and the standard deviations are very small
except for H∗2 , H∗4 , and A∗4 at higher wind velocities. In the case of medium noise level (5%,
Figure 8), the mean values also agree well with the theoretical counterparts, except for A∗4 ,
which shows small deviations from its theoretical value, while relatively large standard
deviations are found for H∗1 , H∗2 , H∗4 , A∗1 , A∗2 , and A∗4 at higher wind velocities. Finally, in
the case of high noise level (10%, Figure 9), the mean values still agree fairly well with the
theoretical values, but the standard deviations are larger than before, especially for H∗2 , H∗4 ,
A∗1 , and A∗4 . On the whole, the accuracy of the results is satisfactory, which indicates the
effectiveness and reliability of the proposed method for flutter derivative identification.
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In order to demonstrate the accuracy advantage of this new method in identification
of flutter derivatives compared with traditional methods, a comparison study based on
the average cumulative square deviations was conducted between the proposed method
and MLS method [8]. The average cumulative square deviations were calculated by the
following equation:

∆ =
1

Nw

1
Ns

i=Nw

∑
1

j=Ns

∑
1

(θe
ij − θt)

2, (25)
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where θt is the theoretical value for one of the flutter derivatives, and θe
ij is the correspond-

ing estimated value calculated on sample j at wind speed i. Ns is the number of samples at
each wind speed, and Nw is the number of wind speed. The average cumulative square
deviations of identified flutter derivatives and theoretical solutions calculated by the pro-
posed method and MLS method are shown in Figure 10. It is observed that the proposed
method has an accuracy advantage in the identification of flutter derivatives compared
with MLS under three noise levels. For both methods, although the overall accuracy of H*

1
and H*

4 is worse than that of other flutter derivatives, the proposed method is better than
MLS with respect to these two flutter derivatives.
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proposed method and MLS method.

The mean, standard deviation (σ), coefficient of variation (CV), and 95%-confidence
interval (CI) of flutter derivatives for three noise levels at a wind velocity of 8 m/s, together
with their theoretical values are reported in Tables 3–5. From the tables, it is observed
that the means agree with the theoretical values as a whole, while the standard deviations
increase with the noise level. It is also worth noting that the theoretical values are all within
the 95%-confidence intervals.

Table 3. Bootstrap statistics of identified flutter derivatives with 2% noise level (U = 8 m/s).

Derivatives Theoretical Value Mean σ CV 95%-CI

A∗1 0.7486 0.7487 0.0033 0.0044 [0.7415, 0.7548]
A∗2 −0.1848 −0.1846 0.0014 0.0077 [−0.1873, −0.1817]
A∗3 0.4532 0.4527 0.002 0.0044 [0.4493, 0.457]
A∗4 0.2165 0.2132 0.0025 0.0116 [0.2084, 0.2183]
H∗1 −2.9942 −2.9917 0.0229 0.0076 [−3.0394, −2.9462]
H∗2 −0.7305 −0.7066 0.0851 0.1204 [−0.8897, −0.5543]
H∗3 −1.7147 −1.7215 0.0631 0.0367 [−1.855, −1.5889]
H∗4 −0.0808 −0.0901 0.0211 0.2341 [−0.1316, −0.048]

Table 4. Bootstrap statistics of identified flutter derivatives with 5% noise level (U = 8 m/s).

Derivatives Theoretical Value Mean σ CV 95%-CI

A∗1 0.7486 0.7483 0.0064 0.0086 [0.7353, 0.76]
A∗2 −0.1848 −0.1815 0.0042 0.0231 [−0.1896, −0.1727]
A∗3 0.4532 0.4521 0.0037 0.0082 [0.4459, 0.4599]
A∗4 0.2165 0.2152 0.0078 0.0362 [0.2014, 0.2305]
H∗1 −2.9942 −3.0337 0.0601 0.0198 [−3.1605, −2.9345]
H∗2 −0.7305 −0.6162 0.1541 0.2501 [−0.9308, −0.3265]
H∗3 −1.7147 −1.5915 0.2002 0.1258 [−1.9626, −1.1926]
H∗4 −0.0808 −0.0692 0.0368 0.5325 [−0.1388, 0.0013]



Appl. Sci. 2021, 11, 11376 18 of 25

Table 5. Bootstrap statistics of identified flutter derivatives with 10% noise level (U = 8 m/s).

Derivatives Theoretical Value Mean σ CV 95%-CI

A∗1 0.7486 0.7478 0.0152 0.0204 [0.7164, 0.7764]
A∗2 −0.1848 −0.1877 0.0074 0.0392 [−0.2035, −0.1752]
A∗3 0.4532 0.4508 0.0071 0.0157 [0.4366, 0.4639]
A∗4 0.2165 0.2134 0.0178 0.0834 [0.1769, 0.2443]
H∗1 −2.9942 −2.9614 0.1061 0.0358 [−3.1792, −2.7573]
H∗2 −0.7305 −0.695 0.3475 0.5 [−1.3308, −0.0377]
H∗3 −1.7147 −1.9039 0.3233 0.1698 [−2.6665, −1.3561]
H∗4 −0.0808 −0.024 0.0841 3.5045 [−0.1595, 0.1705]

7. Example with Sectional Model of Bridge Deck in Wind Tunnel Tests

In order to further investigate the reliability of the proposed method for flutter deriva-
tive identification through wind tunnel tests, experimental data for a sectional model of a
bridge deck were used. Free-vibration wind tunnel tests were carried out in the CRIACIV
laboratory. Figure 11 shows the cross-section view of the model. It has a width B of 450 mm
and a depth H of 70 mm. The model was suspended elastically by eight helical springs,
allowing for vertical and torsional motions, while suppressing the sway motion in the wind
flow direction by long cables. Vertical and torsional initial conditions were set through a
device consisting of cables and electromagnets. More details concerning the model, the
setup, and the wind tunnel test can be found in [19,35]. The free vibration tests were
repeated 10 times for each wind speed.
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The sample population for bootstrap sampling consisted of 10 sets of data. All eight
flutter derivatives of the bridge deck model were identified by the proposed method, in
which the control parameters in the MABC-Powell algorithm for numerical optimization
are the same as in the numerical examples in the previous sections. The number of data
sets in each bootstrap sample is still three. In total, 100 bootstrap samples are extracted
from the sample population of 10 data sets. The comparison between the flutter derivatives
identified by the proposed method and the reference results [19] is shown in Figure 12. At
a certain testing wind speed, the real frequencies were used for the calculation of reduced
wind velocities U/fB. It can be seen that the flutter derivatives identified by the proposed
method agree with the reference results and exhibit consistent statistical properties. H∗3 ,
A∗2 , and A∗3 have small standard deviations while the other derivatives are more dispersed.
The standard deviations at higher wind speed are generally larger than those at lower
wind speed, especially near flutter onset. The possible reasons for this phenomenon are
presented in point (3) of the discussion part. It should also be noted that the reference
results present only 10 samples, which is insufficient to obtain accurate statistics. To
improve statistical inference, the bootstrap scheme with 100 samples is adopted. At the
wind speed of 8.6 m/s, the histogram of flutter derivatives identified using only the original
10 data sets and the histogram of flutter derivatives identified using 100 bootstrap samples
are shown in Figure 13a,b, respectively. It can be seen that the distribution in Figure 13b
is more concentrated, while Figure 13a is very scattered. The convergence lines for the
weighting factors for one bootstrap sample at a wind speed of 10.64 m/s are shown in
Figure 14. Additionally, in this case, the weighting factors for torsional signal residuals
are smaller than those for the vertical bending ones, which are similar to the results of the
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numerical example. Please note that the unit of torsional and vertical bending signal is m
and rad, respectively. This phenomenon is also similar to the proposed weighting factors
in [10].
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8. Discussions

The main purpose and contribution of this study was to propose three improvement
measures based on the traditional linear Scanlan’s flutter model and the least square
principle, thus providing a new way of thinking for flutter derivative identification. Firstly,
a new method of determining weighting factors in the least square objective function
is proposed. Secondly, the original ABC algorithm is improved and applied to flutter
derivative identification. Thirdly, the uncertainty of flutter derivatives is quantified by the
bootstrap method. Since the model in this paper is based on traditional assumptions and
needs further improvement in some aspects, the relevant problems are listed below for
further discussion and improvement in future studies.

1. The first issue is the aeroelastic coupling effect of vertical and torsional modes at
non-zero wind speed. For a 2-DOF sectional model system, there are always two
natural modes (vertical and torsional) at any wind speed, and their frequencies and
mode shapes vary with wind speed. Thus, each of the vertical and torsional motion
in the free-decay vibration tests at non-zero wind speed contains components of
both frequencies, and therefore, there are two sets of eight frequency-dependent
flutter derivatives (i.e., 16 unknown parameters) to be identified. However, these
two sets of eight flutter derivatives cannot be uniquely identified if only the free
vibration response of a 2-DOF bridge sectional model at one wind speed is given. An
approximation is always made in most traditional identification methods as well as



Appl. Sci. 2021, 11, 11376 21 of 25

our method (Equations (5) and (6)) that the flutter derivatives related to the vertical
motion are dominated by the first frequency component and contrarily those related
to the torsional motion are dominated by the second frequency component. This
approximation may lead to error or scattering of identified flutter derivatives. This
implied approximation in the identification of flutter derivatives has been deeply
discussed by Chen and Kareem [36]. Their parametric study shows that excellent
agreement was obtained despite the approximation in the self-excited forces being
made, which supports the efficacy of this approximation.

2. The second issue is the nonlinear vibration characteristics of the bridge deck sectional
model. The identification of flutter derivatives involves a step of extraction of the
stiffness and damping coefficients in still air, which include both mechanical and
aerodynamic components. In most traditional identification methods as well as our
method, the mechanical components in still air are conventionally assumed constants,
while the aerodynamic components in still air are neglected. These assumptions
will inevitably lead to some error of the identified flutter derivatives. Actually, the
mechanical damping ratios and natural frequencies of the spring-suspended sectional
model system vary to some extent with the change of the oscillating amplitude [37],
and the aerodynamic damping ratio and frequency in still air vary with the vibration
amplitude as well [38,39]. It was found that the aerodynamic components were more
sensitive to the vibration amplitude than the mechanical components.

3. Treatment of the data at high wind speed especially near flutter onset is a challenging
and difficult issue in flutter derivative identification. In the higher wind speed
cases, especially in the cases of wind speeds close to the critical point of flutter, the
second frequency component is absolutely dominant in both the vertical and torsional
responses, and the first frequency component almost vanishes. The reason is that the
aerodynamic damping for the first mode is always positive for the flat bridge decks
and rapidly increases with the rise of the wind speed while the aerodynamic damping
for the second mode decreases in general and even becomes negative. Thus, the
approximation made in point (1) will lead to large errors. Another critical point may
be the high aerodynamic nonlinearity near flutter onset. The Scanlan’s linear model
of self-excited forces may be improper for modeling the aerodynamic characteristics
near flutter onset. The modeling errors cause significant scattering of identified flutter
derivatives near the flutter critical wind speed.

9. Conclusions

A new algorithm to extract eight flutter derivatives and also quantify their uncertain-
ties simultaneously from free-vibration records in wind-tunnel tests is presented. It is based
on the least squares principle, but it introduces three basic modifications to enhance the
identification. The first contribution of this paper is the introduction of rational weighting
factors in the error function, which are optimized by an iterative procedure. The second
contribution is the use of the heuristic MABC-Powell algorithm to solve the optimization
problem and achieve better convergence and accuracy. The third original aspect is the
adoption of a bootstrap scheme for uncertainty quantification and statistical inference of
the identified flutter derivatives when only few data samples are available. The proposed
MABC-Powell algorithm for numerical optimization was tested on several benchmark
functions, showing better performance compared to standard ABC in terms of both the
convergence rate and accuracy. The flutter derivatives identification method was verified
through both a numerical and an experimental example. In both cases, the identified results
showed good agreement with theoretical solutions or reference values, which indicates the
effectiveness and robustness of the proposed method.
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Appendix A

The pseudo-code of the standard ABC algorithm is given below:

Algorithm A1 Standard ABC algorithm

Input
D: Dimension of x
f (x): Objective function, x = (x1, x2, · · · xD)
xmax: Upper bound of x
xmin: Lower bound of x

Output
xopt: Optimal solution

/*Parameters initialization*/
MCN: Max cycle number
SN: Half of population size
limit: Number of cycles for abandonment
iter: Iterations of the algorithm

/*Population initialization*/
for i = 1 to SN do

for j = 1 to D do
xi,j = xmin

j +rand(0, 1)(xmax
j − xmin

j )

end for
trial(i) = 0

end for
while (iter < MCN) do
/*The employed bee phase*/

for i = 1 to SN do
Randomly choose j from {1, 2, . . . , D} and k from {1, 2, . . . , SN} that k 6= i
Randomly choose ϕi,j from [−1,1]

vi,j = xi,j + ϕi,j

(
xi,j − xk,j

)
if f (vi) < f (xi) trial(i) = 0
else trial(i) = trial(i)+1
end if

end for
xopt = best()

/*The onlookers phase*/
for i = 1 to SN do

fi= f itnessi/
SN
∑

i=1
f itnessi

end for
for i = 1 to SN do
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q = roultteWheel( fi)
Randomly choose ϕq,j from [−1,1]

Randomly choose j from {1, 2, . . . , D} and k from {1, 2, . . . , SN} that k 6= i
vq,j = xq,j + ϕq,j

(
xq,j − xk,j

)
if f
(
vq
)
< f

(
xq
)

trial(i) = 0
else trial(q) = trial(q)+1
end if

end for
xopt = best()

/*The scouts phase*/
for i = 1 to SN do

if trial(i) > limit
for j = 1 to D do

xi,j = xmin
j + rand(0, 1)(xmax

j − xmin
j )

end for
end if

end for
iter = iter + 1
end while (m = MCN)

Appendix B

The pseudo-code of the Modified ABC algorithm with Powell’s method is given below:

Algorithm A2 Modified ABC algorithm with Powell’s method (MABC-Powell)

Input
D: Dimension of x
f (x): Objective function, x = (x1, x2, · · · xD)
xmax: Upper bound of x
xmin: Lower bound of x

Output
xopt: Optimal solution

/*Parameters initialization*/
MCN: Max cycle number
SN: Half of population size
limit: Number of cycles for abandonment
iter: Iterations of the algorithm

/*Population initialization*/
for i = 1 to SN do

for j = 1 to D do
xi,j = xmin

j + rand(0, 1)(xmax
j − xmin

j )

end for
trial(i) = 0

end for
while (iter < MCN) do
/*The employed bee phase*/

for i = 1 to SN do
Randomly choose j from {1, 2, . . . , D}
Randomly choose ϕi,j from [−1,1]
Randomly choose N neighbors and calculate the best neighbor Xbest

vi,j = xnbest,j + χiter ϕi,j

(
xnbest,j − xi,j

)
if f (vi) < f (xi) trial(i) = 0
else trial(i) = trial(i)+1
end if

end for
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xopt = best()
/*The onlookers phase*/
for i = 1 to SN do

fi= f itnessi/ ∑SN
i=1 f itnessi

end for
for i = 1 to SN do

q = roultteWheel( fi)
Randomly choose ϕq,j from [−1,1]

Randomly choose j from {1, 2, . . . , D}
Randomly choose N neighbors and calculate the best neighbor Xbest

vq,j = xnbest,j + χiter ϕq,j

(
xnbest,j − xq,j

)
if f
(
vq
)
< f

(
xq
)

trial(i) = 0
else trial(q) = trial(q)+1
end if

end for
xopt = best()

/*The Powell’s method phase*/
if mod(iter,T) = 0 do

Randomly choose k from {1, 2, . . . , D} that has to be different from best,
generate a new solution U

uk,j = xnbest,j + χiter ϕk,j

(
xnbest,j − xk,j

)
Use the U as a starting point and generate a new solution Wk by Powell’s method
if f (Uk) < f (Wk) trial(i) = 0
else trial(k) = trial(k)+1
end if

end if
/*The scouts phase*/

for i = 1 to SN do
if trial(i) > limit

for j = 1 to D do
xsc

l,j = xl,j + N(0, ς2
j )

end for
end if

end for
iter = iter + 1
end while (iter = MCN)
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12. BogunovićJakobsen, J.; Hjorth-Hansen, E. Determination of the aerodynamic derivatives by a system identification method. J.
Wind Eng. Ind. Aerodyn. 1995, 57, 295–305. [CrossRef]

13. Brownjohn, J.M.W.; Jakobsen, J.B. Strategies for aeroelastic parameter identification from bridge deck free vibration data. J. Wind
Eng. Ind. Aerodyn. 2001, 89, 1113–1136. [CrossRef]

14. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Erciyes University: Kayseri, Turkey, 2005.
15. Sun, H.; Luş, H.; Betti, R. Identification of structural models using a modified Artificial Bee Colony algorithm. Comput. Struct.

2013, 116, 59–74. [CrossRef]
16. Gao, W.; Liu, S.; Huang, L. A novel artificial bee colony algorithm with Powell’s method. Appl. Soft Comput. 2013, 13, 3763–3775.

[CrossRef]
17. Sun, H.; Betti, R. A Hybrid Optimization Algorithm with Bayesian Inference for Probabilistic Model Updating. Comput. Civ.

Infrastruct. Eng. 2015, 30, 602–619. [CrossRef]
18. Peng, H.; Deng, C.; Wu, Z. Best neighbor-guided artificial bee colony algorithm for continuous optimization problems. Soft

Comput. 2019, 23, 8723–8740. [CrossRef]
19. Mannini, C.; Bartoli, G. Aerodynamic uncertainty propagation in bridge flutter analysis. Struct. Saf. 2015, 52, 29–39. [CrossRef]
20. Pourzeynali, S.; Datta, T.K. Reliability analysis of suspension bridges against flutter. J. Sound Vib. 2002, 254, 143–162. [CrossRef]
21. Cheng, J.; Cai, C.S.; Xiao, R.; Chen, S.R. Flutter reliability analysis of suspension bridges. J. Wind Eng. Ind. Aerodyn. 2005, 93,

757–775. [CrossRef]
22. Baldomir, A.; Kusano, I.; Hernandez, S.; Jurado, J.A. A reliability study for the Messina Bridge with respect to flutter phenomena

considering uncertainties in experimental and numerical data. Comput. Struct. 2013, 128, 91–100. [CrossRef]
23. Abbas, T.; Morgenthal, G. Framework for sensitivity and uncertainty quantification in the flutter assessment of bridges. Probabilistic

Eng. Mech. 2016, 43, 91–105. [CrossRef]
24. Stanford, B.; Beran, P. Computational strategies for reliability-based structural optimization of aeroelastic limit cycle oscillations.

Struct. Multidiscip. Optim. 2012, 45, 83–99. [CrossRef]
25. Kusano, I.; Baldomir, A.; Jurado, J.A.; Hernández, S. Reliability based design optimization of long-span bridges considering

flutter. J. Wind Eng. Ind. Aerodyn. 2014, 135, 149–162. [CrossRef]
26. Kusano, I.; Baldomir, A.; Jurado, J.Á.; Hernández, S. The importance of correlation among flutter derivatives for the reliability

based optimum design of suspension bridges. Eng. Struct. 2018, 173, 416–428. [CrossRef]
27. Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 1993; Volume 57, ISBN 0412042312.
28. Christodoulou, K.; Papadimitriou, C. Structural identification based on optimally weighted modal residuals. Mech. Syst. Signal

Process. 2007, 21, 4–23. [CrossRef]
29. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 2010,

217, 3166–3173. [CrossRef]
30. Powell, M.J.D. Restart procedures for the conjugate gradient method. Math. Program. 1977, 12, 241–254. [CrossRef]
31. Bittanti, S.; Lovera, M. Bootstrap-based estimates of uncertainty in subspace identification methods. Automatica 2000, 36,

1605–1615. [CrossRef]
32. Kijewski, T.; Kareem, A. On the reliability of a class of system identification techniques: Insights from bootstrap theory. Struct.

Saf. 2002, 24, 261–280. [CrossRef]
33. Yan, B.F.; Miyamoto, A.; Brühwiler, E. Wavelet transform-based modal parameter identification considering uncertainty. J. Sound

Vib. 2006, 291, 285–301. [CrossRef]
34. Feng, Z.Q.; Zhao, B.; Hua, X.G.; Chen, Z.Q. Enhanced EMD-RDT Method for Output-Only Ambient Modal Identification of

Structures. J. Aerosp. Eng. 2019, 32, 04019046. [CrossRef]
35. Mannini, C.; Šoda, A.; Voß, R.; Schewe, G. Unsteady RANS simulations of flow around a bridge section. J. Wind Eng. Ind. Aerodyn.

2010, 98, 742–753. [CrossRef]
36. Chen, X.; Kareem, A. Efficacy of the implied approximation in the identification of flutter derivatives. J. Struct. Eng. 2004, 130,

2070–2074. [CrossRef]
37. Gao, G.; Zhu, L. Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel

tests. J. Sound Vib. 2015, 355, 369–391. [CrossRef]
38. Cao, F.; Ge, Y. Air-induced nonlinear damping and added mass of vertically vibrating bridge deck section models under zero

wind speed. J. Wind Eng. Ind. Aerodyn. 2017, 169, 217–231. [CrossRef]
39. Zhang, M.; Xu, F. Nonlinear Vibration Characteristics of Bridge Deck Section Models in Still Air. J. Bridg. Eng. 2018, 23, 04018059.

[CrossRef]

http://doi.org/10.1061/(ASCE)BE.1943-5592.0000295
http://doi.org/10.1016/0167-6105(95)00006-D
http://doi.org/10.1016/S0167-6105(01)00091-5
http://doi.org/10.1016/j.compstruc.2012.10.017
http://doi.org/10.1016/j.asoc.2013.05.012
http://doi.org/10.1111/mice.12142
http://doi.org/10.1007/s00500-018-3473-6
http://doi.org/10.1016/j.strusafe.2014.07.005
http://doi.org/10.1006/jsvi.2002.4090
http://doi.org/10.1016/j.jweia.2005.08.003
http://doi.org/10.1016/j.compstruc.2013.07.004
http://doi.org/10.1016/j.probengmech.2015.12.007
http://doi.org/10.1007/s00158-011-0663-6
http://doi.org/10.1016/j.jweia.2014.10.006
http://doi.org/10.1016/j.engstruct.2018.06.091
http://doi.org/10.1016/j.ymssp.2006.05.011
http://doi.org/10.1016/j.amc.2010.08.049
http://doi.org/10.1007/BF01593790
http://doi.org/10.1016/S0005-1098(00)00081-9
http://doi.org/10.1016/S0167-4730(02)00028-0
http://doi.org/10.1016/j.jsv.2005.06.005
http://doi.org/10.1061/(ASCE)AS.1943-5525.0001034
http://doi.org/10.1016/j.jweia.2010.06.010
http://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(2070)
http://doi.org/10.1016/j.jsv.2015.05.033
http://doi.org/10.1016/j.jweia.2017.07.022
http://doi.org/10.1061/(ASCE)BE.1943-5592.0001263

	Introduction 
	Optimization Formulation of Flutter Derivatives Identification 
	Artificial Bee Colony Algorithm 
	Standard ABC Algorithm 
	Modified ABC Algorithm with Powell’s Method 
	Modification I: Solution Updating with a Best Neighbor-Guided Strategy and a Decaying Factor 
	Modification II: Enhanced Local Search with Powell’s Method 
	Modification III: Scout Solution Rebirth with Gaussian Mutation 


	Bootstrap Scheme for Uncertainty Quantification 
	The Whole Flow Chart of the Proposed Method 
	Numerical Illustrative Examples 
	Benchmark Functions 
	Numerical Model of a Thin Plate 

	Example with Sectional Model of Bridge Deck in Wind Tunnel Tests 
	Discussions 
	Conclusions 
	
	
	References

