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Abstract: Most approaches for detecting network attacks involve threat analyses to match the attack to
potential malicious profiles using behavioral analysis techniques in conjunction with packet collection,
filtering, and feature comparison. Experts in information security are often required to study these
threats, and judging new types of threats accurately in real time is often impossible. Detecting
legitimate or malicious connections using protocol analysis is difficult; therefore, machine learning-
based function modules can be added to intrusion detection systems to assist experts in accurately
judging threat categories by analyzing the threat and learning its characteristics. In this paper, an
ensemble learning scheme based on a revised random forest algorithm is proposed for a security
monitoring system in the domain of renewable energy to categorize network threats in a network
intrusion detection system. To reduce classification error for minority classes of experimental data in
model training, the synthetic minority oversampling technique scheme (SMOTE) was formulated to
re-balance the original data sets by altering the number of data points for minority class to imbue the
experimental data set. The classification performance of the proposed classifier in threat classification
when the data set is unbalanced was experimentally verified in terms of accuracy, precision, recall,
and F1-score on the UNSW-NB15 and CSE-CIC-IDS 2018 data sets. A cross-validation scheme
featuring support vector machines was used to compare classification accuracies.

Keywords: intrusion detection; ensemble learning; random forest algorithm; SMOTE; F1 score

1. Introduction

Cybersecurity mechanisms, such as network intrusion detection systems (NIDSs)
and firewalls, detect network attacks and prevent hackers from gaining entry into the
enterprise network. Most methods for intrusion detection focus on large-scale targeted
cyberattacks, such as distributed denial of service (DoS) attacks [1], botnet attacks [2],
ransomware attacks [3], phishing attacks [4], and credential theft [5]. Thus, studies on
network attack detection have primarily focused on the use of specific security mechanisms
as entry points into the enterprise network to defend against network threats. In practice,
information security experts are often required to analyze and classify the threat type in
cases of network intrusion, and it is often impossible to judge new types or variants of cyber
threats in real time. For the implementation of network security applications, NIDSs must
support intrusion detection when the volume of flow inspections is large by performing
anomaly detection and exploring new threats through machine learning (ML) algorithms.

Typically, network intrusion detection (NID) involves collecting behavioral informa-
tion to classify all potential threats into attacker and victim categories under some given
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constraints on the quantity of packets collected and NIDS computational time. Many classi-
fication approaches incorporate ML algorithms to assist managers in precisely identifying
network attacks [4–7]. ML techniques for threat classification—such as support vector
machine (SVM) and hybrid approaches—are used to aid category prediction, wherein
the SVM [4] is incorporated with other classification approaches, such as those based on
decision trees (DTs) [5], principal component analysis (PCA) [6], and the Dempster–Shafer
theory [7]. These network threat classification schemes are summarized in Table 1.

Table 1. Machine learning approaches for network threat classification.

Features Contributions and Experimental
Results

SVM
Guan et al. [4]

Four support vector machine (SVM)
classifiers are used to categorize network
data into five classes: denial of service,
probe, U2R, R2L, and normal.

The agent and SVM were used to
improve the detection precision of
intrusive attacks for network intrusion
detection (NID).

Fuzzy multiclass SVM
Li et al. [5]

A decision tree (DT) is constructed using
fuzzy multiclass SVM in which each data
class is assigned a fuzzy membership
during training to reduce the effects of
outliers and response time.

The combined fuzzy theory and
multiclass SVM improved detection
accuracy and reduced training time.

SVM with PCA
Kausar et al. [6]

The method is used for feature
transformation into higher dimensions
for determining the feature subset, after
which the performance (in terms of
detection rate and rate of false alarms)
can be determined during testing.

The use of reduced features in training
the support vector classifier accelerated
the learning of normal and intrusive
patterns.
Improved accuracy (99.465%) and false
alarm rate (0.525%) were observed for a
subset of 10 features.

SVM with Belief
theory

Singh et al. [7]

This method is a hybrid one wherein
intrusive behavior is detected using the
Dempster belief algorithm (DCA) and
Dendritic Cell Algorithm and where data
are classified with the SVM.

The detection rate from the joint use of
DCA and SVM was less than 92% (by
contrast, the method proposed in the
present paper reached 96%).

Because information diversification services produce diverse and complex threat
patterns, a single classifier in an ML model may not produce perfect predictions for a given
data set under certain real-time requirements for intrusion detection by an NIDS. As attacks
on large-scale networks become more diverse, a basic classifier in ML models, such as SVM,
becomes increasingly unable to effectively process a large volume of traffic in large-scale
networks with complex intrusion patterns. Therefore, ensemble learning-based techniques,
such as random forest (RF) [8–10], boosting [11], gradient boost DT (GBDT) [12], and
stacking [13], are adopted to help security managers detect complex threats from a variety
of sources.

In practice, classes necessarily have an imbalanced distribution in information flows
because the volume of traffic is large and because certain types of anomalies occur at a low
frequency. Thus, the classification performance of supervised ML techniques, such as DT,
naive Bayes, and SVM techniques, are affected by imbalances in the number of data points
for each threat class in a given data set.

Intrusion detection schemes have tended to ignore the magnitude of imbalanced data
and overfitting-related difficulties in threat data. In imbalanced intrusion data sets, ML
algorithms intuitively provide more accurate predictions for classes with many data points
(i.e., majority classes) and less accurate predictions for classes with a small number of data
points [14]. To maintain prediction stability at high precision, rebalancing sampling must
be applied to the raw data to achieve a balance in the number of data points for each class.

Furthermore, threat data sets necessarily include noise extracted from flow traffic; such
noise causes overfitting in model training. An overfitted model predicts future observations
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poorly because it contains more parameters than the data can justify. Practically, ensemble
learning algorithms, such as RF, can overcome overfitting in threat data in which RF corrects
for overfitting from the DTs.

Inspired by Ho’s study [9], the present study proposes an RF-based ensemble learning
algorithm associated with a uniform distribution resampling scheme for minority classes
based on a Synthetic Minority Oversampling TEchnique (SMOTE) for NIDs. SMOTE
manages the imbalance between threat classes in the data set in advance. Moreover,
eliminate the irrelevant and unwanted features from the dataset in intrusion detection
causes to possibly faster and more accurate detection. Consequently, feature selection
scheme C4.5 is incorporated with RF to reduce the number of input variables to mitigate
overfitting in developed predictive models. The performance of the proposed algorithm
was demonstrated through experiments on the UNSW-NB15 data set [15] and CSE-CIC-IDS
2018 [16] for threat classification. A cross-validation scheme with a support vector classifier
(SVC) was used for performance comparisons.

In summary, the primary contributions of this study are as follows:

• Multiclass threat classification was achieved using the RF method. Moreover, sources
of open intrusion attacks in the UNSW-NB15 and CSE-CIC-IDS 2018 data sets were
accurately classified, indicating our method’s ability to classify threats as part of
an NIDS;

• To improve the performance of random forests, the RF is incorporated with C4.5
algorithm to dimension reduction of training data that accelerates the training time of
high-dimensional data in the model training;

• To improve data imbalanced situation, the resampling process of the SMOTE algorithm
is proposed to reduce the skew in the distributions of classes by modifying the number
of instances for minority class;

• The accuracy of the proposed algorithm was 99.81% for two-class classification of
UNSW-NB15 and 87.64% for multiclass classification;

• The classification accuracy of intrusion detection was 99.98%% for two subcategories
of CSE-CIC-IDS 2018 and 96.53% for six subcategories of classification accuracy;

• Compared with the classification accuracy of competing approaches on UNSW-NB15,
such as [14,17], the proposed RF-NID algorithm performed better in threat class
identification in cases where threats stemmed from multiple sources.

The remainder of this paper is organized as follows: Section 2 presents a literature
review, Section 3 presents an analytical model of NID, Section 4 details the evaluation of
this paper’s method, and Section 5 concludes the paper.

2. Overview of SMOTE Schemes and Ensemble Learning Schemes

This section reviews methods for addressing the problem of imbalanced threat data in
training and introduces a method where an RF is used for ensemble learning to classify
possible attacks.

2.1. SMOTE Techniques for Imbalanced Data

An imbalanced data set is one where the minority class is greatly outnumbered by
the majority class with respect to their number of data points (Figure 1). This skew in the
distributions of classes makes classification for the minority class imprecise. This problem
is serious because predictions for the minority class are typically the most crucial [18].
Additionally, such skewness makes training less effective.
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Figure 1. A case of unbalanced data.

One approach to addressing this class imbalance is to randomly resample the raw
data for training. This approach can be divided into three subapproaches that all involve
deleting examples from the majority class. Undersampling, the first subapproach, is
where extra examples are screened from the majority class. Oversampling, the second
subapproach, is used to duplicate examples from the minority class. For example, the
SMOTE scheme [18] balances the minority class of raw threat data, adjusts them to the
other categories, and improves the imbalance in the minority classes. Uniform sampling,
the third approach, is used to modify the structure of the data for each threat class.

For example, the number of data points for each threat category in the UNSW-NB15
data set is detailed in Table 2. The data set has a considerable class imbalance, as illustrated
in Table 2. For example, the ‘generic’ class accounts for 22.81% of the total data, whereas the
categories with the smallest number of data points, ‘shellcode’ and ‘worms’, only account
for 0.65% and 0.007% of the total data, respectively. Minority class-like analysis (1.14%),
backdoor (1.00%), shellcode (0.65%), and worms (0.07%) have a smaller number of data
points, as presented in Table 2. Hence, oversampling is used to increase the number of data
points for these classes.

Table 2. Number of data points for each threat category (UNSW-NB15).

Threat Category Record No. of Training Data Record No. of Test Data

Normal 56,000 (31.94%) 7000 (44.94%)
Generic 40,000 (22.81%) 8871 (22.92%)
Exploits 33,393 (19.04%) 1132 (13.52%)
Fuzzers 18,184 (10.37%) 6062 (7.36%)

DoS 12,264 (6.99%) 4089 (4.97%)
Reconnaissance 10,491 (5.98%) 3496 (4.25%)

Analysis 2000 (1.14%) 667 (0.81%)
Backdoors 1746 (1.00%) 583 (0.71%)
Shellcode 1133 (0.65%) 387 (0.47%)

Worms 130 (0.07%) 44 (0.05%)

In imbalanced data (Table 2), the majority class, a data set class comprising more than
half (50%) of the data set’s data points, represents the main part of the instances labelled
as one class, and the minority classes represent considerably fewer instances labelled ci,
where i = 1, . . . , r. The symbol ci denotes the essential class of samples to be classified, and
this class includes behavioral features and class labels. In [19], the imbalance ratio (IR) was
defined as follows:

Imbalance Ratio(c) =
|Instances of Major Class |
|Instances of Mainority Class| . (1)

If the IRs of the sample data are high, the model’s classification accuracy and prediction
reliability are unstable and low [20]. The data points for minority class—represented as
a pair (feature set, class label)—should be made to have a strong signal among each
threat class.
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SMOTE generates synthetic examples for minority classes to achieve enhanced per-
formance in imbalanced data sets. As presented in Figure 2, the minority class was
oversampled by taking each minority class sample and introducing synthetic examples
along the line segments that join any of the k minority class’ nearest neighbors. In other
words, increased data for minority class are generated by two neighbors from the five
nearest neighbors random and one sample is generated in the direction of each [18].
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Given a training data set (X, Y) in which X represents a data sample in minority class
samples, X = x1, . . . , xn, Y is the over-sampling target from X, and Y = y1, . . . , yN , yi
represents the ith of the N nearest neighbors of the X. Notably N synthetic samples (i.e., y1,
. . . , yN) are randomly selected from K nearest neighbors as shown in Figure 2. To increase
the number of minority class samples, the random interpolation operation between X
and yi (i = 1, 2, . . . , N) is performed by the following formula to obtain the interpolated
sample pi, [21]

pi = X + rand(0, 1)× (yi − X), (2)

where rand(0, 1) represents a random number in the range (0, 1). Obviously, the number of
sampling augmentation N depends on the IR of the dataset used. In further, N = round(IR),
where round(IR) represents the value obtained by rounding up the IR. Once achieved
the above over-sampling operation, new synthetic samples are generated randomly from
minority class samples and their neighbors, and the majority class samples and the minority
class samples became balanced. Researchers have focused on using the SMOTE method as
a data preprocessing mechanism for balancing data sets in intrusion detection (Table 3).

2.2. RF Algorithms

The RF scheme was created in 1995 [8] in which DTs are aggregated to improve the
performance of a single DT. As shown in Figure 3, RFs comprise DTs on randomly selected
training data sets; in this approach, predictions are obtained from each tree and the best
solution is selected by means of majority votes in ensemble algorithms. RFs typically
provide a fairly accurate indicator of the feature’s importance [9].

The RF algorithm creates n DTs on randomly selected data points and synthesizes
the prediction results from each DT (basic classifier) through group voting to reduce the
variance of classification results. Put simply, an RF is an ensemble learning method that is
better than a single DT because it reduces the overfitting outcomes by averaging the results
of DTs (Figure 4).
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Table 3. SMOTE with machine learning approaches for network threat classification.

Study Features Contributions and Experimental Results

Chawla, Bowyer, Hall,
Kegelmeyer (2002) [18]

• Synthetic minority oversampling technique
(SMOTE), an oversampling method for
balancing imbalanced data sets, is used to
improve the accuracy of classifiers for a
minority class.

• The SMOTE classifier outperformed an
under-classifier, loss ratio-based classifier,
and naive Bayes classifier.

Blagus and Lusa (2013)
[22]

• This study investigated SMOTE from
theoretical and empirical perspectives
using simulated and empirical
high-dimensional data.

• SMOTE improved the performance of
k-NN classifiers for high-dimensional data
when the number of variables was reduced
using a variable selection method.

Zong, Chow, Susilo (2018)
[14]

• A two-stage classifier approach for network
intrusion detection systems (NIDSs) is
applied to imbalanced data sets on
intrusion detection; in this approach,
minority and majority intrusion classes are
separated in training and detection.

• Minority and majority intrusion classes are
separated in training and detection to
improve the overall detection rate of
minority classes and to reduce the error rate
for UNSW-NB15 data set.

Das, Khan, Saha (2019)
[23]

• A rough random forest (RF) algorithm in
conjunction with binarization techniques is
used to decompose an original data set into
subsets of binary classes to balance
multiclass imbalanced data sets.

• The proposed method outperformed other
methods featuring the Tree Bag Model and
SMOTE+Tree Bag Model with respect to the
receiver operating characteristic curve and
corresponding area under the curve.

Tan et al. (2019) [21]

• Proposes a method of using the SMOTE to
balance the dataset and then uses the
random forest algorithm to train the
classifier for intrusion detection.

• The simulations are conducted on a
benchmark intrusion dataset KDDCup99,
and the accuracy of the random forest
algorithm has reached 92.39%, which is
higher than other comparison algorithms.

Karatas, Demir, Sahingoz
(2020) [19]

• This stud proposed six machine
-learning-based intrusion detection systems
with SMOTE for data classification in
conjunction with k-nearest neighbor
(k-NN), RF, gradient boosting, adaboost,
DT, and linear discriminant analysis
algorithms.

• In experiments, the proposed approach
considerably increased the detection rate
for rarely encountered intrusions in the
CSE-CIC-IDS 2018 data set.

Hui, He, Ye, Zhang (2020)
[20]

• Conduct the comparative experiments on
analysis for the intrusion detection
problems using Xgboost, Random Forest,
Bagging, and Adaboost.

• Experimental results demonstrate that
PSO-Xgboost model outperforms other
comparative models in precision, recall,
macro-average, and mean average precision
(mAP) on NSL-KDD dataset.

Jun, Sheng, Wang (2020)
[24]

• Combine the spatial feature and temporal
feature, we fuse GBDT model and Gated
Recurrent Unit (GRU) model to make a
quadratic ensemble model as intrusion
detection system.

• The experimental results show that the
advanced spatial-temporal intrusion
detection system based on ensemble
learning achieves better accuracy, recall,
precision and F1 score than the
state-of-the-art methods on CIC-IDS-2017
dataset.
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Table 3. Cont.

Study Features Contributions and Experimental Results

Kasongo, Sun. (2020) [17]

• Present a filter-based feature reduction
technique using the XGBoost algorithm in
conjunction with SVM, k-NN, Logistic
Regression (LR), Artificial Neural Network
(ANN) and DT on the UNSW- NB15
intrusion detection dataset.

• In the case of the DT classifier, the test
accuracy has increased from 66.03% to
67.57% using the 42 and 19 features,
respectively.

• For the multiclass classification scheme.
Moreover, for the binary classification
process, the DT has increased the test
accuracy from 88.13% to 90.85% using the
reduced feature dimensions of the
UNSWNB15 respectively.

Wu et al. (2021) [25]

• Combining the K-means clustering with the
SMOTE sampling algorithm to increase the
number of minor samples and thus
achieved a balanced data set.

• The performance was tested using the
NSL-KDD dataset with a classification
accuracy of 99.72% on the training set and
78.47% on the test set.

Luyao, Lu (2021) [26]

• Propose an intrusion detection model based
on SMOTE and convolutional neural
network (CNN) ensemble to solve the
problem of imbalanced datasets.

• Evaluate the performance of the proposed
model on NSL-KDD dataset to model
decision-making show that the model’s F1
score are better than traditional algorithms
in the classes with few samples and
improves the efficiency of network
intrusion detection.
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3. Application of Proposed RF Algorithm for Intrusion Detection

The proposed NID model combines the ensemble learning RF algorithm and the
SMOTE to maintain high precision in prediction stability. The overall structure of the
model is presented in Figure 5. The system classifies network traffic in three steps. In Step
1, data preprocessing is performed on the threat data set with the SMOTE scheme; this is
done to augment the data of the minority class in the training set to balance the data. The
balanced data points are then used for model training, during which the model classifies
the potential attacks according to whether they are of normal traffic or malicious behavior.
The raw data are analyzed and features are selected using the C4.5 algorithm; the algorithm
reduces the number of input variables to both reduce the computational cost of the model
and accelerate the classification performance of the model. In Step 2, RF ensemble learning
is used to train component classifiers and aggregate the results of the component classifiers
by randomly selecting subsets of the training data. A metaclassifier is trained with a
majority voting approach to perform a threat classification of the observations. In Step 3,
the NID model is evaluated in a large-scale network environment using two open-source
data sets, UNSW-NB15 [15] and CSE-CIC-IDS2018 [16], on various threats.
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As illustrated in Figure 5, the threat analysis process comprises three subprocesses:
data preprocessing (including resampling process and feature selection) model training
and optimization, and performance evaluation for intrusion detection of network attacks
as follows.

Step 1. Data preprocessing
Data preprocessing proceeds in the following steps: (1) encoding symbolic behavior

(features) to numerical values, (2) normalising the scale, (3) resampling strategies for
imbalanced data sets, and (4) feature selection.

Step 1.1. Normalization
Because the raw data are of various resolutions and ranges, the numerical data of each

feature are normalized to a range of [−1, 1] using the following min–max formula.

d =
d−mind

maxd −mind
. (3)

Step 1.2. Resampling strategy
To improve the situation of class imbalance, the user must modify the number of

instances for minority class. In other words, if parts of class of the minority class were
misclassified in the training process, it indicates the number of instances for this class needs
to be augmented to increase the classification accuracy of model training. By applying
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Formula (4), new synthetic samples (pi) and the resampling magnification of the dataset
(N) are generated randomly from minority class samples and their neighbors using over-
sampling operation. In the next section, we detail our evaluation of this RF in intrusion
detection classification.

Step 1.3. Feature selection
Feature selection is the process of reducing the number of input variables to develop a

predictive model to improve the performance of the model by reducing the computational
costs of modelling. The process of obtaining a reduced set of features to create a predictive
model requires experimentation and substantive knowledge about the problem at hand. To
create a model, the subset of selected features in our data set was determined in accordance
with C4.5 DT theory in which the values of attributes are represented by branches and
attributes are arranged as nodes according to the data classification in DT learning. The
C4.5 algorithm begins with the original set S as the root node. In each iteration of the
solution procedure, the algorithm repeats itself through every unused attribute of the set S
and process the information to calculate the IG(S) of that attribute.

The attribute with the largest information gain is used to split S in the present iteration.
Finally, the set S is split by the selected attribute to produce data subsets. Let the information
gain of attribute A be represented as IG(S,A). The measure of the difference in entropy
before and after S is split by A is

IG(S, A) = E(S)−
n

∑
i=1

p(Si)E(Si) = E(S)−
n

∑
i=1

|Si|
|S| E(Si). (4)

E(S) = −
n

∑
i=1

p(Si) log2 p(Si), (5)

where the entropy E(S) is a measure of the amount of uncertainty in the data set S [27,28],
Si represents the subsets created from splitting set S by attribute A such that k = 5.
S = Ui, (si), p(si) is the ratio of the number of elements in Si (|Si|) to the number of elements
in set S (|S|), and E(si) is the entropy of subset si. Equation (3) describes the uncertainty in
S, which is reduced after set S is split in terms of attribute A. Theoretically, the attribute that
maximizes the difference is selected. In practice, however, choosing a suitable threshold
value for determining the exact the number of features (Nf) extracted from the possible
feature candidates is difficult.

However, information gain tends to be biased in favour of attributes with many
distinct values, such as social ID, in the data set. Therefore, the information gain ratio
(IGR) is selected as a measure to reduce bias towards multivalued attributes by accounting
for the number and size of the branches when choosing an attribute. IGR corrects the
information gain by considering the intrinsic information of a split (Split InfoA(S)) through
the normalization process of the information gain [28] as follows.

Split In f oA(S) = −
n

∑
i=1

|Si|
|S| log2

|Si|
|S| . (6)

Features with a large amount of intrinsic information are less useful for classifying
the data. In the C4.5 DT, the ratio of information gain of the attribute IGR(A) is used to
calculate the IGR for each attribute to determine the relevant subset of features used in
splitting in the tree based on the maximum gain in information for C4.5 DT. IGR(A) is
defined as

IGR(A) =
IG(S, A)

Split In f oA(S)
. (7)

The C4.5 DT uses the IGR measure, which is the information gain divided by the
split information (S).

Step 2. Model training and optimization
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In this phase, the RF-based classifier is trained to detect specific network attacks
from the behavioral patterns, in the data, that are associated with families of real threats.
RF classifiers obtain predictions from each DT and select the best solution by means of
PV rule.

Step 2.1. Bootstrapping
To create DTs with randomly selected data samples, the bootstrapping method is

applied to segment the training data set. This method is a resampling technique used to
estimate statistics on a population by sampling a data set with replacement. In statistics,
bootstrapping involves drawing sample data repeatedly with replacement from a data
source to achieve an unbiased estimate of a population parameter [29].

Step 2.2. Model training using RF
Typically, four steps are included in the RF process.
Step RF.1—The bagging algorithm is used to randomly generate n training data sets

that are subsets of a given data set. A bootstrap sample is obtained from the original data
through sampling with replacement. In the case of n training samples, each sample has M
features and training data sets are randomly selected (but replaced) to form n training data
sets that are subsets of the data set.

Given a training data set (X,Y) in which X = x1, ..., xn and the target Y = y1, ..., yn, the
bagging method executes bootstrap sampling B times to construct multiple DT models, and
the method then trains the DT model on the new samples. For example, for b = 1, . . . , B,
the sample is replaced with n training examples from X, Y, noted as Xb, Yb. A classification
tree fb is then trained on Xb and Yb.

Step RF.2—A DT is created for every subset of the data set.
For each training set, a tree predictor θi is generated by randomly selecting m features

used for tree splitting from all features M (m < M). Generally, the splitter with the smallest
Gini index that generates n classification and regression trees for classification purposes
was selected through the RF approach. The Gini index is a number describing the quality
of the split of a node on a feature. If data set D, for example, contains samples from C
classes, the Gini index is defined according to [10] as follows:

Gini (D) = 1−∑C
c=1 Pc

2, (8)

where Pc is the relative frequency of class c in D.
Step RF.3—The prediction results from each DT are synthesized through a plurality

vote (PV) that generally increases the classification accuracy of the overall model. The vote
determines the class i that maximizes the sum based on the majority voting rule.

class(x) = Arg max[∑
k

g(yk(x), ci], (9)

where x is the behavior feature of the sampling data, yk(x) is the classification result of the
kth DT, and g(yk(x), ci) is a counting function defined as

g(y, c) =
{

1, y = c
0, y 6= c

, (10)

where g(yk(x), ci) is the prediction result of the classifier i that x belongs to class k. yk(x)=1
for the true class k of x; otherwise yk(x) = 0.

Step RF.4—The outcome chosen by the most decision trees is the final indicator.
Subsequently, the behavioral patterns of network threats are classified into those asso-

ciated with normal versus abnormal connections. Thereafter, the accuracy of RF classifiers
in detecting existing or identified network attacks is evaluated using Equations (8)–(10).

Step 3. Performance evaluation
This step is performed to validate the classification performance of the proposed

classifier on unbalanced data. In this study, we conducted such an evaluation in terms
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of accuracy, precision, recall, and F1 score on the experimental data set. In particular,
SMOTE with uniform distribution resampling was used in the training experiment. Finally,
a cross-validation scheme was adopted to compare the predicted accuracy of the developed
model with an SVC.

4. Results

The applicability of the proposed RF to behavioral classification in cases of imbalanced
data were demonstrated through two examples of NID associated with a complete feature
set(Nf = 42) and a reduced feature set(Nf = 23). The experiments were conducted in Python
using the ML library of the scikit-learn package; this library is an open source library for
classification algorithms, such as RF, SVM, and naive Bayes classifier, logistic regression,
and quadratic discriminant analysis algorithms. The software used is described in Table 4.
The software was run on an Intel Core i3-4160 dual core CPU clocked at 3.0 Ghz and 8 GB
of DDR3 RAM; the operating system was Ubuntu Desktop 20.04.3 LTS, and the database
platform was MongoDB 5.0.3. The experimental environment is depicted in Table 4.

Table 4. Experimental environment for RF-based security monitoring.

Numerical and Machine Learning Library

Python 3.8.10

scikit-learn
imbalanced-learn

numpy
scipy

pandas

4.1. Case I: Binary Classification and Multiclass Classification (UNSW-NB15)

This first case pertained to profiles of cyberattacks on Internet of Things devices on
a cloud server. In such a case, security managers must constantly monitor and compare
the statistical details of each flow entry between consecutive time windows. NID was
executed in the following three phases: (1) data preprocessing, (2) model training and
optimization, and (3) performance evaluation. The workflow of the security analysis is
illustrated in Figure 5.

Step 1: Data Preprocessing Phase
In the intrusion detection experiment, the UNSW-NB15 data set [15,30] was selected

as a comprehensive data set for examining the performance of the developed classifier.
This data set was divided into training and testing sets. We selected the UNSW-NB15
data set because it had three advantages over similar data sets. First, it contains up-to-
date behavioral features with contemporary attack sequences. Second, it involves a set of
features from the payload and header of packets to reflect the network packets efficiently.
Third, it contains many complicated features that the model can learn from to discriminate
more accurately.

The UNSW-NB15 data set was created by the IXIA Perfect Storm tool in the Cyber
Range Lab of the Australian Centre for Cyber Security to produce a hybrid data set of
synthetic contemporary attack behaviors in real-world network traffic. The tcpdump tool
was used to capture 100 GB of raw traffic (in Pcap files). This data set had nine attack
categories, namely, fuzzers, analysis, backdoors, DoS, exploits, generic, reconnaissance,
shellcode, and worms, and 42 features with a class label from 2,540,044 observations.

The training set contained 175,341 records (68.05%), and the testing set contained
82,332 records (31.95%) from malicious and normal files. The training set had 119,341
(68.06%) and 56,000 (31.94%) intrusion attack files and normal files, respectively. The
testing set had 45,332 (55.06%) and 37,000 (44.94%) intrusion attack files and normal files,
respectively. As indicated in Table 2, the UNSW-NB15 data set was imbalanced: it had a
large difference in the number of data points between threat categories.

Step 1.1. Normalization
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Of the 42 features in the UNSW-NB15 data set, 39 were numerical features and 3
were symbolic (attack class) features. We performed a symbol conversion of the network
packets. First, the category attributes of proto, service, and state were converted to a
numerical format through one-hot encoding with the function get_dummies() of the pandas
software library.

Step 1.2. Resampling strategies
According to formula (2), new synthetic samples (pi) and the resampling magnification

of the dataset (N) are generated randomly from minority class samples and their neighbors
using over-sampling operation. Typically, the number of each class in the data set must
be balanced (i.e., the data set must have as close to a uniform distribution as possible) for
a more precise model to be obtained. In [18], it is recommended that the number of data
points for each minority class should be augmented to be 200% of the original number.
Subsequently, through an application of Equation (3), raw data were scaled to the range of
[−1, 1] based on the minmax() function.

Step 1.3. Feature selection
By applying Equations (4)–(7) to the UNSW-NB15 data set, we first ranked the features

according to the scores assigned by the IGR measure. The set of reduced features selected
from the top 23 of the 42 total features using the IGR approach are displayed in Table 5.

Table 5. Top 23 features by weight.

Feature Weighting Rank Feature Weighting Rank

Sttl 0.1543 1 Dmean 0.0271 13
ct_state_ttl 0.0694 2 Sinpkt 0.0267 14

Dload 0.0578 3 dbytes 0.0250 15
Dttl 0.0527 4 ct_dst_src_ltm 0.0248 16

Tcprtt 0.0412 5 smean 0.0246 17
Dur 0.0378 6 state_INT’ 0.0219 18

Sload 0.0366 7 ct_srv_src 0.0212 19
Ackdat 0.0351 8 spkts 0.0165 20

Rate 0.0306 9 djit 0.0145 21
ct_srv_dst 0.0305 10 dloss 0.0133 22

Synack 0.0303 11 ct_dst_sport_ltm 0.0125 23

Step 2. Model Training and Optimization Phase
In this step, the experiments were divided into two parts: (1) 42 behavioral patterns of

the test samples were identified to conduct the training experiment and (2) ranked features
using IGR rate (Table 5) were extracted to derive 23 features from 42 features to examine
the RF-based model classification accuracy.

Step 2.1. Data bootstrapping
Bootstrapping was used to divide the training data set into m subsets to help the data

analyzer create DTs with randomly selected data points.
Step 2.2. Model training using RF
In this study, the model was trained on 42 behavioral patterns before extracting

23 features that had the highest IGR rate (Table 5). The performance of the RF-based
classification model was then evaluated using Equations (8)–(10) by training component
classifiers and aggregate the results of component classifiers from randomly selecting
sub-datasets of the training data, and finally trains a meta-classifier with majority voting
approach to perform the threat classification of the samples. Using GridSearchCV to set for
the model parameters of binary classification on Random Forest. The search parameters of
RF are set as Table 6.
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Table 6. Optimal parameter search for random forests using GridSearchCV.

Model
Parametert

n-Estimators Max-
Features

Max-
Depth

Criterion
Tree Split

RF [50,100,150,200,500,1000] Auto, sqrt [4,5,6,7,8] Gini

Step 3. Performance Evaluation Phase
To obtain the optimal classification accuracy for RF model, it first needs to determine

how many trees (component classifiers) to be generated in RF algorithm. Typical value
for the number of trees in most cases is 10, 30, or 100. It is very few practical cases more
than 300 trees that may increase the cost in computation time for learning these additional
trees [31]. In this study, the experiments for deciding the appropriate number of tree on RF
were conducted by the different numbers by examining the RF-based model classification
accuracy: 25~200 trees (n = 25~200) of the training samples. The low classification error of
the RF algorithm, as presented in Figure 6, was based on data from approximately 100 to
200 trees.
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Figure 6. Binary classification error with a given number of trees.

From Table 7, it is seen that the there is a better performance of multi-classification
(i.e., accuracy precision, recall, F1 Score, and ROC AUC) when n =100, 150, 200, compared
to n = 50. Normally, more trees are generally better precision for RF algorithm; however,
also increase the computational time of model. Notably, training with the training set for
200 trees, it gets about a 0.04% accuracy improvement on RF compared to n = 100, but
increase 10.26 sec of computational time. In other words the improvement decreases as the
number of decision trees increases. Therefore, the number of trees for the RF algorithm
was set to 100 considering the benefit in prediction performance from learning additional
trees in this study.

Table 7. Multi-classification performance with the number of tree selected.

Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC AUC (%) Training
Time (s)

n = 50 78.63 69.67 42.05 40.23 90.05 12.62
n = 100 79.19 79.67 42.22 40.48 95.70 26.97
n = 150 79.17 69.61 42.21 40.47 95.71 35.73
n = 200 79.23 69.75 42.26 40.54 95.72 37.23

The average accuracy for Nf = 42 was approximately 99.82% (Table 8) and 83.51%
for the binary classification results on training and testing data with RF (n = 100). The
accuracies (in %) associated with the optimal parameter C and γ-values were obtained
through a cross-validation scheme for the SVC (Table 8). The binary classification accuracy
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rates for the training and testing data sets were approximately 93.64% and 81.69% (C = 1000,
γ = 0.1), respectively. The optimal parameters C = 1000 and γ = 0.1 for SVC were examined
for our experiment through the use of python GridSearchCVparam = {‘C_range’:(0.1, 10,
100, 1000), ‘Gamma_range’:(0.1, 10, 100, 1000)} and the fitting error with mean_squared_error
has been analyzed with a given different values of C, γ. After analyzing the experimental
results, C = 1000 and γ = 0.1 for SVC is selected in our experiments.

Table 8. Binary classification accuracy when multiple features were used.

42 Features (Training/Testing) 23 Features (Training/Testing)

RF 99.82% and 83.51% 99.65%, and 83.51%
SVC 93.64% and 81.69% 93.70% and 81.60%

As indicated in Table 8, no differences in the precision rates were noted in the first
case, whereas a small subset of features accelerated the exploration of normal and intrusive
patterns. Thus, a reduced feature subset for Nf = 23 was selected because the threshold
value of detection accuracy was considered.

Similarly, through the use of RF on training and testing data, the multiclass classifica-
tion accuracies for 10 subcategories decreased to 86.04% and 54.71%, respectively, because
of the imbalanced data of threat classes, as indicated in Table 9.

Table 9. Multiclass classification accuracy when multiple features were used.

42 Features (Training/Testing) 23 Features (Training/Testing)

RF 86.04% and 54.71% 84.01% and 42.07%
SVC 79.18% and 71.37% 77.86% and 62.80%

Because of the imbalanced data of threat classes, the multiclass accuracies (%) of the
SVC decreased to 79.18% and 71.37% for the training and testing data, respectively.

4.2. Case II: Over-Sampling for Misclassification Class

Compared with that in Table 8 for UNSW-NB15 data set, the accuracy of the multiclass
classifications in Table 9 was lower because of the effects of imbalanced data. We analyzed
several cases of misclassification of the training data and discovered that they primarily
occurred for six minority classes: Analysis (0), Backdoor (1), DoS (2), Exploits (3), Fuzzers
(4), and Reconnaissance (7). Thus, SMOTE was employed to oversample six minority
classes by using the command, BorderlineSMOTE(sampling_ strategy = ’minority’) for
multiclass classification accuracy and compare the model performance of RF with the SVC.

In this experiment, the amount of required oversampling was set to 200%, two neigh-
bors from the five nearest neighbors were randomly selected, and one sample was gen-
erated in the direction of each of the two neighbors. The oversampling strategy for the
minority class was as follows:

Resampling strategy = {class 0: 4000, class 1: 3492, class 2: 24,328, class 3: 56,000,
class 4: 36,364, class 7: 20,982}.

The SMOTE resampling process increases the prediction accuracy of the classifiers,
and the multiclass classification accuracy for the RF classifier incorporating the SMOTE
resampling process is higher than that of the SVC classifier (Table 10). Using the SMOTE
oversampling approach with RF but not with the SVC increased the multiclass accuracy by
3–4% relative to the proposed model on training and testing experiments.
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Table 10. Multiclass classification accuracy (23 features).

SMOTE(Training/Testing) Without SMOTE(Training/Testing)

RF 87.35% and 46.34% 84.01% and 42.07%
SVC 72.87% and 61.40% 77.86% and 62.80%

4.3. Case III: Binary Classification and Multiclass Classification (CSE-CIC-IDS 2018)

Similarly, an up-to-date dataset CSE-CIC-IDS 2018 [16] is conducted in the third
experiment. This data set was created by the Communications Security Establishment
(CSE) and the Canadian Institute for Cybersecurity (CIC) on AWS (Amazon Web Services)
in 2018. CSE-CIC-IDS 2018 contained 16,233,002 records covered over the network traffics
within 10 days. It included recent known attacks for intrusion detection exercise with
massive network traffic and system logs. It consists of seven types of attacks including
Brute-force, Heartbleed, Botnet, DoS, SQL Injection, Web attacks, and infiltration of the
network from inside. The dataset includes the captures network traffic and system logs
of each machine, attack classes along with 80 features extracted from the captured traffic
using CICFlowMeter-V3. About 17% of the instances were malicious traffics for 7 major
attacks which can be summarized in five attack categories including Brute-force, Bot, DoS,
SQL Injection, and infiltration. First, 80 features of CSE-CIC-IDS 2018 were ranked using
Equations (5)–(8), the set of reduced features selected from the top 36 of the 80 total features
using the C4.5 approach are selected (Table 11).

Table 11. Top 36 features by weight. (CSE-CIC-IDS 2018).

Feature Weighting Rank Feature Weighting Rank

Fwd Seg Size Min 0.0777 1 Pkt Size Avg 0.0189 19
Init Fwd Win Byts 0.0746 2 Tot Fwd Pkts 0.0178 20
Fwd Pkt Len Max 0.0503 3 Bwd Seg Size Avg 0.0170 21
TotLen Fwd Pkts 0.0467 4 Fwd IAT Max 0.0153 22

Subflow Fwd Byts 0.0453 5 Fwd Pkt Len Std 0.0149 23
Fwd Header Len 0.0425 6 Bwd Pkt Len Mean 0.0145 24

Flow Pkts/s 0.0393 7 Bwd Header Len 0.0144 25
Fwd Pkts/s 0.0337 8 Pkt Len Max 0.0144 26

Init Bwd Win Byts 0.0318 9 Bwd Pkt Len Std 0.0135 27
Fwd Seg Size Avg 0.0309 10 Subflow Bwd Byts 0.0131 28

Bwd Pkts/s 0.0299 11 Flow IAT Max 0.0130 29
Fwd Pkt Len Mean 0.0279 12 Fwd IAT Mean 0.0130 30
Subflow Fwd Pkts 0.0236 13 Bwd Pkt Len Max 0.0113 31

Flow Duration 0.0208 14 Subflow Bwd Pkts 0.0104 32
Pkt Len Var 0.0203 15 Flow IAT Mea 0.0098 33
Fwd IAT Tot 0.0201 16 Pkt Len Mean 0.0097 34
Pkt Len Std 0.0193 17 TotLen Bwd Pkts 0.0088 35

Tot Bwd Pkts 0.0189 18 PSH Flag Cnt 0.0084 36

First, 80% of the data files are used for training, while 20% are used for testing the
model. Analyses were conducted using RF (n = 150), and the SVC to evaluate the perfor-
mance of the proposed model on CSE-CIC-IDS 2018. First, filtered out four descriptive
metrics (unnecessary features) from 80 features in the classification process, i.e., label
(output), src_port, dst_port, timestamp, protocol. According to the results, the binary
classification accuracies for 99.98% and 97.05% for Nf = 36 on the training and testing data,
respectively (Table 12).
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Table 12. Binary classification accuracy (CSE-CIC-IDS 2018).

76 Features
(Training/Testing)

36 Features
(Training/Testing)

RF 100.00%/100.00% 99.98%/97.05%
SVC 97.86%/97.90% 96.68%/94.72%

In an evaluation of multiclass classification for six subcategories, the average accura-
cies for the RF and the SVC were listed as shown in Table 13.

Table 13. Multiclass classification accuracy (CSE-CIC-IDS 2018).

76 Features
(Training/Testing)

36 Features
(Training/Testing)

RF 96.87%/88.16% 96.53%/89.38%
SVC 94.28%/84.38% 92.46%/81.58%

4.4. Method Comaprison
4.4.1. Accuracy Comparison

In this sub-section, the attributes of the proposed scheme are compared with that
of the recent studies, as shown in Table 14. Practically, it is difficult to exactly compare
the experimental results assocaited on different intrusion detection data sets, because
the quality of original data set (affected by imbalanced ratio of data set) is different. For
example, in [21,25], the studies achieved very high classification accuracy on both KDDCup
99 and NSL-KDD datasets, but not with the UNSW-NB15 dataset in [14,17]. As described in
Table 2, the serious data imbalanced problems existed in the UNSW-NB15 dataset. In [21],
experiments on KDD Cup 99 dataset show that the classification accuracy of random forest
algorithm has reached 92.39%, which is higher than other classification methods, such as
J48, LibSVM, NaiveBayes, Bagging, and AdaboostM1. Moreover, the accuracy of the RF
combined with the SMOTE has increased from 92.39% to 92.57%, after over-sampling the
samples for the minority classes including probing, U2R, and R2L. Overall, the experiment
reports in [21] that are consistent to that in Table 10 on UNSW-NB15 dataset, i.e., the
SMOTE can improve the classification effect of minority classes for imbalanced datasets on
both the KDD Cup 99 and the UNSW-NB15 data sets.

From Table 14, it shows that the multi-classification accuracy of the scheme pro-
posed in this study is higher than that of [14,17] on the UNSW-NB15 dataset. In contrast
to [14,17], proposed approach has advantages on better multi-class classification accuracy
on UNSW-NB15 dataset by incorporating with C4.5 DT algorithm to the model overfitting
prevented from inputting additional variables to avoid learning the noise in the training
data. Moreover, Table 14 indicates that the proposed approach achieved the binary accuracy
close to those of [32] on CIC-IDS 2018. However, the multi-classification accuracy was
96.53% is slightly lower than that of [19].

4.4.2. Robustness of Proposed Model

To highlight the robustness of their proposed system against model underfitting and
overfitting, the experimental results are summarized as following.

Imbalanced Data Handling

In the experiment, the SMOTE associated with IR metric can detect data imbalance
situation by applying Equations (1) and (2). In our case, underfitting occurs when a model
does not fit the input data samples enough for six minority classes which tend to decrease
classification accuracy. From Table 10, the SMOTE increased over 3.34% and 4.27% of
the average classification accuracy of the models on training and testing data set that are
consistent to reports in [19].
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Table 14. Performance comparison of recent studies.

Author Experiment
Scheme/(Dataset) Accuracy Type Classification

Accuracy

Zong, Chow, Susilo
(2018)
[14]

Six ML algorithms
+SMOTE

(UNSW-NB15)

Multi-classification
(10 categories) 85.78%

Tan et al. (2019) [21] RF+SMOTE
(KDDCup99)

Multi-classification
(4 categories) 92.57%

Karatas, Demir,
Sahingoz (2020) [19]

Six ML algorithms
+SMOTE

(CIC-IDS 2018)

Multi-classification
(6 categories)

Total: 99.34%
99.21% (original data)
99.35% (re-sampled
data) for RF learner

Huancayo Ramos
et al. (2020) [32]

Five ML algorithms
(CIC-IDS 2018)

2-class
(Benign or Bot)

• 99.99% accuracy
for RF and DT
learners
(CIC-IDS 2018)

Kasongo, Sun (2020)
[17]

Five ML algorithms
+XGBoost

(UNSW- NB15)

2-class/Multi-
classification

(10 categories)

• 2-class: 90.85%
for DT.

• Multiclass:
67.57% for DT.

Wu et al. (2021) [25] GBDT+SMOTE
(NSK-KDD)

Multi-classification
(4 categories)

99.72%(training set)
78.47%(testing set)

Proposed model

RF+SMOTE+C4.5
(UNSW-NB15)

2-class 99.65%

Multi-classification
(10 categories) 87.35%

RF+SMOTE+C4.5
(CIC-IDS 2018)

2-class 99.98%

Multi-classification
(6 categories) 96.53%

Removing Extra Features to Reduce the Risk of Overfitting

From Tables 8 and 9, we observed that users can select fewer features (Nf = 23) and
retain the close accuracy with Nf = 42 in our experiment that made the model more flexible
and reduced the risk of overfitting. In this experiment, the model overfitting is prevented
from inputting additional variables to avoid learning the noise in the training data, thus
causing it to decrease the computational costs and negatively impacts on the performance
of the model on new data inputs.

5. Conclusions

This paper presents an intrusion detection model that incorporates an RF classifier
with a SMOTE resampling policy to enhance the precision of the multiclass classification
model by oversampling minority classes. Moreover, the proposed approach minimizes
classification errors through the use of balanced data and a set of reduced features to
accelerate intrusion detection. Overall, the results indicate that the precision of the pro-
posed model for imbalanced data in intrusion detection analysis is higher than that of
classifier [14,17] on UNSW-NB15 dataset.

Although SMOTE techniques incorporating RF have been proposed for intrusion
detection with imbalanced data, practical challenges of using the resampling process
exist. For example, the model’s classification speed may be reduced if it is underfitted on
imbalanced data by reducing the number of data points of majority classes. Moreover, the
proposed scheme must be integrated into the RF+SMOTE module of NIDS. The scalability
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challenge of large, high-speed, and complex networks for intrusion detection will be
addressed in a future study.
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