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Abstract: Sentiment analysis (SA) detects people’s opinions from text engaging natural language
processing (NLP) techniques. Recent research has shown that deep learning models, i.e., Convolu-
tional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer-based provide
promising results for recognizing sentiment. Nonetheless, CNN has the advantage of extracting high-
level features by using convolutional and max-pooling layers; it cannot efficiently learn a sequence of
correlations. At the same time, Bidirectional RNN uses two RNN directions to improve extracting
long-term dependencies. However, it cannot extract local features in parallel, and Transformer-
based like Bidirectional Encoder Representations from Transformers (BERT) are the computational
resources needed to fine-tune, facing an overfitting problem on small datasets. This paper proposes
a novel attention-based model that utilizes CNNs with LSTM (named ACL-SA). First, it applies a
preprocessor to enhance the data quality and employ term frequency-inverse document frequency
(TF-IDF) feature weighting and pre-trained Glove word embedding approaches to extract meaningful
information from textual data. In addition, it utilizes CNN’s max-pooling to extract contextual
features and reduce feature dimensionality. Moreover, it uses an integrated bidirectional LSTM to
capture long-term dependencies. Furthermore, it applies the attention mechanism at the CNN’s
output layer to emphasize each word’s attention level. To avoid overfitting, the Guasiannoise and
GuasianDroupout are adopted as regularization. The model’s robustness is evaluated on four English
standard datasets, i.e., Sentiment140, US-airline, Sentiment140-MV, SA4A with various performance
matrices, and compared efficiency with existing baseline models and approaches. The experiment
results show that the proposed method significantly outperforms the state-of-the-art models.

Keywords: deep learning; CNN; Bi-LSTM; attention mechanism; social media sentiment analysis;
TF-IDF

1. Introduction

Nowadays, people express their feelings and opinions to exchange their views using
social media, such as Twitter, Facebook, Weibo, LinkedIn, and WeChat. Data gathered
from these media has motivated researchers to explore opinion mining and public views.
With massive amounts of user-generated text on social media, sentiment analysis (SA)
has become an essential part of NLP with many applications, such as information storage
and retrieval techniques, web grading, and many more. [1]. Text processing is necessary
to remember the ultimate goal of analyzing it and unexpectedly extracting information.
Although the amount of data in social media repositories increases exponentially, the tra-
ditional algorithms often fail to extract the sentiments from such big data. Researchers
recently started to use deep learning (DL) approaches based on the distributed representa-
tion to deal with data specifications during training datasets, feature engineering, and other
meeting problems on traditional techniques [2]. Studies show that CNN and RNN perform
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effectively in DL for several cases, especially in sentiment detection [3]. CNN convolu-
tional applies in NLP to perform the feature mapping and pooling layer applied over the
sequence dimension to obtain the fixed-length output. This process enables capturing
local features but losing the context information [4]. However, it is also tricky for CNN
networks to extract the long-distance features, and the pooling layer cannot capture word
location information.

RNN is the state-of-the-art algorithm for sequential data that can solve variable-length
sequence input, make the feature representation more valuable, and convert to text vectors,
forming a matrix consisting of feature vector and sequence dimensions [5]. However,
RNN networks have problems with large-scale parallel computing [6]. Long short-term
memory (LSTM) is a variant of RNN with a collection of gates to control the learning flow
at each time step to capture long-range dependencies in long sentences [7]. Therefore,
LSTM can address long-term information preservation and vanishing gradient text [8].
Compared with the LSTM model, the Bidirectional Long Short Term Memory(BiLSTM)
model can significantly analyze a large amount of contextual information from context.
The enhanced structure of BiLSTM and bidirectional gated recurrent units (BiGRU) [9]
remains the original effect while making the network more straightforward. Furthermore,
since Vaswani et al. [10] introduced the Transformer-based method, text classification
research has made great strides. To examine this model behavior and provide some
human-understandable analysis, the weights of the attention mechanism inherent in these
structures have often been considered. Similarly, Song et al. [11] proposed constructing an
auxiliary sentence from the aspect and converting ABSA to a sentence–pair classification
task that utilized the BERT transformation model. However, the attention RNN models are
still generic to deal with both global and local features since the attention mechanism is
computed to be determined based on the whole input sequence of the last RNN unit outputs.
Meanwhile, fine-tuning strategies for the approaches directly used by the Transformer
model remain a critical scientific challenge.

This paper presents a novel attention-based CNN and Bi-LSTM neural network to
locate an attention region covering the key sentiment words iteratively to address the
problems. First, term frequency-inverse document frequency (TF-IDF) feature weighting
and pre-trained Glove ( https://github.com/stanfordnlp/GloVe accessed on 20 October
2021), word embedding approaches extracted vital information from textual data. Next,
CNN is used to learn high-level feature context from input representation. Simultaneously,
the attention mechanism is applied at the CNN output layers to pay suitable attention to
different documents. Finally, Bi-LSTM is employed to extract the contextual information
from the feature-generated CNN layers to perform the sentiment analysis. To overcome
overfitting, we applied Gaussian noise and Gaussian Dropout as regularization in the
input layer. We selected four standard English Twitter data because it is an interpersonal
interaction site growing with the use of short forms with challenges due to many mis-
spellings, including polysemy and informal language. Social media users commonly post
abbreviations and misspellings, so one spelling mistake may change the whole sentence’s
viewpoint. Likewise, we applied preprocessor tasks that remove noise, lemmatize and
estimate special characters. We experimented on a diverse amount of accessible benchmark
datasets for our proposed model’s effectiveness. Wilcoxon signed-rank test is utilized to
verify the existence of significant difference between each pair of methods for sentiment
classification. The main contributions are as follows:

• A novel text representation scheme based on TF-IDF feature weighting and pre-
trained Glove word embedding has been presented to extract significant features for
sentiment analysis.

• We propose a novel attention-based CNN-Bi-LSTM model to improve accuracy and
reduce overfitting. The model adopts the advantages of both CNN and LSTM to im-
prove sentiment knowledge and accuracy. To avoid overfitting, we applied Gaussian
noise and Gaussian Dropout.

https://github.com/stanfordnlp/GloVe
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• The attention mechanism is used to pay suitable attention to different words to
improve the feature expression ability.

• We performed a comparative experiment on four Twitter datasets to assess the pro-
posed architecture’s effectiveness by improved accuracy.

The rest of the paper is organized as follows: Section 2 discusses the related works.
Then, we present the architecture of the framework in Section 3. Next, Section 4 provides the
experiment setup and implementation and experimental results and analysis, and finally,
Section 5 concludes this work.

2. Related Work
2.1. Traditional Sentiment Analysis

Since sentiment analysis is one of the valuable decision-making methods, most of
the work has been done in sentiment classification using data mining, machine learning
algorithms, and a knowledge based approach [12]. Rathi et al. [13] insisted that the
existing machine learning method has the challenge of providing better sentiment analysis
results, so they developed an ensemble method combined from Decision tree and SVM
for social media sentiment classification and improved over 2% overall classification
performance. Liu et al. [14] employed a two phase supervised learning approach to
analyze social media text data. At the first step, lexicon sentiment is performed, and then a
product identification model builds to detect the comparative social media content. Finally,
they presented the essential advantages of the target product compared to its competitors.
These methods are expendable and straightforward. Despite that, the supervised method
has severe limitations, such as being dependent on human effort for labeling, long-term
activity, and limited effectiveness leading to a conversational and unstructured social media
text [15,16].

Several studies show that lexicon-based methods offer more portable solutions across
the domains. Still, these approaches are usually less accurate [17,18]. Another major chal-
lenge of sentiment analysis on machine learning and lexicon-based, including the hybrid
method, is feature selection, typically domain-dependent. Song et al. [19] proposed a text
representation model named Word2PLTS that used linguistic terms sets (PLSTSs) short text
sentiment analysis by combined supervised machine learning and unsupervised machine
learning. The Word2PLTS model achieves a positive impact in solving the problems of
data unavailability and data sparsity. However, the model is very complex and can only
be applied to a short text. DL is known for the multiple representation learning levels
in machine learning and has recently been applied to sentiment analysis with significant
results [20].

2.2. Weighted Word Embedding for Sentiment Analysis

Word Embedding is converting text into numbers that can be readable by machine
learning and DL algorithms such as Co-Occurrence Vector, Bag of words [21], TF-IDF
Vector [22], LDA [23]. Continuous vector representations of words algorithms such as
Glove and Word2Vec deep learning techniques can convert words into meaningful vectors.
Fu et al. [24] used Word2Vec for word representations of English and Chinese Wikipedia
datasets. The word representation is applied as inputs of the recursive autoencoder
for the sentiment analysis approach. Qin et al. [25] deal with a relation classification
task utilizing the CNN approach to automatically control feature learning from raw text.
They used pre-trained Word2Vec as inputs of CNN for data-driven tasks. Abid et al. [26]
accomplished empowering subjectivity knowledge in sentiment analysis by merging the
Glove with RNN and CNN for weight pooling. They employed CNN to capture global
features with conventional pooling methods successively. The proposed architecture
attained 87.18% best accuracy on STSC-1.5k datasets by the Glove-Bi-GRU-CNN model.
Jianqiang et al. [27] introduced the GloVe-DCNN method which obtained unsupervised
learning based on a large Twitter dataset for training and predicting sentiment classification
labels. This method combined word sentiment polarity score and n-grams features to form
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a sentiment feature set of tweets and the features fed into the CNN layer. The authors
evaluated the results on five Twitter datasets which achieved significant results compared
to the state-of-the-art. Notably, most of the above techniques may lead to a lack of semantic
information, problems of high dimensionality, high sparsity, and ignoring text sentiment
information [28]. In addition, increasing the accuracy of pre-trained word embedding is
essential and plays a vital role in sentiment classification. Studies show that combining pre-
trained word embedding such as Word2Vec and GloVe vectors in their DL model decreases
accuracy [29]. In addition to the above methods and difficulties. Zhao and Mao [30]
proposed a bag of word method with the help of term frequency (TF) weighting algorithms
and Word2vec, which achieve significant results for word representation. Feature weighting
and word vector combination also perform meaningful words’ extraction tasks [31,32].

2.3. Deep Models for Sentiment Analysis

DL models used for different categories of applications have become the standard tool
for solving computer vision problems [33]. Dang et al. [34] analyze 32 of the latest research
articles that have employed DL to address the sentiment classification issues. RNN, DNN,
and CNN architectures were analyzed and combined with the used TF-IDF and word
embedding to transform input data to a DL model then predict the sentiment analysis.
In this study, several experiments were conducted on a different dataset, including the
Twitter dataset, to evaluate the DNN, CNN, and RNN models’ performance. authors
conclude that deep learning techniques combined with word embedding are more reliable
than combined with TF-IDF.

Johnson et al. [35] proposed a word-level CNN model and found that deepening
convolutional can improve the modeling effect. Rezaeinia et al. [36] introduced an im-
proved word vector (IWV) method based on POS, lexicon approach, glove pre-trained
word embeddings, and employed CNNs. The model experiment evaluation shows that the
accuracy of pre-trained word embedding improved significantly compared to using the
baselines. However, these models, including [27,37], faced vanishing gradient problems
and did not consider long dependencies.

Due to long-term dependencies and vanishing gradient problems, the researcher uses
RNN and its variants extensively in sentiment analysis. Wang et al. [38] proposed a regional
CNN (CRNN) model. First, the regional CNN applied to the input vectors considers a
whole text as input. Then, max pooling is used to decrease the dimensionality of the local
feature. Finally, the results are sent into the LSTM layer to extract the long dependencies
across sentences. Kim and Yoon [39] proposed a novel SA framework by a new correlation
of CNN and BiLSTM in a statistical manner. They created a multi-domain word embedding
dictionary by employing sentiment lexicon and word2vec with a CNN layer to perceive the
basic features and feeds the output into the BiLSTM. Experimental results showed 1–4%
performance improvement.

Nguyen and Nguyen [40] presented a CNN and LSTM to capture local dependencies
and memorize long-distance information. The authors integrated the advantage of various
deep models to reduce overfitting in training. Chatterjee et al. [41] proposed a deep
model named Sentiment and Semantic-Based Emotion Detector (SS-BED). The model
uses two LSTM layers and two different word embeddings matrices to extract sentiment
and semantics for emotion recognition. However, besides the strengths and weaknesses
mentioned for those models, there is a general drawback for all that cannot consider each
sentence’s importance differently.

With the advent of powerful attention mechanisms based on weighted transformation,
sentiment classification has significantly improved on mentioned problems. For example,
Attention-based BiLSTM with convolution layer (AC-BiLSTM) [42] offers the model to deal
with high dimensionality and sparsity of text data challenges. The 1D-CNN layer extracted
the n-gram features of input data to reduce text data dimensionality. BiLSTM is applied at
the output of the CNN layers. Even though their work results are encouraging, the research
did not fully address the co-occurrence of short and long dependencies. Wen and Li [43]
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proposed a combination of RNN and CNN with attention mechanism called ARC to classify
tweets and reviews. This model is designed to extract local n-gram and global features
on sequential information by feeding the output of a one-layer bidirectional GRU into
CNN. Basiri et al. [44] introduced an attention-based bidirectional CNN–RNN deep model
(ABCDM) using two independent BiGRU and BiLSTM layers. It extracts both past and
future contexts by considering temporal learning flow in both directions. Jing et al. [45] pro-
posed bidirectional LSTM (SAMF-BiLSTM) into account to design a self-attention system
and multi-channel features. The model effectively delivered a relationship of sentiment
polarity of each word in the sentence with target words. The classification efficiencies
by this technique were higher than the traditional methods in various aspects. How-
ever, the authors stated that this model needs to redesign the mechanism for a particular
document-level classification and did not consider overfitting problems.

Latterly, Kumawat et al. [46] introduced a transformer-based deep learning model to
correct context interpretation due to the lack of labeled social network datasets. These mod-
els were evaluated and performed on the Twitter US-Airline Sentiment dataset and
achieved 0.812% accuracy. Likewise, Sun et al. [47] proposed constructing an auxiliary
sentence from the aspect and converting ABSA to sentence–pair classification tasks that
utilized the BERT transformation model. However, these methods simply employed the
BERT model as a black box in an embedding layer for encoding the input sentence. Ad-
ditionally, the method also has the drawback of the extraction of contextual information.
Recently, Wang et al. [48] proposed the Entailment as Few-Shot Learner (EFL) approach
to turn small LMs into better few-shot learners and convert the class label into a natural
language sentence. The method established 1.9 pt absolute improvement compared to
standard fine-tuning of the RoBERTa model and an average of 19 pt.

improvement compared to the standard fine-tuning method. Nevertheless, the model
fails to consider the importance of each label based on reinforcement learning. The fol-
lowing section presents our proposed model to solve the word embedding and DL men-
tioned problems.

3. Proposed Architecture

This section introduces the structure of our proposed model ACL-SA. The overall ar-
chitecture of the ACL-SA is shown in Figure 1. It comprises data processing, Weighted word
representation, CNN layers, attention layer, bidirectional LSTM, Fully connected, and out-
put layer.

Figure 1. Model architecture.
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3.1. Data Preprocessor

Preprocessing is a crucial step in making the text more digestible by removing non-
sense phrases, noise, and unnecessary repetitions so that a deep model can boost their
efficiency. Perversely, the language used on social media is nonstandard and informal, and
noise requires extensive processing before feeding the network. Therefore, we employ vari-
ous preprocessing techniques such as lemmatization, removing non-Unicode, non-English
characters, replacing URLs, and User Handlers to handle all noise, and make text ready
for training.

3.2. Weighted Word Representation

Term frequency-inverse document frequency (TF-IDF): Studies show that the weighted
averages of word embedding can improve unsupervised NLP tasks, especially sentiment
classification performance [49]. TF-IDF is an unsupervised term weighting scheme for
information retrieval and text mining. TF-IDF represents the relative frequency of a word t
in a text document, and inverse document frequency scales with the number of documents.
It can process as follows:

Wd,t = t f × log(
N
d f

) (1)

W indicates the weight value for term t, and document d, the total number of the document
in the corpus defines as N, t f , and d f denote the term frequency indicating the number of
times and number of the document in a particular term, respectively.

The global vectors (GloVe): GloVe is a word2vec-based word representation to learn
word embeddings from text documents effectively [50]. A pre-trained word embedding
model GloVe with 2 billion tweets, 27 billion tokens, and 1.2 million vocabularies was used
to generate a word vector matrix as a 200-dimensional vector. TF-IDF with GloVe models
utilized to observe the proposed model performance. If each input k-word is represented
as T(t1, t2, . . . , tk), then each word is converted into word vector of d dimension. Hence,
Rd will be the dimensions space of each word; then, each input text is represented as Rk×d

dimension space and input text matrix generation as T = {t1, t2, . . . , tk} ∈ Rk×d. Finally,
the feature vector fv for the T document concatenated ⊕ with word embedding is shown
as follows:

fv = w1 ⊕ w2 ⊕ w3...⊕ wn−1 ⊕ wn (2)

To improve the text representation, we integrate pre-trained Glove word embedding
with TF-IDF weighing.

Vi = Wd,t × fv (3)

where fv, as mentioned above, is a word vector matrix obtained by Glove, and Wd,t is
the TF-IDF weighing of document d and term t. This method can solve the dimensional
problem of the high dimensional sparse matrix. We also applied Gaussian Noise and
Gaussian Dropout after receiving text representation from the word representation layer.
The Gaussian Noise and Gaussian Dropout process can be used as a regularization method,
making the model more vital and less prone to overfitting. Similarly, since Gaussian
noise is applied directly to the word embedding, this process serves as a random data
augmentation during training time.

3.3. Attention Based Deep Layers

To utilize the knowledge from the weighted word representation layer, we used three
region CNN networks, given the word representation as input, and fed into a convolutional
layer based on each tweet. The convolutional word vector matrix is calculated through
an Fn weighted matrix defined as w ∈ Rt×m frequently to capture the inherent and local
features, and t is a word vector selected in the matrix of Fn as follows:

hi = f (Vi:j+t−1 ×W[i] + bi) (4)
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where f is the activation function for the nonlinearity, W represents the matrix’s weight,
b is the bias, and h ∈ Rn−t+1 is for the generation of a feature map by a t word vector.
Once convolutional layers produce feature maps, the max-pooling layer applies to mini-
mize the dimensions of the dataset and extracts the most important features as shown in
the equation:

pi = Max[hi] (5)

where the Pi ∈ Rn−t+1/2 is the feature map obtained after the max-pooling layers. Max-
pooling is applied to features from the different CNN layers filter to extract equally essential
features, but it is not focused on semantics and polarity importance. Therefore, we devote
attention to emphasize the importance of each feature on the CNN-generated features
as follows:

Ai =
exp(pi)

∑i exp(pi)
(6)

The above equation shows the calculation of max-pooling attention, and Ai is the
generated attention score for each feature context pi [12].

The Bi-LSTM network is applied to the attention score’s output to learn the feature
context. We use Bi-LSTM to generate final features by sequentially processing the map.
The last feature map is obtained from the final feature context pi from CNN and Ai
attention scores.

We used Bidirectional LSTM to consider both forward and backward features parallel
and simultaneously concatenate the hidden state of two LSTMs representing each position.
Equation (7) represents forward, and (8) represents backward LSTMs:

−→
h tlstm =

−−−→
LSTM(ct−1, ht−1, Ai) (7)

←−
h tlstm =

←−−−
LSTM(ct−1, ht−1, Ai) (8)

where ct and ht represent the hidden states and memory cell, respectively; however, the ht−1
and ct−1 represent the previous states of LSTM function, and Ai is the attention score as an
input vector in the LSTM network. We now obtain an annotation for each input vector by
concatenating the forward and backward context in Equation (9):

htlstm = LSTM[
−→
h tlstm ,

←−
h tlstm ] (9)

htlstm is the concatenating output of forwarding (
−→
h tlstm) and backward (

←−
h tlstm) extracts a

long dependencies feature. The extracted feature of the entire sentence is [
−→
h tlstm ,

←−
h tlstm ].

In this way, the forward and backward contexts can be considered simultaneously.

3.4. Full Connection and Output Layer

The fully connected dense layer is used to transform the bidirectional network into
high-level sentiment representation to predict text sentiment polarity. The output is ob-
tained as follows:

hi = Relu(wihp + bi) (10)

where wi, and bi are parameters that are learned in training, hi is obtained features, and hp
is the feature map received from the Bi-LSTM network. The output layer performs the
sentiment classification using the merge feature layer, shown in Figure 1. Here, sigmoid
and Sigmoid classifiers are used for binary and multiclass datasets, respectively. Cross
entropy is used to compute the discrepancy between the predicted and actual sentiment of
the text.

4. Experiments and Analysis

This section introduces our experiments and explains the results in detail. We test
our model on four English Twitter datasets, considering the ultimate goal of accurately
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analyzing our proposed methods. Finally, the developed models are compared with the
existing research to examine the proposed model’s predictive performance.

4.1. Datasets

The Twitter datasets for our empirical analysis include Sentiment140 (http://
help.sentiment140.com/for-students accessed on 20 November 2021), US-Airline (https:
//www.kaggle.com/crowdflower/twitter-airline-sentiment accessed on 20 November 2021),
Sentiment140-MV, Sentiment Dataset for Afghanistan (SD4A) ( https://www.kaggle.com/
kamyab20/sentiment-dataset-for-afghanistan-sd4a accessed on 20 November 2021). The
above datasets have been widely used in sentiment analysis tasks so that the experi-
ment results have an accurate evaluation. The Sentiment140 dataset is scraped from
Twitter by Sandford graduate students [51]. Each tweet is labeled positive and negative
according to its emotional sentences, and there are 248,576 positives and 80,000 nega-
tives. Currently, this dataset is one of the most used standard datasets for text classi-
fication [19,34,36–38,40,44]. The US-Airline dataset is available on the Kaggle website,
which contains 14,641 tweets. This dataset was collected about the US airline problem in
2015 and divided into positive, negative, and neutral sentiment categories [27,34,41–43].
After removing neural tweets, we obtain 11,541 tweets for this research. Sentiment140-MV
is the modification version (MV) of sentiment140 with 18,309 tweets. Abid and Alam [26]
modified the sentiment140 dataset into 4000 tweets and 1500 tweets individually. We pick
more tweets to see the effect of our model. SD4A is collected by Kamyab et al. [52] about
Afghanistan’s security status from 29 March 2018 to 21 June 2018. It contains 18,309 positive
and 18,539 negative tweets. Detailed statistics of the dataset are listed in Table 1.

Table 1. Detailed statistics of the dataset: We used four different datasets to verify our model’s
effectiveness.

Dataset Max Min Avg Positive Negative Total

SD4A 38 4 16 18,309 18,539 36,848
Sentiment140 40 1 12 248,576 80,000 1,048,576
Sentiment140-MV 35 3 15 11,628 6585 18,213
US Airline 30 1 15.5 2343 9112 11,455

4.2. Experimental Setup

The inputs to the proposed model are embedding initialization by combining TF-IDF
weighting and Glove with 200 dimensions with other parameters during the network
training steps. At the input layer, we used Gaussian noise with the value of 0.5 and
Gaussian dropout with the value of 0.3 at the connection network with the one-dimensional
convolutional layer to avoid overfitting. For CNN’s layers, we apply three channels with
600, 300, and 150 filters with kernel window sizes of k (3, 4, and 5) and Relu as an activation
function to each convolutional layer. The output of the convolutional layer then fits
into max-pooling with pool size 2. After receiving the feature from the concatenation
layer, we applied the Attention mechanism before feeding the output to the BiLSTM layer.
The BiLSTM consists of 256 batch size, a dense size of 128, Relu, and kernel regularization
rate of 0.0001. After the dense layer, a sigmoid function is used for the binary classifier.
Finally, we engaged binary cross-entropy to train the model and Adam optimizer for the
model’s learning rate. We run the experiment on Windows 10 on an Intel core i5 processor
with 3.00 GHz and 16 GB of RAM.

4.3. Model Variation and Baselines Method

We used several recent similar models for each dataset developed for sentiment
classification. We pick the same results mentioned in the baseline reference paper. Moreover,
five model variations are tested during the experiment: CNN and LSTM, join models of
CNN and LSTM with the TF-IDF weighting, and trained model glove word representation,
defined as Table 2.

http://help.sentiment140.com/for-students
http://help.sentiment140.com/for-students
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/kamyab20/sentiment-dataset-for-afghanistan-sd4a
https://www.kaggle.com/kamyab20/sentiment-dataset-for-afghanistan-sd4a
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Table 2. Proposed method using a pre-trained word vector GloVe.

Proposed Narrative

TF-IDF-Glove-CNN

Methods used TF-IDF-Glove word embedding.
TF-IDF-Glove-LSTM
TF-IDF-Glove-BiLSTM
TF-IDF-Glove-CNN-LSTM
TF-IDF-Glove-CNN-BiLSTM

4.4. Results Analysis and Discussion

This section provides baseline comparisons to evaluate the model accuracy, loss value,
and effectiveness in minimizing overfitting. Moreover, we applied five different variation
models using TF-IDF-glove word representation and various deep learning algorithms
with a batch size of 256, epochs remaining 50, and the learning rates to 0.001 for all the
datasets for satisfactory accuracy.

4.4.1. Analysis of Results on the Sentiment140 Dataset

Table 3 demonstrates our proposed model’s comparisons with different models of-
fered by various authors. An overall glance for the sentiment140 Twitter data shows
that these given models acquired 56.95% to 87.12% accuracies. This table depicts our
proposed model’s highest accuracy with 87.12%, while TF-IDF-RNN [34] achieved the
lowest accuracy.

Table 3. Sentiment140 dataset and the baseline models’ accuracy comparison.

Author/Year Models Accuracy

Li et al. [53] RNTN 0.8070
Li et al. [37] CharSCNN 0.8570
Wang et al. [38] CRNN 0.7987
Nguyen & Nguyen [40] CNN autoencoder 0.7931
Nguyen & Nguyen [40] BiLSTM autoencoder 0.7911
Rezaeinia et al. [36] IWV 0.8052
Song et al. [19] SAPCP 0.8522
Dang et al. [34] TF-IDF-CNN 0.7668
Dang et al. [34] TF-IDF-RNN 0.5695
Dang et al. [34] Word embeeding -CNN 0.8006
Dang et al. [34] Word embeeding -RNN 0.8281
Basiri et al. [44] ABCDM 0.8182
Subba and Kumari [54] BERT-GloVe-Word2Vec-BiRNN 0.84
Wang et al. [48] EFL 0.863

TF-IDF-Glove-LSTM 0.8234
TF-IDF-Glove-BiLSTM 0.8345
TF-IDF-Glove-CNN 0.8322
TF-IDF-GloveLSTM+CNN 0.8432
TF-IDF-Glove-BILSTM-CNN 0.8530

Our model ACL-SA 0.8712

4.4.2. Analysis of Results on the US-Airline Dataset

Table 4 concludes the accuracy of different model performances on the US Airline
dataset compared to our proposed model. We found that our proposed model has a
significant accuracy of 94.01% for this dataset, with RNN-TF-IDF [34] remaining the lowest
compared to all other models. Similarly, we found that TF-IDF-Glove’s performance
with different neural networks for the US Airline dataset is noteworthy. For example,
TF-IDF-Glove-BiLSTM-CNN attained 93.5% accuracy.
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Table 4. US-Airline Twitter dataset accuracy compression with baseline models.

Author/Year Models Accuracy

Li et al. [53] CharSCNN 0.865
Kumawat et al. [46] BERT-DNN 0.81
Wang et al. [38] CRNN 0.9205
Yang et al. [55] HAN 0.9035
Jianqiang et al. [27] Glove-DCNN 0.839
Wen & Li [43] ARC 0.9229
Rezaeinia et al. [36] IVM 0.8985
Chatterjee et al. [41] SS-BED 0.91
Liu & Guo [42] AC-BiLSTM 0.9172
Dang et al. [34] TF-IDF-CNN 0.6879
Dang et al. [34] TF-IDF-RNN 0.6174
Dang et al. [34] Word embeeding-CNN 0.8236
Dang et al. [34] Word embeeding-RNN 0.8376
Basiri et al. [44] ABCDM 0.9275
Wang et al. [48] EFL 0.9208

TF-IDF-Glove-LSTM 0.9041
TF-IDF-Glove-BiLSTM 0.913
TF-IDF-Glove-CNN 0.9198
TF-IDF-Glove-LSTM+CNN 0.9189
TF-IDF-Glove-BILSTM-CNN 0.9358

Our model ACL-SA 0.9401

4.4.3. Analysis of Results on the Sentiment140-MV Dataset

Table 5 illustrates the comparative analysis of the proposed model’s performance using
two models. One uses the TF-IDF feature method with four different machine learning
classifiers, and the second employs the TF-IDF-Glove method with five model variation
neural networks. The Sentiment140-MV dataset is a modified form of the Sentiment140
dataset with 18,000 tweets. We applied these previous machine learning and deep learning
methods on this dataset to compare our model’s performance with others. In comparison,
our proposed model outperformed the other models. Meanwhile, deep learning models
acquired 91.94% average accuracy; however, the machine learning model achieved 81.25%
average accuracy with the Sentiment140-MV dataset. It enables us to conclude that our
proposed model attains adequate accuracy with this modified dataset.

Table 5. Sentiment140-MV accuracy compression with baseline models and our proposed models.

Models Accuracy Average Accuracy

TFIDF with DT 0.7568

0.812475TFIDF with RF 0.8589
TFIDF with SVM 0.8621
TFIDF with NB 0.7721

TF-IDF-Glove-LSTM 0.9075

0.9194
TF-IDF-Glove-BiLSTM 0.9090
TF-IDF-Glove-CNN 0.9141
TF-IDF-Glove-LSTM-CNN 0.9369
TF-IDF-Glove-BILSTM+CNN 0.9370

ACL-SA 0.9443 0.9443

4.4.4. Analysis of Results on the SD4A Dataset

Table 6 presents the same comparison of models as we have evaluated in Table 5;
however, in this evaluation, we utilized our dataset SD4A, which has never been used previ-
ously. The DL models almost gained 92.07% average accuracy on our newly SD4A dataset,
similar to the Sentiment14-18k dataset. However, the machine learning classifier with the
TF-IDF model secured 82.82% average accuracy with the SD4A dataset, 1.58% higher than
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Sentiment140-MV. In contrast, our proposed model’s accuracy for our constructed data is
94.53%, sufficiently higher than the existing neural networks.

Table 6. SD4A accuracy compression with baseline models and our proposed models.

Models Accuracy Average Accuracy

TFIDF with DT 0.7391

0.828225TFIDF with RF 0.8592
TFIDF with SVM 0.8621
TFIDF with NB 0.8525

TF-IDF Glove-LSTM 0.9141

0.9207
TF-IDF Glove-BiLSTM 0.911
TF-IDF Glove-CNN 0.9209
TF-IDF Glove-LSTM-CNN 0.9238
TF-IDF Glove-BILSTM+CNN 0.9337

ACL-SA 0.9453 0.9453

For simplicity, Table 7 and Figure 2 summarize the proposed model’s accuracy with the
aforementioned neural networks and datasets. It depicts that the proposed ACL-SA model
successfully attained the highest accuracy with our structured dataset. In comparison,
the average accuracy comparison of our proposed model with the existing models for all
datasets is differentiated with the following inequality expression:

Proposed Model (92.52) > TF-IDF-Glove-BILSTM+CNN (91.48) > TF-IDF-Glove-
LSTM+CNN (90.82) > TF-IDF Glove-CNN (89.67) > TF-IDF Glove-BiLSTM (89.18) > TF-IDF
Glove-LSTM (88.72).

Figure 2. Comparative analysis of the proposed model and model variation on different datasets.
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Table 7. Summary of the proposed model’s accuracy.

Dataset TF-IDF-
Glove-CNN

TF-IDF-
Glove-BiLSTM

TF-IDF-
Glove-LSTM

TF-IDF-Glove
-LSTM+CNN

TF-IDF-GloVe-
BILSTM+CNN

ACL-SA

SD4A 0.9209 0.911 0.9141 0.9238 0.9337 0.9453
US airline 0.9198 0.913 0.9041 0.9289 0.9358 0.94
Sentiment140 0.8322 0.8345 0.8234 0.8432 0.853 0.8712
Sentiment140-MV 0.9141 0.909 0.9075 0.9369 0.937 0.9443
Average accuracies 0.8967 0.8919 0.8873 0.9082 0.91499 0.9252

Furthermore, to verify the significance of the experimental results obtained by this
study, the non-parametric tests are used with a confidence interval of 95% in terms of
classification accuracy. Significant differences are found in each pair for the test results
obtained of the ACL-SA with CRNN, IWC, ABCDM, and Word Embedding-RNN for the
Sentiment140 dataset, Table 3. Similarly, the Wilcoxon Signed-rank test was used in each
pair ACL-SA with ABCDM, CRNN, ACR, IVM, SS-BED, and Word Embedding-RNN of
the US-airline dataset, Table 4. The results are shown in Table 8. In both Tables 3 and 4,
the Wilcoxon test results show an enormously significant difference, and the hypothesis
has been validated (p-value < 0.05) for all methods paired with our proposed method.

Table 8. Wilcoxon tests of different sentiment analysis methods in terms of classification accuracies.

Measure Dataset Comparison Hypothesis p-Value

Classification accuracy

US-airline

ACL-SA vs. ABCDM Rejected for ACL-SA 0.003
ACL-SA vs. CRNN Rejected for ACL-SA 0.025
ACL-SA vs. ACR Rejected for ACL-SA 0.025
ACL-SA vs. IVM Rejected for ACL-SA 0.026
ACL-SA vs. SS-BED Rejected for ACL-SA 0.024
ACL-SA vs. AC-BiLSTM Rejected for ACL-SA 0.016
ACL-SA vs. Word Embeeding-RNN Rejected for ACL-SA 0.031

Sentiment140

ACL-SA vs. CRNN Rejected for ACL-SA 0.001
ACL-SA vs. IWV Rejected for ACL-SA 0.011
ACL-SA vs. SAPCP Rejected for ACL-SA 0.001
ACL-SA vs. Word Embedding-RNN Rejected for ACL-SA 0.001
ACL-SA vs. ABCDM Rejected for ACL-SA 0.005

As mentioned in the literature [40,45], overfitting, a critical challenge in deep learning
models, reduces the model’s accuracy and performance. However, this challenging task
is resolved by utilizing the Gaussian Noise and Gaussian Dropout on different Twitter
datasets. Figure 2 presents the convergence of our proposed model that attained a reli-
able accuracy based on experiments conducted on training and validation datasets with
50 epochs and a batch size of 256. For instance, in Figure 3a, the SD4A validation data are
initiated from an accuracy of 0.814, steadily increasing to 0.935 at epoch 10, and remains
constant for all other epochs.
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(a) (b)

(c) (d)

Figure 3. Performance comparison obtained by different methods on the SD4A dataset (a); US-Airline dataset (b);
Sentiment140 dataset (c); Sentiment140-MV dataset (d).

Meanwhile, the training data accuracy fluctuates from 0.60 and increases steadily to
0.952 with epoch increment. At the same time, it became constant after the 15th epoch.
Similarly, Figure 3b presents the accuracy trend of training and validation of the US airline
dataset. It provides a rapid accuracy curve of 10 epochs starting from 0.839 to 0.938 on the
validation set. For the training set, it starts from 0.788 to 0.94, which becomes constant after
10 epochs. Figure 3c,d show that the accuracy trends for the sentiment140 and sentiment140-
118 k datasets are slightly different from SD4A and US-airline datasets. Figure 3c shows
that the accuracy trends for the sentiment140 dataset improved smoothly from 0.75 to 0.89
for epochs 5 to 20. Later, it is constant on average for both training data and validation
data. On the other hand, in Figure 3d, we observed that the training and validation results
of the Sentiment140-MV dataset could not attain accuracy in epochs 0–5. Later, it increased
with the number of epochs and became constant after epoch 30. Apart from these analyses,
our proposed model significantly combatted overfitting in all different datasets. As a result,
the training dataset’s accuracy is slightly higher after the 20th epoch than the validation or
test dataset in all datasets—while, for initial epochs, the test data’s accuracy is a bit higher.
Figure 4 likewise shows the loss value to confirm the combatted overfitting effect of our
model on the four Twitter datasets. From the figure, the loss of our models in training and
validation sets shows a decreasing trend with the increase of epochs and finally reaches a
lower value and becomes stable. For instance, in Figure 4a, the loss of SD4A validation
data starts from 0.5106, steadily decreasing to 0.1764 for 10 Epochs, and then becomes
stable for all other iterations. Figure 4b presents the loss trend of training and validation
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of the US-airline dataset. It provides a rapid loss curve of 10 iterations starting from
0.4669 to 0.1835 on the validation set and becomes stable. Figure 4c,d belongs to the loss
rate of sentiment140 and Sentiment140-MV, respectively. The loss validation rate starts
from 0.6919, decreasing the trend to 0.3293 for sentiment140. Similarly, loss validation for
Sentiment140-MV starts from 0.7091 and steadily decreases to 0.2289. In both, the loss
trends for the validation set become stable after 20 epochs.

(a) (b)

(c) (d)

Figure 4. SD4A loss rate change on training and validation data (a); US-Airline loss rate change on training and validation
data (b); Sentiment140 loss rate change on training and validation data (c); Sentiment140-MV loss rate change on training
and validation data (d).

In the result evaluation of Figures 3 and 4, our proposed ACL-SA network model
converges after the mentioned number of epochs with consistent accuracy and loss. Thus,
these analyses provide evidence that the ACL-SA network reduces the overfitting prob-
lem and attains adequate accuracy. Our proposed model performs better than the other
baseline algorithms on all datasets based on the experimental and comparative analyses.
Furthermore, the model minimizes the losses and increases the accuracy of the model.

5. Conclusions

This work presents a novel ACL-SA model to tackle the lack of semantic information,
high dimensionality, and overfitting problems. Our model is a joined CNN- bidirectional-
LSTM architecture that uses a combination of TF-IDF weighting and pre-trained Glove
word embeddings. In addition, we engaged three CNN layers to extract contextual features
with Max-pooling at the output of the CNNs layer for dimensionality reduction of feature



Appl. Sci. 2021, 11, 11255 15 of 17

space. Furthermore, an attention mechanism is employed at the end of the CNN layers
to put more or less attention into different words. Collectively, the bidirectional LSTM
network serves as a temporal feature and updates the CNN output layer on the past and
future sentiment representation. Finally, we employed a dense and fully connected layer
with Relu activation and sigmoid function to transform the vector into sentiment polarity
classification. In addition, we present TF-IDF weighting and pre-trained word embedding
to extract significant word representation to keep the word order information of the Twitter
data. Gaussian Noise and Gaussian Dropout were subsequently used on the input layer to
overcome overfitting. Experiments were conducted on four different Twitter datasets to
analyze the performance of the proposed model. We engaged the most recent deep learning
research models for sentiment analysis for comparison. The proposed model’s performance
achieved a magnitude of 0.9453, 0.993, 0.94, and 0.8712 on the SD4A, Sentiment140-MV,
US-Airline, and Sentiment140 datasets—a significantly improved accuracy compared to
baseline methods results. Wilcoxon test results verified the significant difference between
the proposed model and baselines. The hypothesis has been validated (p-value < 0.05) for
all methods pair tests with our proposed method. In the future, we will work to expand
our model for other languages.
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