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Abstract: Instrument fracture ranks among the most crucial complications during the endodontic
treatment of a tooth. In order to better understand the practical limits of the instrument, the relation
between the cyclic fatigue resistance and physical properties such as hardness, modulus of elasticity,
creep and surface roughness were explored. Cyclic fatigue testing in an artificial root canal at intra-
canal temperature, nanoindentation and 3D microscopy were used for evaluation of four commonly
used thermomechanically treated NiTi endodontic instruments (Unicone Plus 6/025, Unicone 6/025,
Reciproc Blue R25 and WaveOne Gold Primary). Cyclic fatigue results were analyzed using the
Kruskal–Wallis, Mann–Whitney and Bonferroni corrections. The wear resistance of Unicone 6/025
instruments was significantly lower compared to all other instruments (p < 0.05). WaveOne Gold
Primary was significantly less resistant than Unicone Plus 6/025 and Reciproc Blue R25, while the
difference between Reciproc Blue R25 and Unicone Plus 6/025 was insignificant (p > 0.05). These re-
sults are in correlation with measurements of local mechanical properties (hardness, elastic modulus
and their ratios H/E and H3/E2). Even though surface roughness, area of cross-section and shape of
instruments are important factors affecting instruments behavior, thermal processing appears to be
the most important.

Keywords: cyclic fatigue; endodontic instruments; nanoindentation; roughness

1. Introduction

One of the complications during endodontic treatment is instrument fracture during
the shaping phase [1]. This often results in tooth extraction and leads to lowering the
quality of oral health. Fracture of endodontic instrument is caused by exceeding either
the limit of cyclic fatigue resistance or the torque fatigue resistance [2–7]. It is the cyclic
fatigue resistance that is especially considered one of the most important parameters, and
its testing is of the highest importance.

Today the instruments made of nickel-titanium alloys, introduced to endodontics
by McSpadden in 1992 [8], widely complement the traditional steel instruments. Among
these alloys, a special rank belongs to nitinol, with a near-equiatomic composition (56 wt.%
of Ni and 44 wt.% of Ti) and structure combining two possible phase modifications of
NiTi with different properties: austenite and martensite. Austenite is a high temperature
phase (cubic B2 crystal structure) responsible for high stiffness, hardness and superelastic
properties; on the contrary, martensite is a low temperature phase (monoclonic B19′ crystal
structure) with lower elastic modulus that brings ductility and shape memory effect to
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the alloy [9]. The internal structure of nitinol instruments can reversibly switch from one
to another without any visual changes in the instrument. This phase switching, called
the martensitic transformation, can be induced by stress and/or by changing the ambient
temperature [10]. It was also found that specific heat treatment procedures can lead to
creation of a rhombohedrally distorted phase (R-phase) [11] exhibiting even lower elastic
modulus than a martensite phase [12].

Due to the possible existence/co-existence of different crystallographic phases, the
mechanical and fatigue properties of nitinol instruments strongly depend on a particular
phase composition [9] predetermined by the thermal treatment during manufacturing.
Alloy phase and chemical composition together with surface roughness, shape, and cross-
sectional area [13] are generally noted as intrinsic parameters with a crucial impact on
overall instrument performance [14–22]. Additionally, there are multiple ambient factors
governing the cyclic fatigue of endodontic instruments, such as type of motion (continuous,
various reciprocating), ambient temperature, and artificial root canal geometry [13]. In
general, cyclic fatigue tests of endodontic instruments are not completely standardized.
Nowadays, cyclic fatigue tests are performed mainly using an artificial canal, usually
grooved in a stainless steel block [14,20,23]. Canal curvature is usually between 30◦ and
90◦ with a variable curvature radius [14,16,24,25].

Former studies of fatigue resistance and torque fatigue resistance were accomplished
either mainly at room temperature [26–28] or at body temperature, 37 ◦C [16,23], even
though a temperature inside the root canal system of 35 ◦C is reported [14,29]. There
are several studies showing that higher ambient temperature reduces cyclic fatigue resis-
tance [14,30–32] by affecting the internal crystallographic structure (switching martensite
to austenite ratio), which leads to lowering the cyclic fatigue resistance in intracanal tem-
perature compared to room temperature [33,34]. On the contrary, there are a few studies
claiming that switching ambient temperature from room to body temperature does not
affect cyclic fatigue resistance [23,35]. This ambiguity and inconsistency in results stems
from using different experimental setups (artificial canals with variable curvature angles
made from ceramics and stainless steel) under different environmental conditions [23].
Taking into the account the in vivo physiological conditions and the applicability of previ-
ously obtained results, the only relevant cyclic fatigue studies are those performed at 35 ◦C.
Therefore, the testing temperature of 35 ◦C was used in this study, as it has the highest
information content and greatest relevance for clinicians.

Despite the controversy accompanying the fatigue testing of endodontic instruments
on account of contradictory information and its multi-variable nature [36], there is a
tremendous need for a better understanding of the durability of nitinol-based instruments.
In particular, data obtained at clinical conditions or at simulated close-to-clinical con-
ditions considering specific parameters or variables are of the highest importance [37].
The purpose of this study is to further explore and elucidate the relationships between
cross-sectional area and surface roughness, as well as appropriate mechanical properties
including hardness, creep and elastic modulus, in connection with the cyclic fatigue re-
sistance of commonly used endodontic instruments in order to provide new insight into
their mechanical durability. The tested instruments include files made by similar working
procedures, WaveOne Gold, Reciproc Blue, and Unicone Plus, and one instrument made
from M-wire, called Unicone, which is made from a differently-treated NiTi alloy.

2. Materials and Methods
2.1. Materials

Three commonly used endodontic instruments belonging to the class of reciprocating
instruments Unicone 6/025 (Medin, Nové Město na Moravě, Czech Republic), Reciproc
Blue R25 (VDW, Munich, Germany) and WaveOne Gold Primary (Dentsply Sirona, York,
PA, USA) were thoroughly compared with the recently introduced endodontic instrument
Unicone Plus 6/025 (Medin, Nové Město na Moravě, Czech Republic). All tested instru-
ments possessed the same tip diameter (0.25 mm) and length (25 mm). However, they
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differed in taper (conus), cross-section profile and manufacturing process. Unicone 6/025
and Unicone Plus 6/025 have a constant 6◦ taper. Reciproc Blue has a variable taper
starting at 8◦ in the first few millimetres from the tip and decreasing to 4◦ closer to the
shaft. WaveOne Gold has variable conus starting at 7◦ in the first few millimetres from
the tip and decreasing to 3◦ closer to the shaft. It should be noted that Unicone Plus,
Reciproc Blue and WaveOne Gold all underwent appropriate heat treatment during the
manufacturing process.

2.2. Cyclic Fatigue

Ten instruments of each type were subjected to a cyclic fatigue test in 5% sodium
hypochlorite water-based solution at a temperature of (35± 1) ◦C. A total of 40 instruments
were used for the study, which were inspected with a stereomicroscope at 20× magni-
fication before testing in order to exclude any damaged instruments. Since there is no
standardized test for cyclic fatigue in endodontics, a special device was designed and
constructed, similar to previous studies [14,23]. The model of the artificial root canal was
made of stainless steel, with a 7 mm radius of curvature, 0.5 mm diameter in the instrument
tip area, conicity of 0.07 starting 1 mm from the instrument tip area, 70◦ curvature angle,
and the center of the curve at 5.8 mm from the instrument tip area was manufactured
to simulate the physiological geometry of the root canal. This artificial root canal was
immersed into the thermostatic bath. The temperature was maintained throughout the test
and checked with an infrared thermometer (see Figure 1).

Figure 1. Experimental setup for cyclic fatigue testing (a) overall design: 1. Artificial root canal, 2. Infrared thermometer,
3. Thermostatic bath, 4. Handpiece with endodontic instrument, 5. Mobile device for precise insertion of the instrument and
(b) detail of the artificial root canal: 1. Diameter in the area of tool tip, 2. Radius of curvature, 3. Angle of curvature.

All instruments were tested using a 6:1 speed reducing handpiece (VDW, Munich,
Germany) powered by a WaveOne endomotor (Dentsply Maillefer, Ballaigues, Switzer-
land). The handpiece was fixed on a mobile device suitable for precise insertion of an
instrument into the canal. Instruments were tested in “Reciproc ALL mode”. To evaluate
the cyclic fatigue of the instruments, time was measured until fracture occurred, with an
accuracy of whole seconds. Since the obtained results did not meet the assumptions of a
normal distribution (Shapiro–Wilk Test), the non-parametric Kruskal–Wallis test was used
for statistical evaluation, followed by post hoc tests (Mann–Whitney U-tests of multiple
comparison with Bonferroni corrections), all at a significance level of 5%.

2.3. Local Mechanical Properties

Hardness, reduced elastic modulus and creep of NiTi instruments were measured with
a fully calibrated NanoTest instrument (Micro Materials, Wrexham, UK). Standard load-
controlled nanoindentation tests were performed with a three-sided diamond Berkovich
indenter at a normal force of 50 mN in order to assess hardness and elastic modulus values.
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In addition, nanoindentation creep experiments were performed at a load of 200 mN to
explore the rheological response of the instruments. The indenter was calibrated using a
standard fused silica reference sample. The nanoindentation took place with a time course
of 10 s loading and 10 s unloading; a dwell period of 10 s was used for the standard test
and 120 s for the creep test.

Nanoindentation tests were performed on transversal cross-sections. Vertically ori-
ented NiTi instruments were fixed in the epoxy resin Dentacryl (Spofadental, Jičín, Czech
Republic) and machined through grinding and fine polishing. Two transversal cross-
sections were prepared in two steps, first 2 mm and then 6.4 mm from the apex of the
instrument. The distance of 2 mm from the apex was chosen so that there was a suffi-
cient area for indentation measurements, and the distance of 6.4 mm was chosen as it
corresponds to a typical location of a fracture of instruments (the break point of the test
tips) during cyclic fatigue tests. The indentation matrix of 4 × 5 indents was located in
the central part of both cross-sections, while spacing between indents was 30 µm. The
nanoindentation curves were evaluated by the standard Oliver–Pharr method [38] for
determination of hardness and reduced elastic modulus values. Indentation measurements
were performed on three instruments for each manufacturer. Creep measurements were
done on one arbitrarily chosen instrument for each manufacturer.

Microscopic observation of the instrument cross-sections and surfaces was carried
out using a laser scanning confocal microscope (OLS LEXT 5000, Olympus, Tokyo, Japan)
at different magnifications. Dimensional analyses in both 2D and 3D were used both for
measuring the area of cross-sections and for non-contact roughness measurement. The
latter was measured on the side (outer) wall of the endodontic files. Linear roughness was
obtained from ten lines drawn in the field of view acquired using ×100 objective. A low
pass filter (cut-off) of λc = 100 µm had to be used to remove surface waviness from the
roughness data.

3. Results

The results of the cyclic fatigue test, represented by the time of operation until fracture,
are summarized in Table 1. Reciproc Blue, Unicone Plus and WaveOne Gold instruments
exhibited statistically significantly higher cyclic fatigue resistance than Unicone (p < 0.05).
Reciproc Blue and Unicone Plus showed statistically significant higher cyclic fatigue resis-
tance than WaveOne Gold (p < 0.05). Although Unicone Plus showed lower cyclic fatigue
resistance than Reciproc Blue, the difference was not statistically significant (p > 0.05). For
clarity a cumulative frequency plot is shown in Figure 2, representing the percentage of
fractures of each instrument at certain times. One can see that all Unicone instruments had
failed already before the first instrument in the other groups. All fractures took place over
a range of distances from 5.0 mm to 6.3 mm from the apex, with no statistical differences
among the instruments.

Table 1. Mean of time to fracture of tested samples.

WaveOne Gold Reciproc Blue Unicone Plus Unicone

Time to fracture (s) 214.6 ± 20.7 262.9 ± 35.5 245.1 ± 32.1 78.6 ± 11.9
Fracture position (mm) 5.5 ± 0.4 5.7 ± 0.5 5.8 ± 0.5 5.4 ± 0.4
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Figure 2. Probability of fracture vs. time to failure sets of ten samples for each evaluated instrument.

The comparison of the transversal cross-section of the instruments reveals their com-
pletely different design, as can be seen in Figure 3, showing polished cross-sections at a
distance of 6.4 mm from the apex. Both WaveOne Gold and Unicone exhibit the smallest
cross-sectional areas, as summarized in Figure 4, for 2.0 mm and 6.4 mm distances from
the apex. The ratio of the cross-sectional areas between the two distances of the different
tools differs due to their variable conicity.

Line roughness was measured using a non-contact procedure on the side of the file.
The defined areas are shown in real colours in Figure 5, including the representative surface
profiles (out of ten) which were used for roughness calculation. Three samples were
measured for each type of endodontic file; the calculated data are summarized in Table 2.
It can be seen that Unicone Plus exhibits the lowest values by far in all observed roughness
parameters. Unicone and Reciproc Blue files exhibit intermediate roughness values, while
the WaveOne Gold shows the highest values for the most used parameters in practice, Ra
and Rq (Rms). Besides Ra and Rq (also called RMS), other topographical measures are
shown in Table 2, where Rz is the maximum height of profile, Rc is the mean height of
profile elements and Rt stands for the total height of profile [39].

Table 2. Roughness parameters on the side wall of the endodontic files.

Ra [µm] Rq [µm] Rz [µm] Rc [µm] Rt [µm]

Unicone 0.29 ± 0.08 0.39 ± 0.12 2.22 ± 0.64 1.28 ± 0.35 3.47 ± 1.54
WaveOne gold 0.54 ± 0.05 0.67 ± 0.06 3.34 ± 0.30 2.01 ± 0.27 4.16 ± 0.55
Unicone Plus 0.19 ± 0.03 0.26 ± 0.05 1.63 ± 0.36 0.78 ± 0.20 2.46 ± 0.62
Reciproc Blue 0.36 ± 0.10 0.45 ± 0.13 2.62 ± 0.80 1.56 ± 0.49 3.41 ± 0.95
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Figure 3. Microscopic image of the cross-sections at a distance of 6.4 mm from the apex of the instruments (a) Unicone,
(b) WaveOne Gold, (c) Unicone Plus, (d) Reciproc Blue. Red squares are used for better comparison of the shape of the
instruments.

Figure 4. Surface area measured on two transversal-cross section positions at a distance of (a) 2 mm and (b) 6.4 mm from
the apex of the instruments.
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Figure 5. Micrographs of the side walls of the instruments, intensity (left) and color (right) representation, with chosen
roughness profile: (a) Unicone, (b) WaveOne Gold, (c) Unicone Plus and (d) Reciproc blue.

The results summarized in Figure 6 show that Unicone has significantly higher hard-
ness (approximately 4 GPa) than other three instruments (approximately 3 GPa), which
show very similar hardness. It should be noted that 4 GPa is a typical value for a commer-
cial austenitic NiTi superelastic alloy. Unicone Plus and Reciproc Blue exhibit a very small
but observable decrease of hardness between cross-sections (2 and 6.4 mm from the apex),
which is not observable for WaveOne Gold and Unicone.

Time-dependent plastic deformation, known as creep, was evaluated using a time
period of 120 s. Sets of normalized creep curves for all three instruments are presented
in Figure 6 for comparison. The normalization was performed by subtracting the initial
creep depth measured at the beginning of the dwell period, when the normal force was
kept constant. Despite the natural spread of creep curves, Figure 7 provides a qualitative
comparison of the tendency of the material to deform under constant indentation load.
Comparing the penetration depth, one can see significantly lower tendency to creep for
Unicone in comparison to other three samples. Minor differences are also observable
between other samples, where WaveOne Gold shows a lower tendency to creep than
Unicone Plus and Reciproc Blue.
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Figure 6. Results of the nanoindentation test performed with a Berkovich indenter at two distances from the apex of
the instruments. Values of (a) hardness H, (b) reduced elastic modulus E and ratios of (c) H/E and (d) H3/E2 for tested
instruments. Dark bars represent test done at the distance of 2 mm and light bars represent test at the distance of 6.4 mm
from the apex of the instrument.

Figure 7. Normalized indentation creep curves.

4. Discussion

When considering cyclic fatigue test results, the experimental conditions must be
carefully taken into account as they predetermine their practical significance. In this
study, the fatigue tests were performed at the typical intracanal temperature of 35 ◦C,
which approaches the temperature of the body. Furthermore, the reciprocating motion
in the mode RECIPROC ALL (150◦ counterclockwise and then 30◦ clockwise rotation
with a speed of 300 rpm) was used. In general, other operating modes can also be used
such as WAVEONE ALL (170◦ counter clockwise and then 50◦ clockwise rotation with a
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speed of 350 rpm) [24]. Nevertheless, the literature data comparing cyclic fatigue using
both reciprocating motions and converting time to fracture into number of cycles leading
to fracture of the instrument [21,24,40] does not show any differences in cyclic fatigue
resistance [41].

It is well known that high importance should also be given to the trajectory of the
instrument when introduced into the tooth/artificial canal, as this can significantly in-
fluence results [42]. Within this study, all instruments were tested in the same artificial
canal and no statistically significant differences in the length of fractured fragments were
observed. This can be considered as a proof of the correct positioning of instruments inside
the artificial canal [14,43], and in turn also that all instruments were confronted by similar
stresses, thereby ensuring sufficient reproducibility [44].

Comparison of the fatigue resistance (see Figure 2) clearly shows how peculiarities
of different manufacturing processes significantly affect cyclic fatigue resistance [18,19]
and in general also mechanical and tribological properties. It is clear that the Unicone
made of M-wire was significantly less resistant to cyclic fatigue in comparison to Reciproc
Blue, WaveOne Gold and Unicon Plus, all made of CM-wire; this agrees with other studies
comparing effect of phase composition on NiTi-based alloys [14,20–22]. Our study also
shows that Reciproc Blue is more resistant to cyclic fatigue than WaveOne Gold, similar
to previous studies [16,20]. The higher fatigue resistance of Reciproc Blue compared to
WaveOne Gold is mainly attributed to different thermomechanical treatment. Reciproc Blue
is ground before appropriate heat-cooling process, leading to the creation of a blue surface
layer, while WaveOne Gold is ground after an additional slow heat–cooling process, leading
to a gold surface layer made from Ni3Ti4 precipitate [16,45]. Smaller differences in the
cyclic fatigue resistance of Reciproc Blue and Unicone Plus compared to Reciproc Blue to
WaveOne Gold may be due to the fact that both Reciproc Blue and Unicone Plus are ground
prior to their thermal treatments, unlike WaveOne Gold. In addition, the transformation
temperatures and phase composition of the used NiTi alloys are important parameters.
It is known that the durability of Reciproc Blue compared to WaveOne Gold is mainly
attributed to different thermomechanical treatment, despite having a lower transformation
temperature [46]. This is mainly explained by the presence of more stable martensite [13].
Being composed mainly of martensite, these instruments are able to resist cyclic fatigue
due to its reorientation properties more than instruments based on austenite, in our case
Unicone [13].

Another factor influencing cyclic fatigue resistance is cross-section area. Fatigue
fracture originates at the maximum bending point of the instrument during root canal
shaping. Tensile stress amplitude increases with larger instrument diameter. The higher the
tensile strain amplitude on the surface is, the lower cyclic fatigue resistance will be [47,48].
In a study done by Di Nardo et al. [17], it was proven that a higher mass of alloy (i.e., a larger
cross-section area) lowers cyclic fatigue resistance when using instruments from the same
treated alloy with the same properties. However, in our study, the resistance of WaveOne
Gold to cyclic fatigue was lower compared to Reciproc Blue and Unicone Plus, although its
cross-sectional area is the smallest one. In the case of Unicone Plus and Reciproc Blue one
can see that the latter, having a larger cross-sectional area, is more resistant to cyclic fatigue,
though not statistically significantly. These results do not correlate with the last mentioned
study [17]. Nevertheless, it should be stressed that other factors such as microstructure and
phase composition have to be considered. In other words, the cross-sectional area is not
the only parameter affecting or predetermining the performance of the NiTi endodontic
instruments, as supported by comparison of Figures 2 and 3 for Unicone and Unicone Plus,
for example. Although their cross-sectional areas are very similar, their performance differs
significantly. Our results show that even small differences in manufacturing processes
may have a great impact on the cyclic fatigue resistance of the instruments used in our
study, in addition to cross-section area [16]. The cross-section shape is another plausible
parameter, observable from the cross-sections in Figure 3, that correlates with our results. It
is generally assumed that the S-shaped cross-section design, as in the case of Reciproc Blue,
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is more advantageous in terms of cyclic fatigue due to less blade engagement compared to
instruments with a higher number of blades [49].

The process of cyclic fatigue fracture originates with the forming of nano and mi-
crocracks, predominantly initiated on the surface. In most cases surface imperfections
created during the machining or any other technological operation are involved at the very
beginning of crack formation. Surface and near subsurface microcracks and other voids
act as stress concentrators, initiating the fracture process during mechanical loading. Once
the crack is formed, it grows with each subsequent loading cycle. The gradual process of
structural damage proceeds and the instrument is progressively weakened. This process
continuous until the crack reaches its critical size and the catastrophic fracture ultimately
takes place. Unfortunately, this happens suddenly and unexpectedly, with negative effects
on the quality and course of endodontic treatment [50,51]. Lopes et al. [15] proved that
lower surface roughness leads to increased cyclic fatigue resistance. However, this does
not corelate with our results, where Unicone Plus had the lowest roughness but does not
exhibit the highest resistance in cyclic fatigue tests, and WaveOne Gold, with the highest
roughness, does not exhibit the lowest resistance; see Figure 2 and Table 2. This could be
due to a higher effect of the other factors discussed in relation to cyclic fatigue compared to
the surface roughness.

Although high hardness is a suitable parameter against damage initiation due to
the resistance to notching, it can be disadvantageous in fatigue tests. Materials of higher
hardness are usually more brittle, which leads to rapid propagation and macroscopic
cracking of the sample after the initial initiation of the microcrack [52–54]. This correlates
well with the results of indentation tests, where Unicone has significantly higher hardness
than other three samples, while also failing first during the fatigue test. The values of
Elasticity modulus for all four samples are relatively similar. However, the increase between
the 2 mm and 6.4 mm cross-sections is noticeable for each of the samples. This probably
indicates slight differences in the structure and/or elemental/phase composition of the
material in the apex area in comparison to the main body. According to the Hook’s law,
a higher modulus of elasticity imposes higher mechanical stresses for the same elastic
deformation, which corelates well with the occurrence of the instrument rupture points
(=distance from the apex) during fatigue tests.

In materials science, not only hardness and modulus values but also their ratios are
very often used for description of the material response to external loading [55]. For
example, in tribological practice, the H/E (defined as the elastic strain to failure) or H3/E2

ratios (defined as resistance to plastic deformation) are often considered more relevant
parameters for description of wear behavior than mere hardness. In addition, the H/E ratio
appears in many equations describing critical stress intensity, Kc, representing or indicating
the indentation fracture toughness. Based on these equations, a material’s resistance to
crack formation and propagation is proportional to (E/H)1/2 [56,57].

Another important material property with direct practical relevance is contact yield
pressure, or in other words, resistance to plastic deformation, which scales with H3/E2 [58].
It is usually observed that critical load for non-elastic deformation grows with the value of
H3/E2 and in turn postpones the fracture initiation during quasi-static indentation tests. On
the other hand, damage tolerance was proved to scale reciprocally to H3/E2 (i.e., to E2/H3)
during dynamic impact mechanical testing, as shown by Beake [59]. This clearly reflects
the complexity of tribo/mechanical testing and emphasizes the peculiarities of different
loading conditions (static, quasistatic, dynamic). This means that material elasticity, as well
as ductility, plays an important role in a material’s erosive, abrasive and impact wear, and
must be considered when overall tribo-mechanical performance is evaluated.

Comparison of the performance of individual instruments through the probability
of fracture vs. time to failure (Figure 2) and hardness to elastic modulus ratios (Figure 6)
implies a relationship. The increased operation time, i.e., longer time to fracture, seems to
scale with the decrease of H/E, which predicts higher fracture toughness, as can be seen
from a comparison of Unicone and the other instruments (WaveOne Gold, Unicone Plus
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and Reciproc Blue). This study also shows that H3/E2 values are lowest for the Unicone
Plus and Reciproc Blue, with the longest operation time, and highest for Unicone, with the
shortest operation time; compare especially the values obtained at the distance of 6.4 mm
from the apex of the instrument (Figure 5d). A possible explanation might be based on
more effective mechanisms of energy dissipation and strain accommodation. However,
it should also be notated that influences other than material-related parameters might be
responsible for the best performance, such as the shape and design of the instrument, the
cross-sectional area, and/or the surface roughness. A similar correlation between H3/E2

and the results of a dynamic fatigue test was also reported by Beake, who reported that
resistance to crack propagation during repetitive impact increases with the decrease of
H3/E2 in the case of optical coatings [59].

It should be noted that the multi-method approach used in this study follows current
trends in endodontics research. Similar multi-method approaches combining cyclic fatigue,
torsion resistance, flexibility and cutting efficiency were recently reported by Silva et al. [60].
It is believed that this approach is necessary for the further development of understanding
of the mechanical strength and limits of endodontic instruments.

5. Conclusions

Within the limitations of this study, differences between endodontic instruments
were observed in their overall geometric design, such as the number of edges/blades,
cross section area, and surface roughness. It was shown that in terms of cyclic fatigue
resistance Unicone Plus and Reciproc Blue outperformed WaveOne Gold, while the worst
results were achieved by Unicone. The comparison of the cyclic fatigue resistance test
and nanoindentation suggests a correlation between fatigue resistance and the hardness to
elastic modulus ratios H/E and H3/E2, as well as tendency to creep.
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